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Chapter 5: Quantum Electrodynamics

This chapter gives an introduction to quantum electrodynamics, the quantum theory
of the electromagnetic field and its interactions with electrons and other charged particles.
We begin by formulating a quantum Hamiltonian for an electron in a classical electromag-
netic field. Then we study how to quantize Maxwell’s equations, arriving at a quantum field
theory in which the elementary excitations are photons—particles of light. The final step
is to formulate a theory in which electrons and photons are treated on the same quantum
mechanical footing, as excitations of underlying quantum fields. Along the way, we will see
how relativity can be accomodated with quantum theory.

Quantum electrodynamics is an extremely rich and intricate theory, and we will leave out
many important topics. Interested readers are referred to are Dyson’s 1951 lecture notes on
quantum electrodynamics [1], and Zee’s textbook Quantum Field Theory in a Nutshell [2].

I. QUANTIZATION OF THE LORENTZ FORCE LAW

A. Non-relativistic electrons in an electromagnetic field

Consider a non-relativistic charged particle in an electromagnetic field. As we are mainly
interested in the physics of electrons interacting with electromagnetic fields, we henceforth
take the electric charge of the particle to be −e, where e = 1.602 × 10−19 C is the elemen-
tary charge. To describe particles with an arbitrary electric charge q, simply perform the
substitution e→ −q in the formulas you will subsequently encounter.

We wish to formulate the Hamiltonian governing the quantum dynamics of such a particle,
subject to two simplifying assumptions: (i) the particle has charge and mass but is otherwise
“featureless” (i.e., we ignore the spin angular momentum and magnetic dipole moment
that real electrons possess), and (ii) the electromagnetic field is treated as a classical field,
meaning that the electric and magnetic fields are definite quantities rather than operators.
(We will see how to go beyond these simplifications later.)

Classically, the electromagnetic field acts on the particle via the Lorentz force law,

F(r, t) = −e
(
E(r, t) + ṙ×B(r, t)

)
, (5.1)

where r and ṙ denote the position and velocity of the particle, t is the time, and E and
B are the electric and magnetic fields. If no other forces are present, Newton’s second law
yields the equation of motion

mr̈ = −e
(
E(r, t) + ṙ×B(r, t)

)
, (5.2)

where m is the particle’s mass. To quantize this, we must first convert the equation of
motion into the form of Hamilton’s equations of motion.

Let us introduce the electromagnetic scalar and vector potentials Φ(r, t) and A(r, t):

E(r, t) = −∇Φ(r, t)− ∂A

∂t
, (5.3)

B(r, t) = ∇×A(r, t). (5.4)
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We now postulate that the equation of motion (5.2) can be described by the Lagrangian

L(r, ṙ, t) =
1

2
mṙ2 + e

[
Φ(r, t)− ṙ ·A(r, t)

]
. (5.5)

This follows the usual prescription for the Lagrangian as kinetic energy minus potential
energy, with −eΦ serving as the potential energy function, except for the −eṙ ·A term. To
see if this Lagrangian works, plug it into the Euler-Lagrange equations

∂L

∂ri
=

d

dt

∂L

∂ṙi
. (5.6)

The partial derivatives of the Lagrangian are:

∂L

∂ri
= e
[
∂iΦ− ṙj ∂iAj

]
∂L

∂ṙi
= mṙi − eAi.

(5.7)

Now we want to take the total time derivative of ∂L/∂ṙi. In doing so, note that the A field
has its own t-dependence, as well as varying with the particle’s t-dependent position. Thus,

d

dt

∂L

∂ṙi
= mr̈i − e

d

dt
Ai(r(t), t)

= mr̈i − e ∂tAi − e ṙj∂jAi.
(5.8)

(In the above equations, ∂i ≡ ∂/∂ri, where ri is the i-th component of the position vector,
while ∂t ≡ ∂/∂t.) Plugging these expressions into the Euler-Lagrange equations (5.6) gives

mr̈i = −e
[(
− ∂iΦ− ∂tAi

)
+ ṙj

(
∂iAj − ∂jAi

)]
= −e

[
Ei(r, t) +

(
ṙ×B(r, t)

)
i

]
.

(5.9)

(The last step can be derived by expressing the cross product using the Levi-Cevita symbol,
and using the identity εijkεlmk = δilδjm− δimδjl.) This exactly matches Eq. (5.2), as desired.

We now use the Lagrangian to derive the Hamiltonian. The canonical momentum is

pi =
∂L

∂ṙi
= mṙi − eAi. (5.10)

The Hamiltonian is defined as H(r,p) = p · ṙ− L. Using Eq. (5.10), we express it in terms
of p rather than ṙ:

H = p ·
(

p + eA

m

)
−
(
|p + eA|2

2m
+ eΦ− e

m
(p + eA) ·A

)
=
|p + eA|2

m
− e

m
A · (p + eA)−

(
|p + eA|2

2m
+ eΦ− e

m
(p + eA) ·A

)
.

(5.11)
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After cancelling various terms, we obtain

H =
|p + eA(r, t)|2

2m
− eΦ(r, t). (5.12)

This looks a lot like the Hamiltonian for a non-relativistic particle in a scalar potential,

H =
|p|2

2m
+ V (r, t).

In Eq. (5.12), the −eΦ term acts like a potential energy, which is no surprise. More inter-
estingly, the vector potential appears via the substitution

p→ p + eA(r, t). (5.13)

What does this mean? Think about what “momentum” means for a charged particle in an
electromagnetic field. Noether’s theorem states that each symmetry of a system (whether
classical or quantum) is associated with a conservation law. Momentum is the quantity
conserved when the system is symmetric under spatial translations. One of Hamilton’s
equations states that

dpi
dt

=
∂H

∂ri
,

which implies that if H is r-independent, then dp/dt = 0. But when the electromagnetic
potentials are r-independent, the quantity mṙ (which we usually call momentum) is not
necessarily conserved! Take the potentials

Φ(r, t) = 0, A(r, t) = Ctẑ, (5.14)

where C is some constant. These potentials are r-independent, but the vector potential is
time-dependent, so the −Ȧ term in Eq. (5.85) gives a non-vanishing electric field:

E(r, t) = −Cẑ, B(r, t) = 0. (5.15)

The Lorentz force law then says that

d

dt
(mṙ) = eCẑ, (5.16)

and thus mṙ is not conserved. On the other hand, the quantity p = mṙ− eA is conserved:

d

dt
(mṙ− eA) = eCẑ − eCẑ = 0. (5.17)

Hence, this is the appropriate canonical momentum for a particle in an electromagnetic field.

We are now ready to go from classical to quantum mechanics. Replace r with the position
operator r̂, and p with the momentum operator p̂. The resulting quantum Hamiltonian is

Ĥ(t) =
|p̂ + eA(r̂, t)|2

2m
− eΦ(r̂, t). (5.18)

Note: the momentum operator is p̂ = −i~∇ in the wavefunction representation, as usual.
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B. Gauge symmetry

The Hamiltonian (5.18) possesses a subtle property known as gauge symmetry. Sup-
pose we modify the scalar and vector potentials via the substitutions

Φ(r, t)→ Φ(r, t)− Λ̇(r, t) (5.19)

A(r, t)→ A(r, t) +∇Λ(r, t), (5.20)

where Λ(r, t) is an arbitrary scalar field called a gauge field. This is the gauge transfor-
mation of classical electromagnetism, which as we know leaves the electric and magnetic
fields unchanged. When applied to the Hamiltonian (5.18), it generates a new Hamiltonian

ĤΛ(t) =
|p̂ + eA(r̂, t) + e∇Λ(r̂, t)|2

2m
− eΦ(r̂, t) + eΛ̇(r̂, t). (5.21)

Now suppose ψ(r, t) is a wavefunction obeying the Schrödinger equation for the original

Hamiltonian Ĥ:

i~
∂ψ

∂t
= Ĥ(t)ψ(r, t) =

[
|p̂ + eA(r̂, t)|2

2m
− eΦ(r̂, t)

]
ψ(r, t). (5.22)

Then it can be shown that the wavefunction ψ exp(−ieΛ/~) automatically satisfies the

Schrödinger equation for the transformed Hamiltonian ĤΛ:

i~
∂

∂t

[
ψ(r, t) exp

(
−ieΛ(r, t)

~

)]
= ĤΛ(t)

[
ψ(r, t) exp

(
−ieΛ(r, t)

~

)]
. (5.23)

To prove this, observe how time and space derivatives act on the new wavefunction:

∂

∂t

[
ψ exp

(
−ieΛ

~

)]
=

[
∂ψ

∂t
− ie

~
Λ̇ψ

]
exp

(
ieΛ

~

)
∇
[
ψ exp

(
−ieΛ

~

)]
=

[
∇ψ − ie

~
∇Λψ

]
exp

(
ieΛ

~

)
.

(5.24)

When the extra terms generated by the exp(ieΛ/~) factor are slotted into the Schrödinger
equation, they cancel the gauge terms in the scalar and vector potentials. For example,(

− i~∇+ eA + e∇Λ
)[

ψ exp

(
−ieΛ

~

)]
=
[

(−i~∇+ eA)ψ
]

exp

(
−ieΛ

~

)
(5.25)

If we apply the (−i~∇+ eA + e∇Λ) operator a second time, it has a similar effect but with
the quantity in square brackets on the right-hand side of (5.25) taking the place of ψ:∣∣∣− i~∇+ eA + e∇Λ

∣∣∣2 [ψ exp

(
−ieΛ

~

)]
=
[
|−i~∇+ eA|2 ψ

]
exp

(
−ieΛ

~

)
. (5.26)

The remainder of the proof for Eq. (5.23) can be carried out straightforwardly.

The above result can be stated in a simpler form if the electromagnetic fields are static.
In this case, the time-independent electromagnetic Hamiltonian is

Ĥ =
|p̂ + eA(r̂)|2

2m
− eΦ(r̂). (5.27)
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Suppose Ĥ has eigenenergies {Em} and energy eigenfunctions {ψm(r)}. Then the gauge-
transformed Hamiltonian

ĤΛ =
|p̂ + eA(r̂) + e∇Λ(r)|2

2m
− eΦ(r̂) (5.28)

has the same energy spectrum {Em}, with eigenfunctions {ψm(r) exp[−ieΛ(r)/~] }.

C. The Aharonov-Bohm effect

In quantum electrodynamics, it is the electromagnetic scalar and vector potentials that
appear directly in the Hamiltonian, not the electric and magnetic fields. This has profound
consequences. For example, even if a charged quantum particle resides in a region with zero
magnetic field, it can feel the effect of nonzero vector potentials produced by magnetic fluxes
elsewhere in space, a phenomenon called the Aharonov-Bohm effect.

A simple setting for observing the Aharonov-Bohm effect is shown in the figure below. A
particle is trapped in a ring-shaped region (an “annulus”), of radius R and width d � R.
Outside the annulus, we set −eΦ→∞ so that the wavefunction vanishes; inside the annulus,
we set Φ = 0. We ignore the z-dependence of all fields and wavefunctions, so that the problem
is two-dimensional. We define polar coordinates (r, φ) with the origin at the ring’s center.

Now, suppose we thread magnetic flux (e.g., using a solenoid) through the origin, which
lies in the region enclosed by the annulus. This flux can be described via the vector potential

A(r, φ) =
ΦB

2πr
eφ, (5.29)

where eφ is the unit vector pointing in the azimuthal direction. We can verify from
Eq. (5.29) that the total magnetic flux through any loop of radius r enclosing the origin
is (ΦB/2πr)(2πr) = ΦB. The fact that this is independent of r implies that the magnetic
flux density is concentrated in an infintesimal area surrounding the origin, and zero every-
where else. However, the vector potential A is nonzero everywhere.

The time-independent Schrödinger equation is

1

2m

∣∣∣∣−i~∇+
eΦB

2πr
eφ

∣∣∣∣2 ψ(r, φ) = Eψ(r, φ), (5.30)
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with the boundary conditions ψ(R± d/2, 0) = 0. For sufficiently large R, we can guess that
the eigenfunctions have the form

ψ(r, φ) ≈

{
ψ0 cos

(
π
d
(r −R)

)
eikRφ, r ∈ [R− d/2, R + d/2]

0 otherwise.
(5.31)

This describes a “waveguide mode” with a half-wavelength wave profile in the r direction (so
as to vanish at r = R± d/2), traveling in the azimuthal direction with wavenumber k. The
normalization constant ψ0 is unimportant. We need the wavefunction to be single-valued
under a 2π variation in the azimuthal coordinate, so

k · 2πR = 2πn ⇒ k =
n

R
, where n ∈ Z. (5.32)

Plugging this into Eq. (5.30) yields the energy levels

En =
1

2m

[(
n~
R

+
eΦB

2πR

)2

+

(
π~
d

)2
]

(5.33)

=
e2

8π2mR2

(
ΦB +

nh

e

)2

+
π2~2

2md2
. (5.34)

These energy levels are sketched versus the magnetic flux ΦB in the figure below:

Each energy level has a quadratic dependence on ΦB. Variations in ΦB affect the energy
levels despite the fact that B = 0 in the annular region where the electron resides. This is
a manifestation of the Aharonov-Bohm effect.

It is noteworthy that the curves of different n are centered at different values of ΦB

corresponding to multiples of h/e = 4.13567 × 10−5 T m2, a fundamental unit of magnetic
flux called the magnetic flux quantum. In other words, changing ΦB by an exact multiple
of h/e leaves the energy spectrum unchanged! This invariance property, which does not
depend on the width of the annulus or any other geometrical parameters of the system,
can be explained using gauge symmetry. When an extra flux of nh/e (where n ∈ Z) is
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threaded through the annulus, Eq. (5.29) tells us that the change in vector potential is
∆A = (n~/er)eφ. But we can undo the effects of this via the gauge field

Λ(r, φ) = −n~
e
φ ⇒

{
∇Λ = −(n~/er) eφ
e−ieΛ/~ = einφ.

(5.35)

Note that this Λ is not single-valued, but that’s not a problem! Both ∇Λ and the phase
factor exp(−ieΛ/~) are single-valued, and those are the quantities that enter into the gauge
symmetry relations (5.19)–(5.20).

II. DIRAC’S THEORY OF THE ELECTRON

A. The Dirac Hamiltonian

So far, we have been using p2/2m-type Hamiltonians, which are limited to describing
non-relativistic particles. In 1928, Paul Dirac formulated a Hamiltonian that can describe
electrons moving close to the speed of light, thus successfully combining quantum theory
with special relativity. Another triumph of Dirac’s theory is that it accurately predicts the
magnetic moment of the electron.

Dirac’s theory begins from the time-dependent Schrödinger wave equation,

i~ ∂t ψ(r, t) = Ĥψ(r, t). (5.36)

Note that the left side has a first-order time derivative. On the right, the Hamiltonian Ĥ
contains spatial derivatives in the form of momentum operators. We know that time and
space derivatives of wavefunctions are related to energy and momentum by

i~ ∂t ↔ E, −i~ ∂j ↔ pj. (5.37)

We also know that the energy and momentum of a relativistic particle are related by

E2 = m2c4 +
3∑
j=1

p2
jc

2, (5.38)

where m is the rest mass and c is the speed of light. Note that E and p appear to the same
order in this equation. (Following the usual practice in relativity theory, we use Roman
indices j ∈ {1, 2, 3} for the spatial coordinates {x, y, z}.)

Since the left side of the Schrödinger equation (5.36) has a first-order time derivative, a
relativistic Hamiltonian should involve first-order spatial derivatives. So we make the guess

Ĥ = α0mc
2 +

3∑
j=1

αj p̂jc, (5.39)

where p̂j ≡ −i~∂/∂xj. The mc2 and c factors are placed for later convenience. We now need
to determine the dimensionless “coefficients” α0, α1, α2, and α3.
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For a wavefunction with definite momentum p and energy E,

Ĥψ = Eψ ⇒

(
α0mc

2 +
3∑
j=1

αjpjc

)
ψ = E ψ. (5.40)

This is obtained by replacing the p̂j operators with definite numbers. If ψ is a scalar, this
would imply that α0mc

2 +
∑

j αjpjc = E for certain scalar coefficients {α0, . . . , α3}, which

does not match the relativistic energy-mass-momentum relation (5.38).

But we can get things to work if ψ(r, t) is a multi-component wavefunction, rather than
a scalar wavefunction, and the α’s are matrices acting on those components via the matrix-
vector product operation. In that case,

Ĥ = α̂0mc
2 +

3∑
j=1

α̂j p̂jc, where p̂j ≡ −i~ ∂j, (5.41)

where the hats on {α̂0, . . . , α̂3} indicate that they are matrix-valued. Applying the Hamil-
tonian twice gives (

α̂0mc
2 +

3∑
j=1

α̂jpjc

)2

ψ = E2 ψ. (5.42)

This can be satisfied if (
α̂0mc

2 +
3∑
j=1

α̂jpjc

)2

= E2 Î , (5.43)

where Î is the identity matrix. Expanding the square (and taking care of the fact that the
α̂µ matrices need not commute) yields

α̂2
0m

2c4 +
∑
j

(α̂0α̂j + α̂jα̂0)mc3pj +
∑
jj′

α̂jα̂j′ pjpj′ c
2 = E2Î . (5.44)

This reduces to Eq. (5.38) if the α̂µ matrices satisfy

α̂2
µ = Î for µ = 0, 1, 2, 3, and

α̂µα̂ν + α̂να̂µ = 0 for µ 6= ν.
(5.45)

(We use Greek symbols for indices ranging over the four spacetime coordinates {0, 1, 2, 3}.)
The above can be written more concisely using the anticommutator:

{α̂µ, α̂ν} = 2δµν , for µ, ν = 0, 1, 2, 3. (5.46)

Also, we need the α̂µ matrices to be Hermitian, so that Ĥ is Hermitian.

It turns out that the smallest possible Hermitian matrices that can satisfy Eq. (5.46) are
4 × 4 matrices. The choice of matrices (or “representation”) is not uniquely determined.
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One particularly useful choice is called the Dirac representation:

α̂0 =

[
Î 0̂

0̂ −Î

]
, α̂1 =

[
0̂ σ̂1

σ̂1 0̂

]
α̂2 =

[
0̂ σ̂2

σ̂2 0̂

]
, α̂3 =

[
0̂ σ̂3

σ̂3 0̂

]
,

(5.47)

where {σ̂1, σ̂2, σ̂3} denote the usual Pauli matrices. Since the α̂µ’s are 4 × 4 matrices, it
follows that ψ(r) is a four-component field.

B. Eigenstates of the Dirac Hamiltonian

According to Eq. (5.38), the energy eigenvalues of the Dirac Hamiltonian are

E = ±
√
m2c4 +

∑
j

p2
jc

2. (5.48)

This is plotted below:

The energy spectrum forms two hyperbolic bands. For each p, there are two degenerate
positive energy eigenvalues, and two degenerate negative energy eigenvalues, for a total
of four eigenvalues (matching the number of wavefunction components). The upper band
matches the dispersion relation for a massive relativistic particle, as desired. But what about
the negative-energy band? Who ordered that?

It might be possible for us to ignore the existence of the negative-energy states, if we only
ever consider an isolated electron; we could just declare the positive-energy states to be the
ones we are interested in, and ignore the others. However, the problem becomes hard to
dismiss once we let the electron interact with another system, such as the electromagnetic
field. Under such circumstances, the availability of negative-energy states extending down
to E → −∞ would destabilize the positive-energy electron states, since the electron can
repeatedly hop to states with ever more negative energies by shedding energy (e.g., by
emitting photons). This is obviously problematic. However, let us wait for a while (till
Section II D) to discuss how the stability problem might be resolved.

For now, let us take a closer look at the meaning of the Dirac wavefunction. Its four
components represent a four-fold “internal” degree of freedom, distinct from the electron’s
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ordinary kinematic degrees of freedom. Since there are two energy bands, the assignment
of an electron to the upper or lower band (or some superposition thereof) consitutes two
degrees of freedom. Each band must then posssess a two-fold degree of freedom (so that
2× 2 = 4), which turns out to be associated with the electron’s spin.

To see explicitly how this works, let us pick a representation for the α̂µ matrices. The
choice of representation determines how the four degrees of freedom are encoded in the
individual wavefunction components. We will use the Dirac representation (5.47). In this
case, it is convenient to divide the components into upper and lower parts,

ψ(r, t) =

[
ψA(r, t)
ψB(r, t)

]
, (5.49)

where ψA and ψB have two components each. Then, for an eigenstate with energy E and
momentum p, applying (5.47) to the Dirac equation (5.41) gives

ψA =
1

E −mc2

∑
j

σ̂jpjψB, (5.50)

ψB =
1

E +mc2

∑
j

σ̂jpjψA. (5.51)

Consider the non-relativistic limit, |p| → 0, for which E approaches either mc2 or −mc2. For
the upper band (E & mc2), the vanishing of the denominator in Eq. (5.50) tells us that the
wavefunction is dominated by ψA. Conversely, for the lower band (E . −mc2), Eq. (5.51)
tells us that the wavefunction is dominated by ψB. We can thus associate the upper (A)
and lower (B) components with the band degree of freedom. Note, however, that this is
only an approximate association that holds in the non-relativistic limit! In the relativistic
regime, upper-band states can have non-vanishing values in the B components, and vice
versa. (There does exist a way to make the upper/lower spinor components correspond
rigorously to positive/negative energies, but this requires a more complicated representation
than the Dirac representation [3].)

C. Dirac electrons in an electromagnetic field

To continue pursuing our objective of interpreting the Dirac wavefunction, we must de-
termine how the electron interacts with an electromagnetic field. We introduce electromag-
netism by following the same procedure as in the non-relativistic theory (Section I A): add
−eΦ(r, t) as a scalar potential function, and add the vector potential via the substitution

p̂→ p̂ + eA(r̂, t). (5.52)

Applying this recipe to the Dirac Hamiltonian (5.41) yields

i~ ∂tψ =

{
α̂0mc

2 − eΦ(r, t) +
∑
j

α̂j

[
− i~ ∂j + eAj(r, t)

]
c

}
ψ(r, t). (5.53)

You can check that this has the same gauge symmetry properties as the non-relativistic
theory discussed in Section I B.
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In the Dirac representation (5.47), Eq. (5.53) reduces to

i~ ∂t ψA =
(

+mc2 − eΦ
)
ψA +

∑
j

σ̂j
(
− i~∂j + eAj

)
c ψB (5.54)

i~ ∂t ψB =
(
−mc2 − eΦ

)
ψB +

∑
j

σ̂j
(
− i~∂j + eAj

)
c ψA, (5.55)

where ψA and ψB are the previously-introduced two-component objects corresponding to
the upper and lower halves of the Dirac wavefunction.

In the non-relativistic limit, solutions to the above equations can be cast in the form

ψA(r, t) = ΨA(r, t) exp

[
−i
(
mc2

~

)
t

]
ψB(r, t) = ΨB(r, t) exp

[
−i
(
mc2

~

)
t

]
.

(5.56)

The exponentials on the right side are the exp(−iωt) factor corresponding to the rest energy
mc2, which dominates the electron’s energy in the non-relativistic limit. (Note that by
using +mc2 rather than −mc2, we are explicitly referencing the positive-energy band.) If
the electron is in an eigenstate with p = 0 and there are no electromagnetic fields, ΨA and
ΨB would just be constants. Now suppose the electron is non-relativistic but not in a p = 0
eigenstate, and the electromagnetic fields are weak but not necessarily vanishing. In that
case, ΨA and ΨB are functions that vary with t, but slowly.

Plugging this ansatz into Eqs. (5.54)–(5.55) gives

i~ ∂t ΨA = −eΦ ΨA +
∑
j

σ̂j
(
− i~∂j + eAj

)
c ΨB (5.57)

(
i~ ∂t + 2mc2 + eΦ

)
ΨB =

∑
j

σ̂j
(
− i~∂j + eAj

)
c ΨA. (5.58)

On the left side of Eq. (5.58), the 2mc2 term dominates over the other two, so

ΨB ≈
1

2mc

∑
j

σ̂j
(
− i~∂j + eAj

)
ΨA. (5.59)

Plugging this into Eq. (5.57) yields

i~ ∂t ΨA =

{
−eΦ +

1

2m

∑
jk

σ̂jσ̂k
(
− i~∂j + eAj

)(
− i~∂k + eAk

)}
ΨA. (5.60)

Using the identity σ̂jσ̂k = δjkÎ + i
∑

i εijkσi:

i~ ∂t ΨA =

{
− eΦ +

1

2m

∣∣− i~∇+ eA
∣∣2

+
i

2m

∑
ijk

εijkσ̂i
(
− i~∂j + eAj

)(
− i~∂k + eAk

)}
ΨA.

(5.61)
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Look carefully at the last term in the curly brackets. Expanding the square yields

i

2m

∑
ijk

εijkσ̂i

(
− ∂j∂k − i~e∂jAk − i~e

[
Ak∂j + Aj∂k

]
+ e2AjAk

)
.

Due to the antisymmetry of εijk, all terms inside the parentheses that are symmetric under
j and k cancel out when summed over. The only survivor is the second term, which gives

~e
2m

∑
ijk

εijkσ̂i∂jAk =
~e
2m

σ̂ · B(r, t), (5.62)

where B = ∇×A is the magnetic field. Hence,

i~ ∂t ΨA =

{
−eΦ +

1

2m

∣∣− i~∇+ eA
∣∣2 − (− ~e

2m
σ̂

)
· B

}
ΨA. (5.63)

This is an exact match for Eq. (5.18), except that the Hamiltonian has an additional term

of the form −µ̂ · B̂. This additional term corresponds to the potential energy of a magnetic
dipole of moment µ in a magnetic field B. The Dirac theory therefore predicts the electron’s
magnetic dipole moment to be

|µ| = ~e
2m

. (5.64)

Remarkably, this matches the experimentally-observed magnetic dipole moment to about
one part in 103. The residual mismatch between Eq. (5.64) and the actual magnetic dipole
moment of the electron is understood to arise from quantum fluctuations of the electronic
and electromagnetic quantum fields. Using the full theory of quantum electrodynamics, that
“anomalous magnetic moment” can also be calculated and matches experiment to around
one part in 109, making it one of the most precise theoretical predictions in physics! For
details, see Ref. [2].

It is noteworthy that we did not set out to include spin in the theory, yet it arose,
seemingly unavoidably, as a by-product of formulating a relativistic theory of the electron.
This is a manifestation of the general principle that relativistic quantum theory is more
constrained than non-relativistic quantum theory [1]. Due to the demands imposed by
relativistic symmetries, spin is not allowed to be an optional part of the theory of the
relativistic electron—it has to be built into the theory at a fundamental level.

D. Positrons and Dirac Field Theory

As noted in Section II B, the stability of the quantum states described by the Dirac
equation is threatened by the presence of negative-energy solutions. To get around this
problem, Dirac suggested that what we regard as the “vacuum” may actually be a state,
called the Dirac sea, in which all negative-energy states are occupied. Since electrons are
fermions, the Pauli exclusion principle would then forbid decay into the negative-energy
states, stabilizing the positive-energy states.

At first blush, the idea seems ridiculous; how can the vacuum contain an infinite num-
ber of particles? However, we shall see that the idea becomes more plausible if the Dirac
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equation is reinterpreted as a single-particle construction which arises from a more funda-
mental quantum field theory. The Dirac sea idea is an inherently multi-particle concept, and
we know from Chapter 4 that quantum field theory is a natural framework for describing
multi-particle quantum states. Let us therefore develop this theory.

Consider again the eigenstates of the single-particle Dirac Hamiltonian with definite mo-
menta and energies. Denote the positive-energy wavefunctions by

ukσ e
ik·r

(2π)3/2
= 〈r|k,+, σ〉, where Ĥ|k,+, σ〉 = εkσ|k,+, σ〉. (5.65)

The negative-energy wavefunctions are

vkσ e
−ik·r

(2π)3/2
= 〈r|k,−, σ〉, where Ĥ|k,−, σ〉 = −εkσ|k,−, σ〉. (5.66)

Note that |k,−, σ〉 denotes a negative-energy eigenstate with momentum −~k, not ~k.
The reason for this notation, which uses different symbols to label the positive-energy and
negative-energy states, will become clear later. Each of the ukσ and vkσ terms are four-
component objects (spinors), and for any given k, the set

{ukσ, vk,σ | σ = 1, 2}

forms an orthonormal basis for the four-dimensional spinor space. Thus,∑
n

(unkσ)∗ unkσ′ = δσσ′ ,
∑
n

(unkσ)∗ vnkσ′ = 0, etc. (5.67)

Here we use the notation where unkσ is the n-th component of the ukσ spinor, and likewise
for the v’s.

Following the second quantization procedure from Chapter 4, let us introduce a fermionic
Fock space HF , as well as a set of creation/annihilation operators:

b̂†kσ and b̂kσ create/annihilate |k,+, σ〉
d̂†kσ and d̂kσ create/annihilate |k,−, σ〉.

These obey the fermionic anticommutation relations

{b̂kσ, b̂†k′σ′} = δ3(k− k′) δσσ′ , {d̂kσ, d̂†k′σ′} = δ3(k− k′) δσσ′

{b̂kσ, b̂k′σ′} = {b̂kσ, d̂k′σ′} = {d̂kσ, d̂k′σ′} = 0, etc.
(5.68)

The Hamiltonian is

Ĥ =

∫
d3k

∑
σ

εkσ

(
b̂†kσ b̂kσ − d̂

†
kσd̂kσ

)
, (5.69)

and applying the annihilation operators to the vacuum state |∅〉 gives zero:

b̂kσ|∅〉 = d̂kσ|∅〉 = 0. (5.70)
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When formulating bosonic field theory, we defined a local field annihilation operator that
annihilates a particle at a given point r. In the infinite-system limit, this took the form

ψ̂(r) =

∫
d3k ϕk(r) âk, (5.71)

and the orthonormality of the ϕk wavefunctions implied that [ψ̂(r), ψ̂†(r′)] = δ3(r − r′).
Similarly, we can use the Dirac Hamiltonian’s eigenfunctions (5.65)–(5.66) to define

ψ̂n(r) =

∫
d3k

(2π)3/2

∑
σ

(
unkσe

ik·r b̂kσ + vnkσe
−ik·r d̂kσ

)
. (5.72)

Note that there are two terms in the parentheses because the positive-energy and negative-
energy states are denoted by differently-labeled annihilation operators. Moreover, since the
wavefunctions are four-component spinors, the field operators have a spinor index n. Using
the spinor orthonormality conditions (5.67) and the anticommutation relations (5.68), we
can show that {

ψ̂n(r), ψ̂†n′(r
′)
}

= δnn′ δ3(r− r′), (5.73)

with all other anticommutators vanishing. Hence, ψ̂n(r) can be regarded as an operator that
annihilates a four-component fermion at point r.

Now let us define the operators
ĉkσ = d̂†kσ. (5.74)

Using these, the fermionic anticommutation relations can be re-written as

{b̂kσ, b̂†k′σ′} = δ3(k− k′) δσσ′ , {ĉkσ, ĉ†k′σ′} = δ3(k− k′) δσσ′

{b̂kσ, b̂k′σ′} = {b̂kσ, ĉk′σ′} = {ĉkσ, ĉk′σ′} = 0, etc.
(5.75)

Hence ĉ†kσ and ĉkσ formally satisfy the criteria to be regarded as creation and annihilation

operators. The particle created by ĉ†kσ is called a positron, and is equivalent to the absence
of a d-type particle (i.e., a negative-energy electron).

The Hamiltonian (5.69) can now be written as

Ĥ =

∫
d3k

∑
σ

εkσ

(
b̂†kσ b̂kσ + ĉ†kσ ĉkσ

)
+ constant, (5.76)

which explicitly shows that the positrons have positive energies (i.e., the absence of a
negative-energy particle is equivalent to the presence of a positive-energy particle). With

further analysis, which we will skip, it can be shown that the positron created by ĉ†kσ has
positive charge e and momentum ~k. The latter is thanks to the definition adopted in
Eq. (5.66); the absence of a momentum −~k particle is equivalent to the presence of a
momentum ~k particle. As for the field annihilation operator (5.72), it can be written as

ψ̂n(r) =

∫
d3k

(2π)3/2

∑
σ

(
unkσe

ik·r b̂kσ + vnkσe
−ik·r ĉ†kσ

)
. (5.77)
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The c-type annihilation operators do not annihilate |∅〉. However, let us define

|∅′〉 =
∏
kσ

d̂†kσ|∅〉, (5.78)

which is evidently a formal description of the Dirac sea state. Then

ĉkσ|∅′〉 = d̂†kσ
∏
k′σ′

d̂†k′σ′ |∅〉 = 0. (5.79)

At the end of the day, we can regard the quantum field theory as being defined in terms
of b-type and c-type operators, using the anticommutators (5.75), the Hamiltonian (5.76),
and the field operator (5.77), along with the vacuum state |∅′〉. The elementary particles
in this theory are electrons and positrons with strictly positive energies. The single-particle
Dirac theory, with its quirky negative-energy states, can then be interpreted as a special
construct that maps the quantum field theory into single-particle language. Even though
we actually started from the single-particle description, it is the quantum field theory, and
its vacuum state |∅′〉, that is more fundamental.

There are many more details about the Dirac theory that we will not discuss here. One
particularly important issue is how the particles transform under Lorentz boosts and other
changes in coordinate system. For such details, the reader is referred to Ref. [1].

III. QUANTIZING THE ELECTROMAGNETIC FIELD

Previously (Chapter 4, Sec. IV.C), we have gone through the process of quantizing a
scalar boson field. The classical field is decomposed into normal modes, and each mode
is quantized by assigning it an independent set of creation and annihilation operators. By
comparing the oscillator energies in the classical and quantum regimes, we can derive the
Hermitian operator corresponding to the classical field variable, expressed using the creation
and annihilation operators. We will use the same approach, with only minor adjustments,
to quantize the electromagnetic field.

First, consider a “source-free” electromagnetic field—i.e., with no electric charges and
currents. Without sources, Maxwell’s equations (in SI units, and in a vacuum) reduce to:

∇ · E = 0 (5.80)

∇ ·B = 0 (5.81)

∇× E = −∂B

∂t
(5.82)

∇×B =
1

c2

∂E

∂t
. (5.83)

Once again, we introduce the scalar potential Φ and vector potential A:

E = −∇Φ− ∂A

∂t
(5.84)

B = ∇×A. (5.85)
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With these relations, Eqs. (5.81) and (5.82) are satisfied automatically via vector identities.
The two remaining equations, (5.80) and (5.83), become:

∇2Φ = − ∂

∂t
∇ ·A (5.86)(

∇2 − 1

c2

∂2

∂t2

)
A = ∇

[
1

c2

∂

∂t
Φ +∇ ·A

]
. (5.87)

In the next step, we choose a convenient gauge called the Coulomb gauge:

Φ = 0, ∇ ·A = 0. (5.88)

(To see that we can always make such a gauge choice, suppose we start out with a scalar
potential Φ0 and vector potential A0 not satisfying (5.88). Perform a gauge transformation

with a gauge field Λ(r, t) = −
∫ t
dt′ Φ0(r, t′). The new scalar potential is Φ = Φ0 + Λ̇ = 0;

moreover, the new vector potential satisfies

∇ ·A = ∇ ·A0 −∇2Λ = ∇ ·A0 +

∫ t

dt′ ∇2Φ0(r, t′). (5.89)

Upon using Eq. (5.86), we find that ∇ ·A = 0.)

In the Coulomb gauge, Eq. (5.86) is automatically satisfied. The sole remaining equation,
(5.87), simplifies to (

∇2 − 1

c2

∂2

∂t2

)
A = 0. (5.90)

This has plane-wave solutions of the form

A(r, t) =
(
A ei(k·r−ωt) + c.c.

)
e, (5.91)

where A is a complex number (the mode amplitude) that specifies the magnitude and
phase of the plane wave, e is a real unit vector (the polarization vector) that specifies
which direction the vector potential points along, and “c.c.” denotes the complex conjugate
of the first term. Referring to Eq. (5.90), the angular frequency ω must satisfy

ω = c|k|. (5.92)

Moreover, since ∇ ·A = 0, it must be the case that

k · e = 0. (5.93)

In other words, the polarization vector is perpendicular to the propagation direction. For
any given k, we can choose (arbitrarily) two orthogonal polarization vectors.

Now suppose we put the electromagnetic field in a box of volume V = L3, with periodic
boundary conditions (we will take L→∞ at the end). The k vectors form a discrete set:

kj =
2πnj
L

, nj ∈ Z, for j = 1, 2, 3. (5.94)
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Then the vector potential field can be decomposed as a superposition of plane waves,

A(r, t) =
∑
kλ

(
Akλ e

i(k·r−ωkt) + c.c.
)

ekλ, where ωk = c|k|. (5.95)

Here, λ is a two-fold polarization degree of freedom indexing the two possible orthogonal
polarization vectors for each k. (We won’t need to specify how exactly these polarization
vectors are defined, so long as the definition is used consistently.)

To convert the classical field theory into a quantum field theory, for each (k, λ) we define
an independent set of creation and annihilation operators:[

âkλ, â
†
k′λ′

]
= δkk′δλλ′ ,

[
âkλ, âk′λ′

]
=
[
â†kλ, â

†
k′λ′

]
= 0. (5.96)

Then the Hamiltonian for the electromagnetic field is

Ĥ =
∑
kλ

~ωk â
†
kλâkλ, where ωk = c|k|. (5.97)

The vector potential is now promoted into a Hermitian operator in the Heisenberg picture:

Â(r, t) =
∑
kλ

Ckλ
(
âkλ e

i(k·r−ωkt) + h.c.
)

ekλ. (5.98)

Here, Ckλ is a constant to be determined, and “h.c.” denotes the Hermitian conjugate.
The creation and annihilation operators in this equation are Schrödinger picture (t = 0)
operators. The particles they create/annihilate are photons—elementary particles of light.

To find Ckλ, we compare the quantum and classical energies. Suppose the electromagnetic
field is in a coherent state |α〉 such that for any k and λ,

âkλ|α〉 = αkλ|α〉 (5.99)

for some αkλ ∈ C. From this and Eq. (5.98), we identify the corresponding classical field

A(r, t) =
∑
kλ

(
Akλ e

i(k·r−ωkt) + c.c.
)

ekλ, where Ckλαkλ = Akλ. (5.100)

For each k and λ, Eqs. (5.84)–(5.85) give the electric and magnetic fields

Ekλ =
(
iωkAkλ e

i(k·r−ωkt) + c.c.
)

ekλ (5.101)

Bkλ =
(
iAkλ e

i(k·r−ωkt) + c.c.
)

k× ekλ. (5.102)

In the classical theory of electromagnetism, Poynting’s theorem tells us that the total energy
carried by a classical plane electromagnetic wave is

E =

∫
V

d3r
ε0
2

(∣∣Ekλ

∣∣2 + c2
∣∣Bkλ

∣∣2)
= 2 ε0 ω

2
k |Akλ|2 V.

(5.103)
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Here, V is the volume of the enclosing box, and we have used the fact that terms like e2ik·r

vanish when integrated over r. Hence, we make the correspondence

2 ε0 ω
2
k |Ckλαkλ|2 V = ~ωk|αkλ|2 ⇒ Ckλ =

√
~

2ε0ωkV
. (5.104)

We thus arrive at the result

Ĥ =
∑
kλ

~ωk â
†
kλâkλ

Â(r, t) =
∑
kλ

√
~

2ε0ωkV

(
âkλ e

i(k·r−ωkt) + h.c.
)

ekλ

ωk = c|k|,
[
âkλ, â

†
k′λ′

]
= δkk′δλλ′ ,

[
âkλ, âk′λ′

]
= 0.

(5.105)

To describe infinite free space rather than a finite-volume box, we take the L→∞ limit
and re-normalize the creation and annihilation operators by the replacement

âkλ →
√

(2π)3

V
âkλ. (5.106)

Then the sums over k become integrals over the infinite three-dimensional space:

Ĥ =

∫
d3k

∑
λ

~ωk â
†
kλâkλ

Â(r, t) =

∫
d3k

∑
λ

√
~

16π3ε0ωk

(
âkλ e

i(k·r−ωkt) + h.c.
)

ekλ

ωk = c|k|,
[
âkλ, â

†
k′λ′

]
= δ3(k− k′)δλλ′ ,

[
âkλ, âk′λ′

]
= 0.

(5.107)

IV. THE ELECTRON-PHOTON INTERACTION

Having derived quantum theories for the electron and the electromagnetic field, we can put
them together to describe how electrons interact with the electromagnetic field by absorbing
and/or emitting photons. Here, we present the simplest such calculation.

Let He be the Hilbert space for one electron, and HEM be the Hilbert space for the
electromagnetic field. The combined system is thus described by He ⊗HEM. We seek a
Hamiltonian of the form

H = He +HEM +Hint, (5.108)
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where He is the Hamiltonian for the “bare” electron, HEM is the Hamiltonian for the source-
free electromagnetic field, and Hint is an interaction Hamiltonian describing how the
electron interacts with photons.

Let us once again adopt the Coulomb gauge, so that the scalar potential is zero, and the
electromagnetic field is solely described via the vector potential. In Section I A, we saw that
the effect of the vector potential on a charged particle can be described via the substitution

p̂→ p̂ + eA(r̂, t). (5.109)

In Section II C, we saw that this substitution is applicable not just to non-relativistic parti-
cles, but also to fully relativistic particles described by the Dirac Hamiltonian. Previously,
we have treated the A in this substitution as a classical object lacking quantum dynamics
of its own. Now, we replace it by the vector potential operator derived in Section III:

Â(r̂, t) =


∑
kλ

√
~

2ε0ωkV

(
âkλ e

i(k·r−ωkt) + h.c.
)

ekλ, (finite volume)∫
d3k

∑
λ

√
~

16π3ε0ωk

(
âkλ e

i(k·r̂−ωkt) + h.c.
)

ekλ, (infinite space).

(5.110)

Using this, together with either the electronic and electromagnetic Hamiltonians, we can
finally describe the photon emission process. Suppose a non-relativistic electron is orbiting
an atomic nucleus in an excited state |1〉 ∈ He. Initially, the photon field is in its vacuum
state |∅〉 ∈HEM. Hence, the initial state of the combined system is

|ψi〉 = |1〉 ⊗ |∅〉. (5.111)

Let Hint be the Hamiltonian term responsible for photon absorption/emission. If Hint = 0,
then |ψi〉 would be an energy eigenstate. The atom would remain in its excited state forever.

In actuality, Hint is not zero, so |ψi〉 is not an energy eigenstate. As the system evolves,
the excited electron may decay into its ground state |0〉 by emitting a photon with energy
E, equal to the energy difference between the atom’s excited state |1〉 and ground state |0〉.
For a non-relativistic electron, the Hamiltonian (5.18) yields the interaction Hamiltonian

Hint =
e

2m

(
p̂ · Â + h.c.

)
, (5.112)

where Â must now be treated as a field operator, not a classical field.

Consider the states that |ψi〉 can decay into. There is a continuum of possible final states,
each having the form

|ψ(kλ)
f 〉 = |0〉 ⊗

(
â†kλ|∅〉

)
, (5.113)

which describes the electron being in its ground state and the electromagnetic field containing
one photon, with wave-vector k and polarization λ.

According to Fermi’s Golden Rule (see Chapter 2), the decay rate is

κ =
2π

~

∣∣∣〈ψ(kλ)
f |Ĥint|ψi〉

∣∣∣2 D(E), (5.114)
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where (· · · ) denotes the average over the possible decay states of energy E (i.e., equal to the
energy of the initial state), and D(E) is the density of states.

To calculate the matrix element 〈ψ(kλ)
f |Ĥint|ψi〉, let us use the infinite-volume version of

the vector field operator (5.110). (You can check that using the finite-volume version yields
the same results; see Exercise 2.) We will use the Schrödinger picture operator, equivalent
to setting t = 0 in Eq. (5.110). Then

〈ψ(kλ)
f |Ĥint|ψi〉 =

e

2m

∫
d3k′

∑
jλ

√
~

16π3ε0ωk′

×
(
〈0|p̂je−ik·r̂|1〉+

〈
0|e−ik·r̂p̂j|1

〉 )
ejk′λ′ 〈∅|âkλâ

†
k′λ′ |∅〉.

(5.115)

We can now use the fact that 〈∅|âkλâ†k′λ′ |∅〉 = δ3(k − k′)δλλ′ . Moreover, we approximate
the exp(−ik · r̂) factors in the brakets with 1; this is a good approximation since the size of a
typical atomic orbital (. 10−9 m) is much smaller than the optical wavelength (∼ 10−6 m),
meaning that exp(−ik · r) does not vary appreciably over the range of positions r where the
orbital wavefunctions are significant. The above equation then simplifies to

〈ψ(kλ)
f |Ĥint|ψi〉 ≈

e

m

∑
j

√
~

16π3ε0ωk

〈0|p̂j|1〉 ejkλ. (5.116)

We can make a further simplification by observing that for Ĥe = |p̂|2/2m+ V (r),

[Ĥe, r̂] = −i~p/m ⇒ 〈0|p̂j|1〉 = −imEd

~
. (5.117)

The complex number d = 〈0|r|1〉, called the transition dipole moment, is easily calcu-
lated from the orbital wavefunctions. Thus,

〈ψ(kλ)
f |Ĥint|ψi〉 ≈ −ie

√
E

16π3ε0
d · ekλ. (5.118)∣∣〈ψ(kλ)

f |Ĥint|ψi〉
∣∣2 ≈ e2E

16π3ε0

∣∣d · ekλ

∣∣2. (5.119)

(Check for yourself that Eq. (5.119) should, and does, have units of [E2V ].) We now need
the average over the possible photon states (k, λ). In taking this average, the polarization
vector runs over all possible directions, and a standard angular integration shows that

|d · ekλ|2 =
3∑
j=1

|dj|2 e2
j =

3∑
j=1

|dj|2 ·
1

3
=
|d|2

3
. (5.120)

The last thing we need is the density of photon states. Using the dispersion relation
E = ~c|k|, we can show (see Exercise 3) that

D(E) =
8πE2

~3c3
. (5.121)
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This includes a factor of 2 for the photons’ two-fold polarization degree of freedom. Putting
everything together, we arrive at the following decay rate:

κ =
e2E3 |d|2
3π~4c3ε0

(5.122)

We can make this look nicer by defining the dimensionless fine-structure constant

α =
e2

4πε0~c
≈ 1

137
, (5.123)

and defining ω = E/~ as the frequency of the emitted photon. The resulting decay rate is

κ =
4αω3 |d|2

3c2
. (5.124)

The figure below compares this prediction to experimentally-determined decay rates for
the simplest excited states of hydrogen, lithium, and sodium atoms. The experimental data
are derived from atomic emission line-widths, and correspond to the rate of spontaneous
emission (also called the “Einstein A coefficient”) as the excited state decays to the ground
state. For the Fermi’s Golden Rule curve, we simply approximated the transition dipole
moment as |d| ≈ 10−10 m (based on the fact that |d| has units of length, and the length
scale of an atomic orbital is about an angstrom); to be more precise, d ought to be calculated
using the actual orbital wavefunctions. Even with the crude approximations we have made,
the predictions are within striking distance of the experimental values.

FIG. 1: Spontaneous emission rates (Einstein A coefficients) for the 2p→ 1s transition in hydrogen,

the 2p → 2s transition in lithium, and the 3p → 3s transition in sodium. Data points extracted

from the NIST Atomic Spectra Database (https://www.nist.gov/pml/atomic-spectra-database).

The dashed curve shows the decay rate based on Fermi’s Golden Rule, with |d| ≈ 10−10 m.
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Exercises

1. In Section III, we derived the vector potential operator, in an infinite volume, to be

Â(r, t) =

∫
d3k

∑
λ

√
~

16π3ε0ωk

(
âkλ e

i(k·r−ωkt) + h.c.
)

ekλ. (5.125)

Since [âkλ, â
†
k′λ′ ] = δ3(k − k′)δλλ′ , the creation and annihilation operators each have

units of [x3/2]. Prove that Â has the same units as the classical vector potential.

2. Repeat the spontaneous decay rate calculation from Section IV using the finite-
volume versions of the creation/annihilation operators and the vector potential op-
erator (5.110). Show that it yields the same result (5.123).

3. The density of photon states at energy E is defined as

D(E) = 2

∫
d3k δ(E − Ek), (5.126)

where Ek = ~c|k|. Note the factor of 2 accounting for the polarizations. Prove that

D(E) =
8πE2

~3c3
, (5.127)

and show that D(E) has units of [E−1V −1].
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