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Abstract 

Despite the widespread use of solution-processable hybrid organic-inorganic 

perovskites in photovoltaic and light-emitting applications, determination of their 

intrinsic charge transport parameters has been elusive due to the variability of film 

preparation and history-dependent device performance. Here we show that screening 

effects associated to ionic transport can be effectively eliminated by lowering the 

operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) 

field-effect transistors (FETs).  Field-effect carrier mobility is found to increase by 

almost two orders of magnitude below 200 K, consistent with phonon scattering 

limited transport. Under balanced ambipolar carrier injection, gate-dependent 

electroluminescence is also observed from the transistor channel, with spectra 

revealing the tetragonal to orthorhombic phase transition. This first demonstration of 

CH3NH3PbI3 light-emitting FETs provides intrinsic transport parameters to guide 

materials and solar cell optimization, and will drive the development of new electro-

optic device concepts, such as gated light emitting diodes and lasers operating at room 

temperature. 
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Introduction 

Organolead halide perovskites are emerging solution-processable materials with 

outstanding optoelectronic properties.1-7 Among them, methylammonium lead iodide 

CH3NH3PbI3 has proven to be an exceptional light harvester for hybrid organic-

inorganic solar cells,3, 8-15 which in just four years achieved an impressive NREL-

certified power conversion efficiency of 20.1%, and remarkable performance in a 

variety of device architectures.16 Thanks to their cost-effectiveness and ease of 

processing, hybrid perovskites have naturally attracted a vast interest for applications 

beyond photovoltaic energy conversion, such as water splitting,17 light-emitting 

diodes18-20 and tunable, electrically pumped lasers.6, 21-23 So far transport parameters 

of perovskite materials were mostly deduced from the study of photovoltaic devices, 

which indicated ambipolar transport3, 24, 25 of holes and electrons within the perovskite 

active region, and long electron-hole pair diffusion length.4, 5, 26 First-principle 

calculations for this class of materials predict that hole mobility is up to 3100 cm2 V-1 

s-1 and electron mobility is 1500 cm2 V-1 s-1 with concentration of 1016 cm-3 at 400 

K,50 and high frequency mobility of 8 cm2 V-1 s-1 was determined in CH3NH3PbI3 spin 

coated thin film by THz spectroscopy,27 a remarkably high value for solution-

processed materials. A combination of resistivity and Hall measurement further 

revealed that the mobility of ∼66 cm2 V-1 s-1 are achievable in CH3NH3PbI3.
28 

However, very recently ion drift was shown to play a dominant role on charge 

transport properties,29 stimulating an ongoing debate about the carrier character and 

the origin of anomalous hysteresis, together with the role of polarization, ferroelectric, 

and trap-state filling effects in organolead halide perovskite devices investigated at 

room temperature.30-33 

Despite the rapid advancement of optoelectronic applications, a big gap remains in 
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understanding the fundamental transport properties of organolead halide perovskites, 

namely charge carrier character, mobility and charge transport mechanisms. To fill 

this gap, studies of basic field-effect transistor (FET) devices are urgently needed. 

Historically, related tin(II) based 2D hybrid perovskites have attracted major interest 

for FET fabrication due to their attractive layered structure, with demonstrated field-

effect mobilities up to 0.62 cm2 V-1 s-1 and Ion/Ioff ratio above 104.34 Improvement of 

mobility can be achieved by substitution of organic cation in hybrid perovskite, 

yielding FET saturation-regime mobility as high as 1.4 cm2 V-1 s-1, and nearly an order 

of magnitude lower linear-regime mobility.35 Further improvement was demonstrated 

through melt processed deposition technique, where saturation and linear mobilities of 

2.6 and 1.7 cm2 V-1 s-1 with Ion / Ioff of 106 was achieved.36 Conversely, only rare 

examples of 3D hybrid perovskites FETs can be found in the literature,15 with limited 

hole mobility of the order of ~10-5 cm2 V-1 s-1 in the case of CH3NH3PbI3 and strong 

hysteresis due to ionic transport, which so far have hindered the development of FET 

applications. Nonetheless, the high photoluminescence efficiency22 and widely 

tunable band gap from visible to infrared28, 37 make CH3NH3PbI3 extremely attractive 

for the fabrication of solution processable light-emitting field-effect transistors (LE-

FET), a device concept that may be integrated in heterogeneous optolectronic 

systems, such as flexible electroluminescent displays38 or  electrically pumped 

lasers.39  

Here we report the fabrication and characterization of CH3NH3PbI3 field-effect 

transistors, and their operation as light-emitting FETs yielding efficient gate-assisted 

electroluminescence. Low-temperature measurements were used to effectively 

remove screening effects arising from ionic transport, allowing the determination of 

intrinsic transport parameters such as carrier density and mobility. Field-effect 
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mobility of CH3NH3PbI3 is found to increase by almost 2 orders of magnitude from 

room temperature down to 78 K, a behavior consistent with phonon scattering limited 

transport of conventional inorganic semiconductors. We also confirm the ambipolar 

nature of charge transport in CH3NH3PbI3, which yields close to ideal ambipolar 

transistor characteristics and electroluminescence from the transistor channel under 

balanced injection conditions. To the best of our knowledge, this is the first 

demonstration of CH3NH3PbI3 light-emitting FETs. In addition to providing an 

essential guideline for materials optimization through chemical synthesis and future 

improvements of solar cell performance, this novel device concept opens up new 

opportunities for the development of electro-optic devices based on CH3NH3PbI3, 

such as gated, electrical injection light-emitting diodes and lasers operating at room 

temperature. 

 Deposition methods of solution-processed organo-lead hybrid perovskite have direct 

consequences on the morphology of thin film, hence the charge transport properties of 

the material.2 Here we used the solvent engineering technique recently reported for 

optimized solar cell fabrication14 to deposit a compact and uniform CH3NH3PbI3 

perovskite layer (~150 nm thick) on top of heavily p-doped Si with thermally grown 

SiO2 (Figure 1a). The resulting thin films are of very high quality: they consist of 

closely-packed, large domains with grain size up to 200 nm, as seen in the top view 

SEM image in Figure 1b, which crystallize in a perfect tetragonal structure, as 

revealed by the XRD analysis in Figure 1c. Availability of such high quality films is 

essential to minimize the influence of metal contacts and charge carrier scattering 

across the film, so as to obtain intrinsic transport parameters from FET measurements. 

The device structure used in this study shown in Figure 1d. A bottom gate, bottom 

contact configuration was employed to allow deposition of active materials to be the 
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last step in the fabrication. This is to minimize exposure of CH3NH3PbI3 to moisture 

in the environment, and to avoid potential overheating during the metal electrode 

deposition. 

 

 

Figure 1 | FET device configuration and thin film characterization. a,b Cross sectional (a) and top-

view (b) SEM micrographs of the CH3NH3PbI3 thin film. c, XRD pattern of CH3NH3PbI3 film on 

SiO2/Si(p++) substrate, confirming the tetragonal structure of the perovskite and space group I4/mcm.  

d, Schematic of the bottom-gate, bottom contact  LE-FET configuration used in this study. 
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Figure 2 | FET characteristics. a,b Transfer (a) and output (b) characteristics obtained at 78 K.  The 

n-type output characteristics (right panel) were measured at Vgs=40 V to 100 V (Vgs=40 V black, Vgs=60 

V red,  Vgs=80 V blue, Vgs=100 V  magenta), while the p-type output characteristics (left panel) are 

measured at Vgs= - 40 V to - 100 V (Vgs= - 40 V black, Vgs= - 60 V red,  Vgs= - 80 V blue, Vgs= - 100 V  

magenta). Solid and dashed curves are measured with forward and backward sweeping, respectively. 

See supplementary information for the full set of FET characteristics as a function of temperature. 

 

As reported in the literature, transport characteristics of CH3NH3PbI3 solar cells are 

subject to strong hysteresis, which so far hindered a complete understanding of the 

electrical response, and the determination of intrinsic transport parameters of the 

perovskite.30-32 The origin of this anomalous behavior has been attributed to 

capacitive effects associated with ferroelectricity arisen from the spontaneous 
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polarization of methylammonium cation and lattice distortion effects, diffusion of 

excess ions as interstitial defects, and trapping/de-trapping of charge carriers at the 

interface.30, 31, 32 Recently, photocurrent hysteresis in CH3NH3PbI3 planar 

heterojunction solar cells was found to be originated from trap states on the surface 

and grain boundaries of the perovskite materials, which can be effectively eliminated 

by fullerene passivation.32 Piezoelectric microscopy revealed the reversible switching 

of the ferroelectric domains by poling with DC biases,40 but a recent observation of 

field-switchable  photovoltaic effect suggested that ion drift under the electric field in 

the perovskite layer induces the formation of p–i–n structures,29 as observed by 

electron beam-induced current measurement (EBIC) and Kelvin probe force 

microscopy (KPFM).24, 25 A weakened switchable photovoltaic effect at low 

temperature and the lack of photovoltage dependence with respect to the lateral 

electrode spacing suggest that ferroelectric photovoltaic effect may not play dominant 

role in the observed field-switchable photovoltaic behavior.29  Theoretical 

calculations further reveal that charged Pb, I, and methylammonium vacancies have 

low formation energies40, 41, suggesting that the high ionicity of this materials may 

lead to p- and n-type self-doping. 

We found that reducing the operating temperature of our devices is an effective way 

to reduce hysteresis effects due to ionic transport/screening, allowing to record 

transport characteristics typical of conventional ambipolar semiconductor FETs 

(Figure 2). The complete temperature evolution of ambipolar FET characteristics, 

from room temperature down to 78 K, is provided in Figures S1 and S2 of the 

supplementary information. While above 198 K the output characteristics show either 

weak or no gate voltage dependence, at and below 198 K the devices display 

<textbook= n-type output characteristics. Similarly, typical p-type output 
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characteristics are observed at 98 K and lower temperatures (Figures 2a and S2). 

Both p- and n-type transfer characteristics are independent of gate field from room 

temperature down to 258 K. This is reflected in the measurement by large hysteresis 

loops, which do not close when transitioning from the hole- to the electron-dominated 

transport gate voltage ranges and vice versa. Below 258 K, however, both n- and p-

type transfer characteristics show a closed hysteresis loop.  Hysteresis of n- and p-

type transfer characteristics is substantially reduced below 198 K and 98 K, 

respectively, consistent with the observation of ambipolar output characteristics 

(Figures 2b and S2). Induced carrier density of ~3.8×1016 cm-2, maximum Ion / Ioff ~ 

105, and current density of ~ 830 A cm-2 (estimated for a ~2 nm accumulation layer 

thickness) are obtained from standard transistor analysis at 198 K. These values are 

comparable to those previously reported for 2D hybrid organic-inorganic perovskites 

characterized at room temperature.35, 36 Note that, although our low-temperature 

measurements clearly demonstrate the ambipolar nature of CH3NH3PbI3, previous 

studies have shown that carrier concentration can vary by up to six orders of 

magnitudes depending on the ratio of the methylammonium halide and lead iodine 

precursors and thermal annealing conditions, thus resulting in preferential p-type or n-

type transport characteristics.41 
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Figure 3 | Experimental and theoretical field-effect mobility and band structures of CH3NH3PbI3. 

a, Temperature dependence of field-effect electron and hole mobilities, extracted from the forward 

sweeping of transfer characteristics at Vds = 20 V and Vds = - 20 V, respectively. b, Calculated 

temperature dependence hole (red curves) and electron (black curves) mobility in tetragonal (T=300-

160 K) and orthorhombic (T=160-77 K) phases of CH3NH3PbI3. The crystal unit cells of the two 

phases are shown as insets. c, d, Band structures of the tetragonal (c) and orthorhombic (d) phases 

obtained by DFT-PBE method with (solid curves) and without (dotted curves) spin-orbital coupling 

(SOC).  

 

Temperature dependent electron and hole mobilities were extracted from the forward 

sweeping of transfer characteristics at Vds = 20 V and Vds = - 20 V using the standard 

transistor equation at linear regime.42 The resulting values are shown in Figure 3a. A 

statistical analysis of the distribution of mobility values extracted from independent 

                                                 

 Note that mobilities were not extracted from backward sweeping curves to avoid misleading results 
due to the large hysteresis. Also, mobilities at higher Vds (i.e. in the saturation regime) were not 
extracted due to the difficulty to identify linear and saturation regimes at all investigated temperatures. 
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measurements across 4 different devices is also available in supplementary Figure 

S3. While some variability in the absolute values of electron and hole mobilities is 

observed from device to device, their relative magnitude and temperature dependence 

show consistent trends. From Figure 3a, both electron and hole mobilities increase by 

a factor of ~100 from room temperature to 198 K. Below 198 K there is no further 

improvement of electron mobility, while hole mobility shows an additional tenfold 

increase. We attribute the improvement of mobility at low temperature to the removal 

of screening effects arising from the ionic transport of methylammonium cations. The 

phonon energy of methylammonium cation was estimated to be ~14.7 meV from 

previous combination of DFT and Raman studies.43 The observation of weak 

improvement of field-effect mobilities below 198 K (Ethermal=16.7 meV) is therefore 

consistent with the quenching of phonon interactions related to the organic cations. 

This is also in agreement with the weakening of field-switchable photovoltaic effects 

at low temperature,29 strongly suggesting that field-effect transport is phonon- limited 

at room temperature. Despite the remarkable improvement of field-effect mobilities, 

hysteresis was not completely removed at the lowest temperature investigated. This 

could be due to the untreated semiconductor–dielectric interface, which is known to 

affect semiconductor film morphology, number of trap states, and surface dipoles, 

similar to the case of organic field-effect transistor devices.42 Further investigations 

will be required to address this issue. Both hole and electron mobilities extracted in 

the linear regime at 78 K are slightly smaller than the corresponding saturation regime 

mobilities e,linear /e,saturation = 6.7×10-2 / 7.2×10-2 cm2 V-1 s-1 and h,linear / h,saturation= 

6.6×10-3 / 2.1×10-2 cm2 V-1 s-1, extracted at Vds = ± 20 V for linear regime and Vds = ± 

80 V from saturation regime from Figure 2a). A previous study of spin-coated hybrid 

perovskite channels indicated linear regime mobility values 1 to 2 orders of 



 12 

magnitude lower than in the saturation regime.35 The suppression of the linear regime 

mobility is presumably associated to grain-boundary effects, which give rise to a large 

concentration of traps. Thus, our reported linear regime mobilities set a lower limit for 

electron and hole mobilities of CH3NH3PbI3.  

To better understand the transport data, we estimated the mobility of CH3NH3PbI3 for 

both tetragonal and orthorhombic crystallographic phases using semi-classical 

Boltzmann transport theory,44 upon deducing charge carrier effective masses and 

electron (hole)-phonon coupling. Electron and hole effective masses listed in Table 

S1 were derived by quadratic fitting of the band structure dispersion (Figures 3c and 

3d); the corresponding fitting parameters are summarized in Table S2. The average 

effective mass of electrons (tetragonal: 0.197 m0, orthorhombic: 0.239 m0) is 

consistently smaller than the one of holes (tetragonal: 0.340 m0, orthorhombic: 0.357 

m0). The resulting mobilities (Figure 3b) increase at lower temperatures due to the 

Boltzmann activation energy (see Computational Methods section), in good 

agreement with our experimental results. Although the calculated mobilities are 

substantially larger than the experimental values in Figure 3a, calculations reflect 

fairly well the relative magnitude of electron vs hole mobility, as well as the different 

mobility of the two crystallographic phases. Within the entire temperature range 

investigated, electron mobilities exceed hole mobilities by approximately a factor of 

two, and increase by nearly one order of magnitude below the phase transition 

temperature (e=2577−11249 cm-2 V-1 s-1 and h=1060−4630 cm-2 V-1 s-1 for the 

orthorhombic phase and e=466−2046 cm-2 V-1 s-1 and h=140−614 cm-2 V-1 s-1 for the 

tetragonal phase). The small experimental values can partly be attributed to the 

increase of effective masses by elastic carrier−phonon scattering, which is expected in 

real crystals due to defects and disorder induced by the organic components, as well 
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as carrier-carrier scattering at high electron and hole concentrations.45 Formation of 

segregation pathways for hole and electron transport due to the ferroelectric 

methylammonium cation could also elongate the carrier drifting path, hence lower 

carrier mobilities.46 In addition, polycrystalline domains typical of solution-processed 

CH3NH3PbI3 thin films (Figures 1a and 1b) are likely to weaken the electronic 

coupling between grains, requiring charge carriers to hop along and across domain 

boundaries, further reducing the effective carrier mobility.  

 

 

  

Figure 4 | Low-temperature electroluminescence spectra of CH3NH3PbI3 LE-FET. EL spectra 

(collected at Vds=100 V, Vgs=100 V) were normalized to their maximum peak. The spectra were fitted 

by two Gaussian curves (solid lines).  The shift in peak position of the 750 nm peak (namely Peak 1, 

blue triangles) and 780 nm peak (Peak 2, red circles) is highlighted by connecting dashed lines. 

 



 14 

The excellent ambipolar characteristics shown by the CH3NH3PbI3 FET at low 

temperature (Figure 2) are rather encouraging for the realization of light emitting 

devices operating under balanced carrier injection.6, 18-23 In particular, large carrier 

injection via charge accumulation at the semiconductor-dielectric interface is known 

to be an effective way to achieve bright and fast-switchable electroluminescence, and 

to optimize the spatial location of the carrier recombination zone in organic gate-

assisted light-emitting field-effect transistors (LE-FETs).47 In LE-FET devices, 

ambipolar channels are formed simultaneously by proper source-drain and gate 

biasing. Under perfectly balanced conditions, holes and electrons injected from 

opposite electrodes recombine in the middle of the FET channel, thus defining a very 

narrow radiative emission zone, as depicted in Figure 1d. The brightness of emission 

as well as the spatial position of the radiative recombination zone can be tuned by 

gate and drain-source biases.42 LE-FET structures have proved to improve the lifetime 

and efficiency of light-emitting materials thanks to the large electrical injection 

achievable, and the possibility to optimize and balance charge carrier recombination 

compared to conventional LED devices.38, 48 Combined with the ease of integration as 

nanoscale light sources in optoelectronic and photonic devices, this makes LE-FETs a 

very promising concept for applications in optical communication systems, solid-state 

lighting, and electrically pumped lasers.48, 49 

Indeed, our CH3NH3PbI3 FETs show substantial light emission when operated in their 

ambipolar regime at low temperature (78-178 K). Typical electroluminescence (EL) 

spectra are displayed in Figure 4. Note that no light emission could be observed 

above 198 K, most likely due to the large ionic screening effects discussed earlier, so 

that low temperature operation is necessary at this stage. The emission spectra of the 

LE-FET are consistent with direct recombination of injected electrons and holes into 
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the perovskite active region. At the lowest temperature investigated (78 K) the EL 

spectrum shows two peaks centred at 750 nm (Peak 1) and 780 nm (peak 2), with 

distinct amplitudes and spectral positions at different temperatures. While Peak 1 

appears only at temperatures below 158 K, Peak 2 dominates the EL spectra at higher 

temperatures. A similar behaviour was already reported for temperature dependent 

photoluminescence measurements of CH3NH3PbI3,
50 and related to a structural 

transition from a low-temperature orthorhombic phase to a high-temperature 

tetragonal phase occurring around 162 K, as predicted by density functional theory.51, 

52 Occurrence of this phase transition in the temperature regimes of 150–170 K for 

CH3NH3PbI3 and 120–140 K for hybrid CH3NH3PbI3−xClx was also confirmed by low 

temperature absorption studies.6 Peak 1 and Peak 2 in our EL measurements are then 

assigned to the low-temperature orthorhombic phase, and to the high-temperature 

tetragonal phase, respectively. DFT calculations (Figures 3c and 3d) reveal that the 

bandgap of the tetragonal phase is smaller than the orthorhombic phase of 

CH3NH3PbI3, consistent with the energy of the EL peaks (Peak 1: 1.65 eV and Peak 

2: 1.59 eV). The simultaneous presence of both Peak 1 and Peak 2 might indicate 

significant phase coexistence in the hybrid perovskite films, particularly at 

intermediate temperatures. To quantify the relative intensity and spectral energy of 

the two emission peaks as a function of temperature, we analysed the EL spectra by a 

deconvoluted Gaussian fitting (see Gaussian curves in Figure 4 and corresponding 

fitted parameters in supplementary Figure S4). While both peaks show the expected 

red shift at the lowest temperatures, their temperature dependence in the intermediate 

range 118-178 K is rather complicated (Figure S4a). Moreover, while the Gaussian 

FWHM of Peak 1 reduces at lower temperatures, the FWHM of Peak 2 shows the 

opposite behavior (Figure S4b), as previously seen in low temperature 
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photoluminescence measurements.50 At this stage the anomalous spectral shift and 

broadening of the EL peaks as a function of temperature are not completely 

understood, and further investigations are needed to reveal their nature. 

 

 

Figure 5 | Optical images of CH3NH3PbI3 LE-FET emission zone at T = 158 K. a,b,c Frame images 

extracted from a video recorded while sweeping Vds from 0 to 100 V at constant Vgs=100 V; the 

corresponding values of Vds are indicated in the panels. d,e,f Frame images extracted from a video 

recorded while sweeping Vgs from 0 to 100 V at constant Vds = 100 V; the corresponding values of Vgs 

are indicated in the panels; note that the contrast of the metal contacts was slightly enhanced for clarity. 

See supplementary Videos S1 and S2 for the source real time videos of the measurements. Scale bars: 

200 μm.  

 

To achieve simultaneous hole and electron injection in a LE-FET, the local gate 

potential at drain and source electrodes must be larger than the threshold voltage of 

either of the charge carrier (i.e. |Vd| > |Vth,h| and Vs  > Vth,e, or Vd  > Vth,e and |Vs| > 
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|Vth,h|).
42 Under this condition, drain-source and gate voltages are tuned to control the 

injected current density of both carriers, which manipulate the spatial position of the 

emission zone as well as the EL intensity.42 Figure 5 shows microscope images of the 

emission zone of the LE-FET recorded at 158 K under different biasing conditions. 

Despite the grainy light emission pattern due to the polycrystalline nature of the film 

(Figures 1a and 1b), the EL emission zone can be clearly identified from the images. 

For a fixed gate bias of Vgs = 100 V (Figures 5a to 5c), the emission zone is mainly 

concentrated near the drain electrode when Vds is small (Figure 5a). This is due to the 

limited injection of holes resulting from the relative low absolute local gate potential 

at the drain electrode |Vd|. By increasing Vds, |Vd| increases, thus more holes are 

injected into the active channel and the EL intensity increases (Figure 5b). Further 

increase of hole injection extends the emission area to the center of the channel, 

enhancing the EL intensity even further (Figure 5c). Conversely, for a fixed drain-

source voltage of Vds = 100 V (Figures 5d to 5f), the injected electron and hole 

current densities can no longer be regulated independently. Figure 5d shows 

extremely bright emission from nearby the drain electrodes due the overwhelming 

density of injected electrons recombining with a comparatively lower density of 

injected holes. Decreasing the gate voltage reduces the local gate potential at the 

source electrode Vs and increases |Vd|, thus decreasing electron injection and 

increasing hole injection. This pushes the emission zone to the center of the active 

channel and reduces the EL intensity since overall current density decreases (Figure 

5e). A further reduction of gate voltage pushes the emission zone closer to the source 

electrode, further weakening the EL intensity (see Figure 5f). Continuous-frame 

videos showing the variation of EL intensity and position of the emission zone 

sweeping Vds from 0 to 100 V at constant Vgs = 100 V and sweeping Vgs from 0 to 100 
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V at constant Vds = 100 V are provided as supplementary Videos S1 and S2. This 

demonstrates that full control of charge carrier injection and recombination in 

CH3NH3PbI3 LE-FET can be easily achieved by adjusting its biasing conditions, a 

necessary step toward the realization of hybrid perovskite electrical injection lasers. 

In summary, we fabricated high-quality hybrid perovskite FETs and used them to 

determine intrinsic transport parameters of CH3NH3PbI3, which are of great relevance 

to electro-optic devices (including solar cells). Our main findings include the 

ambipolar nature of charge transport, the understanding of the origin and suppression 

of screening effects associated to the presence of ionic cations, the direct 

determination of electron and hole mobilities and their temperature dependence, and 

the effect of structural phase transition on the electronic properties of CH3NH3PbI3, 

all in good agreement with first-principle DFT calculations. Furthermore, bright 

electroluminescence due to radiative recombination within the transistor channel was 

demonstrated under balanced charge injection. We believe this first demonstration of 

a CH3NH3PbI3 light-emitting field-effect transistor paves the way to the realization of 

solution-processed hybrid perovskite light emitting devices such as high-brightness 

light-emitting diodes and electrical injection lasers. More work will be needed in this 

direction to minimize ionic screening, improve thin film crystallinity and optimize 

device architecture, for instance employing staggered FET configurations to increase 

carrier injection density,42 or integrating surface microstructures for light 

management. 

 

Materials and Methods 

FET fabrication: Heavily p-doped Si substrates with thermally grown SiO2 (500 nm) 

layer were cleaned by two rounds of sonication in acetone and iso-propyl alcohol (20 
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minutes each round, and then dried under nitrogen flow. Interdigitated electrodes (L = 

80 m and 100m, W = 20 mm) were patterned using conventional 

photolithography. Electrodes of Ni (10 nm) and Au (50 nm) were   thermally 

evaporated. The substrates were then undergoing lift-off process to obtain the desired 

electrodes. Before the spin coating of the active materials, an oxygen plasma cleaning 

treatment was performed on the substrate, for 1 minute, to improve the wetting of the 

surface and obtain flatter and homogeneous perovskite thin film. (See perovskite 

deposition) 

Temperature dependence FET measurements: FET devices were mounted into a 

liquid nitrogen cooled Linkam Stage (FTIR 600) that allow to scan FET operating 

temperature of the device from 300 K down to 77 K. The FET electrical 

characteristics were acquired with Agilent B2902A Precision Source/Measure Unit in 

dark environment. The data were then analyzed with OriginPro software. 

Electroluminescence measurement: The EL spectra were acquired using the Nikon 

eclipse LV100 microscope with LU plan fluor 10x objectives while the FET were 

enclosed in the Linkam Stage and FET electrical behavior was controlled using 

Agilent B2902A Precision Source/Measure Unit. EL emission signal was focused into 

optic fiber that coupled to USB2000 Ocean Optics to record EL spectra. All EL 

spectra were measured with 1s integration time over 3 averages. The optical images 

and videos were taken and acquired by Thorlabs DCC1545M High Resolution 

USB2.0 CMOS Camera with weak illumination to enhance the optical contrast.  

Perovskite deposition: The organic precursor methylammonium iodide CH3NH3I was 

synthetized by mixing 10 ml of methylamine solution (CH3NH2, 40% in methanol, 

TCI) and 14 ml of hydroiodic acid (57% wt in water, Sigma-Aldrich). The reaction 

was accomplished in ice bath for 2 hours under magnetic stirring, and the solvent 
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removed with a rotary evaporator (1 h at 60 mbar and 60 °C). The product was 

purified by dissolution in ethanol and recrystallization with diethylether, repeating the 

washing cycle 6 times. After filtration, the resulting white powder was dried in 

vacuum oven at 60 °C for 24 hours.  Thin film of CH3NH3PbI3 deposited on clean 

electrodes pre-patterned SiO2 substrates. A 20% wt CH3NH3PbI3 solution was 

prepared mixing stoichiometric amounts of CH3NH3I and PbI2 (99%, Sigma-Aldrich) 

in a solvent mixture of γ-butyrolactone and dimethylsulfoxide (7:3 volume ratio) and 

stirred overnight at 100 °C. In order to obtain continuous and uniform films, the 

solvent engineering technique was used.14 The solution was spin-coated on the 

substrate using a 2 steps ramp: 1000 rpm for 10 s, 5000 rpm for 20 s. Toluene was 

drop-casted on the substrate during the second step. The resulting film was finally 

annealed at 100 °C for 30 minutes. 

Perovskite characterization: Morphological analysis was performed through a FEI 

Helios 650 Nanolab Scanning electron microscope with 10 KV acceleration voltage. 

The X-Ray Diffraction (XRD) structural  spectra were obtained using a  

diffractometer BRUKER D8 ADVANCE with Bragg-Brentano geometry  employing 

Cu Kα radiation (l=1.54056 Å), a step increment of 0.02°, 1s of acquisition time and 

sample rotation of 5 min-1. 

Computational Method: The Density Function Theory (DFT) calculations have been 

carried out by the Perdew-Burke-Ernzerhof (PBE) generalized gradient 

approximation (GGA) using PWSCF code implemented in the Quantum ESPRESSO 

package.53 For the structural optimization and band structure calculations, ultrasoft 

pseudopotentials including scalar-relativistic or full-relativistic effect were used to 

describe electron-ion interactions with electronic orbitals of H (1s1); O, N and C (2s2, 

2p2); I (5s2, 5p2) and Pb (5d10, 6s2, 6p2).54 The plane wave energy cutoff of wave 
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function (charge) was set to be 40 (300) Ry. The crystal cell parameters were a = b = 

8.81 Å, and c = 12.99 Å for tetragonal phase (Pm3m space group); and a = 8.77 Å, b 

= 8.56 Å and c = 12.97 Å for the orthorhombic phase (PNMA space group) of bulk 

CH3NH3PbI3. The Monkhort-Pack scheme k-meshes are 4 × 4 × 4 for these two 

phases. The crystal cell and atomic positions were optimized until forces on single 

atoms were smaller than 0.01 eV/Å. The molecular graphics viewer VESTA was used 

to plot molecular structures.  

The effective masses for electron (   ) and hole (   ) were estimated by fitting of the 

dispersion relation of      *   ( )   +   from band structures in Figure 3 along the 

directions Γ-X, Γ-Z and Γ-M for tetragonal phase and Γ-X and Γ-Z for orthorhombic 

phase together with average values in these different routes. The carrier lifetime was 

evaluated by the semi-classical Boltzmann transport theory.44 The only contribution 

of acoustic phonons was considered in evaluating scattering lifetime, where the 

charge carrier density (n) and mobility (μ) are approximated as55, 56 

  (      )              ;             (       )                 ;            ∫ (     )   (     ) [(     )   ]       ;  

    (      );             is the Boltzmann constant, e is the elementary charge, T is the temperature,   is the 

Planck constant, and ξ is the reduced chemical potential;    is the density of state 

effective mass,     is the conductivity effective mass,     is the band effective mass; 

B is the bulk modulus (          ),         is the electron−phonon (or 

hole−phonon) coupling energy (           (            ), n, m, and l power 

integer indices,    is the electronic band gap, and ζ the reduced carrier energy. 
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Figure S1 | FET characteristics at 298 K, 278 K, 258 K, 238 K, 218 K, and 198 K. a, FET output 

characteristics. The n-type output characteristics have been measured at Vgs = 40 V to 100 V (Vgs = 40 V black, Vgs 

= 60 V red,  Vgs = 80 V blue, Vgs = 100 V  magenta), while the p-type output characteristics (left column) are 

measured at Vgs = - 40 V to - 100 V (Vgs = - 40 V black, Vgs = - 60 V red,  Vgs = - 80 V blue, Vgs = - 100 V  

magenta). b, FET transfer characteristics (ambipolar). The n-type transfer characteristics are measured at Vds = 20 

V to 80 V (Vds = 20 V black, Vds = 40 V red,  Vds = 60 V blue, Vds = 80 V  magenta), while the p-type transfer 

characteristics (left column) are measured at Vds = - 20 V to – 80 V (Vds = - 20 V black, Vds = - 40 V red,  Vds = - 60 

V blue, Vds = - 80 V  magenta). Solid and dashed curves are measured with forward and backward sweeping, 

respectively. 
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Figure S2 | FET characteristics at 178 K, 158 K, 138 K, 118 K , 98 K, and 78 K. a, FET output characteristics. 

The n-type output characteristics have been measured at Vgs = 40 V to 100 V (Vgs = 40 V black, Vgs = 60 V red,  Vgs 

= 80 V blue, Vgs = 100 V  magenta), while the p-type output characteristics (left column) are measured at Vgs = - 40 

V to - 100 V (Vgs = - 40 V black, Vgs = - 60 V red,  Vgs = - 80 V blue, Vgs = - 100 V  magenta). b, FET transfer 

characteristics (ambipolar). The n-type transfer characteristics are measured at Vds = 20 V to 80 V (Vds = 20 V 

black, Vds = 40 V red,  Vds = 60 V blue, Vds = 80 V  magenta), while the p-type transfer characteristics (left column) 

are measured at Vds = - 20 V to – 80 V (Vds = - 20 V black, Vds = - 40 V red,  Vds = - 60 V blue, Vds = - 80 V  

magenta). Solid and dashed curves are measured with forward and backward sweeping, respectively. 
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Figure S3| Field effect mobilities across 4 different devices. a, Field effect mobilities from 4 different devices, 

represented by square, circle, up triangle, down triangle. The filled symbols are electron mobilities, while the 

empty symbols are hole mobilities. b, Average mobilities and error bars obtained by averaging across 4 devices. 

 

Table S1| Calculated effective masses of charge carriers. Estimated effective mass for electron and hole of 

CH3NH3PbI3
 from band structure including spin-orbital coupling effect.  

Phase          Reduced Masses 

Tetragonal 

Γ-X 0.178 0.261 0.106 

Γ-Z 0.284 0.474 0.177 

Γ-M 0.129 0.284 0.089 

Average 0.197 0.340 0.124 

Orthorhombic 

Γ-X 0.289 0.344 0.157 

Γ-Z 0.189 0.370 0.125 

Average 0.239 0.357 0.143 

 

Table S2| Required parameters for calculating moblities. Band (   ), conductivity (   ) and density of state 

(  ) effective mass, electron (hole)-phonon coupling (Ξ), and bulk modulus (B).  

 Tetragonal Orthorhombic 

 Electron Hole Electron Hole     0.197 0.340 0.239 0.357     0.157 0.290 0.163 0.288    0.166 0.304 0.173 0.291 

Ξ (eV) 7.2 8.4 6.8 7.4 

B (GPa) 2.6 2.6 3.3 3.3 
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Figure S4| Electroluminescence fitting parameters. a, b Peak position (a) and  FWHM (b) of  Peak 1 (blue 

triangles) and Peak 2 (red circles) as a function of investigated temperature. The values are obtained by by fitting a 

deconvoluted double peak Gaussian function on Figure 4.  

 

 


