We are contributing to advancements in nanoelectronics and nanophotonics that will shape the future of technology. Our group engineers advanced nanoscale light sources and detectors, designs novel metamaterials for precise optical manipulation, explores the potential of organic optoelectronics for next-generation devices, and contributes to the development of quantum and cognitive photonic systems for enhanced computation and communication.
Learn more about our research projects in the sections below.
Nanoscale Light Sources and Detectors

We probe the fundamental processes of light emission and detection at the nanoscale, employing low-dimensional materials such as quantum dots and nanowires. We investigate charge carrier photogeneration, transport, and recombination dynamics across broad spectral and temporal ranges, with the goal of enhancing the performance and miniaturization of nanoscale optoelectronic devices. This includes the development of proof-of-concept devices.
Our studies will push scaling limits and efficiency of photodetectors and nanoscale light sources for future integrated photonic circuits.
Ongoing project:
- Superconducting nanowire single photon detectors (NRF-QEP)
Relevant publications:
- Topological insulator metamaterial with giant circular photogalvanic effect, X. Sun, G. Adamo, M. Eginligil, H.N.S. Krishnamoorthy, N.I. Zheludev, C. Soci, arXiv:2008.08772
- Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals, J. Yin, Y. Zhang, A. Bruno, C. Soci, O. Bakr, J.-L. Bredas, O. Mohammed, ACS Energy Lett. 2, 2805 (2017)
- Hot exciton cooling and multiple exciton generation in PbSe quantum dots, M. Kumar, S. Vezzoli, Z. Wang, V. Chaudhary, R.V. Ramanujan, G.G. Gurzadyan, A. Bruno, C. Soci, Phys. Chem. Chem. Phys. 18, 31107 (2016)
- Small-size effects on electron transfer in P3HT/InP quantum dots, J. Yin, M. Kumar, Q. Lei, L. Ma, R.S.S. Kumar, G. Gurzadyan, C. Soci, J. Phys. Chem. C, 119, 26783 (2015)
- GaAs/AlGaAs nanowire photodetector, X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y.Z. Huang, C. Couteau, C. Soci, Nano Lett. 14, 2688 (2014)
- Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission, A. Larrue, C. Wilhelm, G. Vest, S. Combrié, A. De Rossi, C. Soci, Optics Expr. 20, 7758 (2012)
- Tailoring the Vapor-Liquid-Solid growth toward the self-assembly of GaAs nanowire junctions, X. Dai, S.A. Dayeh, V. Veeramuthu, A. Larrue, J. Wang, H. Su, C. Soci, Nano Lett. 11, 4947 (2011)
- Nanowire photodetectors, C. Soci, A. Zhang, X.-Y. Bao, H. Kim, Y. Lo, D. Wang, J. Nanosci. Nanotechnol. 10, 1430 (2010)
Designer Materials for Light Manipulation

We engineer artificial electromagnetic metamaterials with optical properties beyond those found in nature, employing unconventional material platforms such as hybrid perovskites, phase-change chalcogenides, and topological insulators. Through hybridization and nanostructuring, we create functional metamaterials that exhibit unique electronic, optical, and magnetic properties that facilitate reconfiguration, spectral tunability, and the study of novel electron and quasiparticle interactions.
Our work aims to deepen the fundamental understanding of light-matter interactions, while creating practical applications in areas like advanced sensing, optical communication, and quantum technologies.
Ongoing project:
- Perovskites for tunable nanoantennas at visible and infra-red frequencies (A*STAR-AME)
- Quantum and topological nanophotonics (MOE-Tier 3)
Relevant publications:
- Metamaterial enhancement of metal-halide perovskite luminescence, G. Adamo, H. Krishnamoorthy, D. Cortecchia, B. Chaudhary, V. Nalla, N. Zheludev, C. Soci, Nano Lett., accepted (2020)
- Infrared dielectric metamaterials from high refractive index chalcogenides, H.N.S. Krishnamoorthy, G. Adamo, J. Yin, V. Savinov, N.I. Zheludev, C. Soci, Nat. Commun. 11, 1692 (2020)
- Engineering the emission of broadband 2D perovskites by polymer distributed Bragg reflectors, P. Lova, D. Cortecchia, H.N.S. Krishnamoorthy, P. Giusto, C. Bastianini, A. Bruno, D. Comoretto, C. Soci, ACS Photonics 5, 867 (2018)
- A non-volatile chalcogenide switchable hyperbolic metamaterial, H.N.S. Krishnamoorthy, B. Gholipour, N.I. Zheludev, C. Soci, Adv. Optical Mater. 1800332 (2018)
- Plasmonics of topological insulators at optical frequencies, J. Yin, H.N.S. Krishnamoorthy, G. Adamo, A.M. Dubrovkin, Y.D. Chong, N.I. Zheludev, C. Soci, NPG Asia Materials 9, e425 (2017)
- Organometallic perovskite metasurfaces, B. Gholipour, G. Adamo, D. Cortecchia, H.N.S. Krishnamoorthy, M.D. Birowosuto, N.I. Zheludev, C. Soci, Adv. Mat. 29, 1604268 (2017)
- Plasmon-polaron coupling in conjugated polymer on infrared nanoantennas, Z. .Wang, J. Zhao, B. Frank, Q. Ran, G. Adamo, H. Giessen, C. Soci, Nano Lett.15, 5382 (2015)
- Plasmonic nanoclocks, H. Liu, Z. Wang, .J. Huang, H.J. Fan, N.I. Zheludev, C. Soci, Nano Lett. 14, 5162 (2014)
Organic Optoelectronic Devices

We investigate the photophysical properties of organic semiconductors and organic-inorganic hybrids, focusing on charge carrier dynamics, polaron self-localization, and interfacial charge transfer in materials like perovskites, conjugated polymers, and molecular crystals. We explore how structural modifications and interfacial engineering influence the fundamental optical and electronic characteristics that govern device operation, from light-emitting transistors to photovoltaic cells.
The overarching goal is to improve efficiency and expand the functionality of organic photovoltaic, photo/chemo/bio-sensors, scintillators, and light-emitting devices.
Ongoing project:
- Perovskite optoelectronics: multidimensional perovskites for high performance solution-processed light-emitting devices (NRF-CRP)
- Probing the biotic/abiotic interface of living cells on metasurfaces (MOE-Tier 1)
Relevant publications:
- Large polaron self-trapped states in three-dimensional metal-halide perovskites, W.P.D. Wong, J. Yin, B. Chaudhary, X.-Y. Chin, D. Cortecchia, S-Z.A. Lo, A.C. Grimsdale, G. Lanzani, C. Soci, ACS Materials Lett. 2, 20 (2020)
- White light emission in low-dimensional perovskites, D. Cortecchia, J. Yin, A. Petrozza, C. Soci, J. Mat. Chem. C 7, 4956 (2019)
- Brightness enhancement in pulsed-operated perovskite light-emitting transistors, F. Maddalena, X.Y. Chin, D. Cortecchia, A. Bruno, C. Soci, ACS Appl. Mater. Interfaces 10, 37316 (2018)
- Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites, D. Cortecchia, S. Neutzner, J. Yin, T. Salim, A.R.S. Kandada, A. Bruno, Y.M. Lam, J. Martí-Rujas, A. Petrozza, C. Soci, APL Materials 6, 114207 (2018)
- Polaron self-localization in white-light emitting hybrid perovskites, D. Cortecchia, J. Yin, A. Bruno, S.-Z. A. Lo, G.G. Gurzadyan, S. Mhaisalkar, J.L. Bredas, C. Soci, J. Mater. Chem. C 5, 2771 (2017)
- X-ray scintillation in lead halide perovskite crystals, M.D. Birowosuto, D. Cortecchia, W. Drozdowski, K. Brylew, W. Lachmanski, A. Bruno, C. Soci, Scientific Reports, 6, 37254 (2016)
- Lead iodide perovskite light-emitting transistor, X.Y. Chin, D. Cortecchia, J. Yin, A. Bruno, C. Soci, Nat. Commun. 6, 7383 (2015)
- Interfacial charge transfer anisotropy in polycrystalline lead iodide perovskite films, J. Yin, D. Cortecchia, A. Krishna, S. Chen, N. Mathews, A.C. Grimsdale, C. Soci, J. Phys. Chem. Lett. 6, 1396 (2015)
- Mapping polarons in polymer FETs by charge modulation microscopy in the mid-infrared, X.Y. Chin, J. Yin, Z. Wang, M. Caironi, C. Soci, Scientific Reports 4, 3626 (2014)
Neuromorphic and Quantum Photonics

We explore advanced photonic concepts for optical computation and communication. Our research demonstrated neural network-enhanced imaging through multimode fibers and investigated quantum applications within fiber networks. We created optical platforms for solving complex computational problems using waveguides and optical networks, and implemented optimization algorithms with all-optical methods. Additionally, we pioneered advanced fiber manufacturing to realize photonic synapses for brain-like computing.
Quantum and neuromorphic photonic networks have the potential to significantly improve the efficiency and functionality of imaging, signal processing, and optical telecommunications.
Ongoing projects:
- Nanophotonic quantum toolkit on the fibre platform (A*STAR-QTE)
- Application of machine learning to complex photonics (MOE-Tier 1)
Relevant publications:
- Image reconstruction through a multimode fiber with a simple neural network architecture, C. Zhu, E.A. Chan, Y. Wang, W. Peng, R. Guo, B. Zhang,* C. Soci,* Y. Chong,* arXiv:2006.05708
- Coherent perfect absorption of single photons in a fibre network, A. Vetlugin,* R. Guo, A. Xomalis, S. Yanikgonul, G. Adamo, C. Soci,* N.I. Zheludev, Appl. Phys. Lett. 115, 191101 (2019)
- Optical NP problem solver on laser-written waveguide platform, M.R. Vazquez, V. Bharadwaj, B. Sotillo, S.-Z.A. Lo, R. Ramponi, N.I. Zheludev, G. Lanzani, S.M. Eaton, C. Soci, Opt. Expr. 26, 702 (2018)
- All-optical implementation of the ant colony optimization algorithm, W. Hu, K. Wu, P.P. Shum, N. Zheludev, C. Soci, Scientific Reports 6, 26283 (2016)
- Lithography assisted fiber-drawing nanomanufacturing, B. Gholipour, P. Bastock, L. Cui, C. Craig, K. Khan, D.W. Hewak, C. Soci, Scientific Reports 6, 35409 (2016)
- Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing, B. Gholipour, P. Bastock, C. Craig, K. Khan, D. Hewak, C. Soci, Adv. Opt. Mat. 3, 635 (2015)
- Computing matrix inversion with optical networks, K. Wu, C. Soci,* P.P. Shum, N.I. Zheludev, Optics Expr. 22, 295 (2014)
- An optical fibre network oracle for NP-complete problems, K. Wu, J. García de Abajo, C. Soci,* P.P. Shum, N.I. Zheludev, Light: Science & Applications 3, e147 (2014)
|