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Image reconstruction 
through a multimode 昀ber 
with a simple neural network 
architecture
Changyan Zhu1,4, Eng Aik Chan2,4, You Wang1, Weina Peng3, Ruixiang Guo2, Baile Zhang1,2*, 
Cesare Soci1,2* & Yidong Chong1,2*

Multimode 昀bers (MMFs) have the potential to carry complex images for endoscopy and related 
applications, but decoding the complex speckle patterns produced by mode-mixing and modal 
dispersion in MMFs is a serious challenge. Several groups have recently shown that convolutional 
neural networks (CNNs) can be trained to perform high-昀delity MMF image reconstruction. We 
昀nd that a considerably simpler neural network architecture, the single hidden layer dense neural 
network, performs at least as well as previously-used CNNs in terms of image reconstruction 昀delity, 
and is superior in terms of training time and computing resources required. The trained networks can 
accurately reconstruct MMF images collected over a week after the cessation of the training set, with 
the dense network performing as well as the CNN over the entire period.

Optical fbers have proven to be extremely useful for endoscopy and related  applications1,2. Present commercial 
methods for transmitting images through fbers are based on single-mode fber  bundles3,4, consisting of thou-
sands of fbers each transmitting a single pixel. It would be advantageous to instead transmit images in multimode 
fbers (MMFs), which are easy to fabricate and thinner than single-mode fber bundles, and could potentially 
carry much more information. However, there is a serious drawback: due to mode-mixing and modal disper-
sion, any image coupled into a MMF is transformed into a complex speckle pattern at the  output5. Researchers 
have devised various methods for reconstructing the input images from the speckle patterns, based on fnding 
the complex transmission matrix of the  MMF6310 or phase retrieval  algorithms11313. However, such methods 
generally require extra apparatus for measuring the optical phase, or have dioculty scaling to large image sizes.

Another promising approach is to use a training set of a priori known inputs to teach an artifcial neural net-
work (NN) how to map MMF output images to input images. Vis would not require additional interferometric 
equipment, and can potentially scale up to large image sizes. Ve idea was proposed and investigated decades 
 ago14316, but only in recent years has it been shown to perform well for reconstructing images of reasonable 
 complexity17321, aided by improvements in computational power and NN sogware.

Vese recent advances in NN-aided MMF image reconstruction have focused on deep convolutional neural 
networks (CNNs)17322. Unlike traditional dense  NNs23, CNNs use convolution operations instead of general 
matrix multiplication within the NN  layers24, inspired by biological processes in visual perception. CNNs have 
enjoyed immense recent success in computer  vision25, making it natural to investigate using them for MMF 
image reconstruction. Vey have also been applied to the related problem of image reconstruction in scattering 
 media26329. However, there are grounds to question how well-suited CNNs are for analyzing speckle patterns such 
as those produced by MMFs, which are very diferent from the natural images commonly dealt with in computer 
vision. In MMF images, information is encoded not just locally but in the global distribution of  speckles22,30,31, 
whereas the localized receptive felds in convolutional layers are designed to extract relevant local features 
(such as edges) in natural images, rather than long-range spatial  structures32. Traditional dense NNs can extract 
information from both local and global features due to the presence of the fully-connected hidden layers. Dense 
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NNs have previously been employed for controlling spatiotemporal nonlinearities in  MMFs33, and for position 
sensing in a chaotic  cavity34.

Vis paper investigates the performance of dense NNs and CNNs for MMF image reconstruction. Whereas 
the earliest papers on NN-aided MMF image reconstruction used dense  NNs14316, most recent studies have con-
centrated on using  CNNs17322. (One exception to this trend was the study by Turpin et al. of both dense NNs and 
CNNs for transmission control in scattering media and  MMFs28. Another work by Caramazza et al. used dense 
NNs to approximate the transmission matrix of a MMF, as an alternative to direct image  reconstruction35). To 
our knowledge, there has been no direct comparison between the two NN architectures in the context of MMF 
image reconstruction. Ve recent popularity of CNNs for this task is predicated on the local feature extraction 
capability of CNNs being useful for descrambling MMF images. Our comparison of dense NNs and CNNs should 
be useful to the community in testing this assumption.

Our principal comparison is between (i) the single hidden layer dense neural network (SHL-DNN), one of the 
simplest dense NN architectures, and (ii) U-Net, a CNN originally developed for biomedical  imaging36, which 
has recently been used for MMF image  reconstruction18. We do not compare very deep CNNs such as  Resnet18 
or generative adversarial  networks37, as these require much greater computational resources and longer training 
times, and thus seem ill-suited to the MMF image reconstruction problem. Ager optimizing both types of NNs 
(SHL-DNN and U-Net), we fnd that the SHL-DNN achieves a similarly high reconstructed image fdelity with 
shorter training time and less network complexity than the U-Net. For one of our reference datasets, SHL-DNN 
achieves a saturation Structural Similarity Index Measure (SSIM)38 of 0.775 in 16 minutes and the U-Net achieves 
a saturation SSIM of 0.767 in 3.5 h on the same computer. Ve SHL-DNN has 20 million trainable parameters, 
and the U-net has 31 million trainable parameters. We also validated both NNs using images collected up to 235 
h ager the images in the training set; both NNs continue to perform well in image reconstruction. Moreover, we 
tested a <VGG-type= NN, which combines convolutional and dense layers, and found that it ofers no additional 
performance advantage over the SHL-DNN.

Experimental setup
Multimode 昀ber image reconstruction. Ve optical setup is shown in Fig. 1a. A collimated beam from 
a diode laser with an operating wavelength of 808 nm (Vorlabs LP808-SF30) is expanded and directed onto a 
spatial light modulator (SLM) (Hamamatsu X13138-02). Along with two orthogonal polarizers, the SLM gener-
ates a programmable spatial modulation in the intensity of the light beam.

Ve modulated beam is coupled into a one meter long multimode fber (MMF) (Vorlabs FT400EMT) via a 
matching collimator (NA 0.39). Ve distal end of the MMF is imaged with a CMOS camera (Vorlabs DC1545M). 
Ve camera images consist of complicated speckle patterns, as shown in the leg panel of Fig. 1b, with no appar-
ent relation to the ground truth images from the SLM. Ve camera images have 1280 × 1080 pixel resolution; to 
obtain a tractable dataset, we crop and downsample to 64 × 64 using the Lanczos  algorithm39, as shown in the 
right panel of Fig. 1b.

By operating the SLM with a refresh rate of 0.9 Hz (which allows for the generation of stable and distortion-
free images), we accumulate one dataset of 61524 MMF images collected over approximately 19 h for training 
and several datasets that spans across 235 h. Ve ground truth images are drawn equally from (i) the MNIST 
digit dataset containing handwritten digits in various  styles40, and (ii) the MNIST-Fashion dataset containing 
images of clothing and  apparel41. Ve MNIST digit dataset is used for most of the experiment; the MNIST-Fashion 
dataset is used in <Transfer learning and alternate image set= section.

Ve MNIST and MNIST-Fashion ground truth images are 28 × 28 , whereas the MMF-derived images in 
the dataset are 64 × 64 . Conceptually, there is no reason to restrict the MMF images (NN inputs) to the same 
size as the ground truth images (and NN outputs), as was the practice in earlier  studies17,18. Intuitively, higher 
resolutions for the MMF images should be advantageous, as the image reconstruction algorithm is given more 
information to work with, subject to the constraints of trainability and computer memory capacity. Ve efects 
of varying the input size are studied in <Image reconstruction fdelity= section. Both the ground truth and MMF 
images have 8 bits of dynamic range.

Neural networks. We mainly investigate and compare two NN architectures for eocacy in MMF image 
reconstruction: a single hidden layer dense neural network (SHL-DNN) and the convolutional neural network 
U-Net. (A third architecture, a hybrid convolutional/dense network, is briefy discussed in <Hybrid neural net-
work= section).

Dense NNs are the most elementary architecture for NN-based machine learning. Ve earliest papers on 
NN-aided MMF image reconstruction utilized dense  NNs14316, but were constrained by the lower levels of 
computational power then available. We implement the SHL-DNN shown in Fig. 1c, featuring a hidden layer of 
4096 nodes sandwiched between input and output layers, with dense interlayer node connections. Each 64 × 64 
input image is fattened and inserted into the input layer, which has 642 = 4096 nodes. Ve hidden layer and 
output layer have sigmoid activation functions. Ve result from the output layer (which has 282 = 784 nodes) is 
reshaped into a 28 × 28 image that can be compared to the ground truth image.

Convolutional neural networks (CNNs) have been applied to the MMF image reconstruction problem by 
several recent  authors17322. Here, we employ the U-Net architecture, which Rahmani et al. have previously used 
for MMF image reconstruction with the MNIST digit  dataset18. As shown in Fig. 1d, the input is 64 × 64 and 
the output is 28 × 28 , the same as for the SHL-DNN. Ve network consists of a sequence of convolutional and 
pooling layers leading to a 4 × 4 × 1024 intermediary layer, followed by a sequence of convolutional upsampling 
layers. A 64 × 64 × 64 convolutional layer followed by a 2 × 2 max pooling layer downsamples the 64 × 64 input 
image to 32 × 32 before the 32 × 32 × 128 convolutional layer of the U-Net. Batch normalization is applied ager 
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each convolutional layer. Each convolutional layer has a ReLU activation function, and the output layer has a 
sigmoid activation function (similar to the SHL-DNN). We follow the typical U-Net architecture design  rule36 
wherein a halving of the layer dimensions is accompanied by a doubling of the number of flters (image depth), 
and vice versa. Vere are also auxiliary skip connections that aid image  localization36.

Ve U-Net architecture contains numerous hyperparameters such as the number of layers, convolutional flter 
depths, batch size, etc. We tested the efects of varying these hyperparameters, and the <baseline= confguration 
shown in Fig. 1d gives the best results. Notably, in this confguration the flter depths are four times what was 
used in Rahmani et al.18.

Each NN is trained using Adam optimization with a batch size of 256 images, and an early stopping condi-
tion of 100 epochs ager validation losses stop improving. We fnd that batch-normalization regularization is 
crucial for the U-Net to perform well, but dropout regularization is better for the SHL-DNN. Little performance 
improvement is observed when the batch size adjusted between 128 and 1024; a much larger batch size (27685) 
drastically lengthens training times. For the objective function, the NN output is compared against the ground 
truth (MNIST digit or MNIST-Fashion) image via the Structural Similarity Index Measure (SSIM)38, a well-
established metric for quantifying the similarity between structured images (seeSupplementary Materials). All 
training was performed on the same computer (Intel Xeon Gold 5218 with NVIDIA Quadro RTX 5000 GPU).

Results
Image reconstruction 昀delity. We train the SHL-DNN and U-Net using 30762 MMF images from the 
frst 19 h of the data collection run. Ve ground truth images drawn from either the MNIST digit  dataset40 or 
the MNIST-Fashion  dataset41; separate instances of each network are trained for the two respective datasets. In 
each case, we assign 27685 images for training and the remaining 3077 for validation. Ve training and valida-
tion images are initially drawn randomly from across the collection period (the role of collection time will be 
investigated later, in <Performance over time= section).

Figure 2 shows the results of MMF image reconstruction for six representative images from the validation 
set, three from the MNIST digit datasets and three from the MNIST-Fashion sets. Ve fully-trained SHL-DNN 

Figure 1.  (a) Experimental setup for transmitting images through a multimode fber. A laser beam is expanded 
and refected of a spatial light modulator (SLM), which together with a pair of polarizers (P) generates an 
intensity modulated image. Ve beam is coupled into a multimode fber (MMF), and the distal end is imaged 
by a camera. (b) Example of a scrambled image from the MMF. Ve ground truth image is a digit from the 
MNIST database (see Fig. 2). Ve leg panel shows the full-resolution ( 1280 × 1080 pixels) camera image; the 
right panel shows the cropped and downsampled 64 × 64 image fed to the neural network. (c) Schematic of a 
single hidden layer dense neural network (SHL-DNN) with 4096 nodes in the hidden layer. Ve input image is 
fattened at the input layer, and the output is reshaped into a two-dimensional image. (d) Schematic of a U-Net 
consisting of contracting convolutional layers, an intermediary layer, and expanding convolutional layers. For 
each convolutional layer, the size a × b × c refers to a × b pixels with c flters (image depth). At the input, the 
64 × 64 input image is mapped onto a 64 × 64 × 64 convolution layer (not shown) before max pooling to the 
32 × 32 × 128 convolutional layer. Skip connections concatenate the outputs from successive contracting layers 
with the corresponding expanding layers. Batch-normalization are applied to all convolutional layers.
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and U-Net both recover the ground truth images with remarkable fdelity (Fig. 2a,c3d), despite the lack of 
human-discernable patterns in the MMF images (Fig. 2b). Ve SHL-DNN and U-Net achieve similar fdelity, as 
corroborated by the similar SSIM scores, for both types of images.

Figure 3a shows the SHL-DNN and U-Net training curves for the MNIST digit dataset (the results for MNIST-
Fashion are similar; see Supplementary Materials). We plot the training curves against elapsed time to allow for 
fairer comparisons, since the two networks have very diferent training times per epoch. Ve performance of 
the SHL-DNN saturates at SSIM 0.775, comparable to SSIM 0.767 for the U-Net. Figure 3b,c, we compare the 
performance of both networks on two other common metrics: the mean squared error (MSE) and the resulting 
classifcation error for the validation set (however, the training still uses SSIM for the objective function). Ve 
classifcation error is meant to characterize the overall legibility of the reconstructed digits, and is obtained by 
passing the NN outputs to an auxiliary digit classifer (mnist_cnn.py from  Keras42). Ve results from these 
alternative measures are similar to what was obtained from the SSIM. Ve SHL-DNN achieves MSE 2.25 × 10

−2 
and classifcation accuracy 0.90, while the U-Net achieves MSE 2.48 × 10

−2 and classifcation accuracy 0.90.
Although the two networks yield similar image reconstruction fdelity, the SHL-DNN can be trained more 

quickly. To reach its saturation SSIM (i.e., triggering of the stopping condition), the SHL-DNN takes 462 epochs 
and 16 minutes, whereas the U-Net takes 318 epochs and 3.5 h. Ve training time per epoch is 20 times faster 
for the SHL-DNN.

We systematically investigated the efects of various NN settings, and found that no further major perfor-
mance improvements are achievable without increasing the training set size. (For these hyperparameter studies, 
a smaller training set of 8709 images was utilized.) For the SHL-DNN, the choice of input image size appears 
to play an important role. As shown in Fig. 3d, for a smaller input image size ( 28 × 28 ) the SSIM saturates at a 
lower value, which can be ascribed to the NN having less information available for image reconstruction. But 
having inputs that are too large, such as 84 × 84 , also leads to a lower SSIM compared to our baseline choice of 
64 × 64 . Ve SHL-DNN performance decreases when the number of hidden layer nodes is reduced below the 
baseline value, as shown by the red curve in Fig. 3d for the 512 node case. On the other hand, further increasing 
the number of hidden layer nodes increases the training time without signifcant improvement in the saturated 
SSIM (see Supplementary Materials). Moreover, the number of hidden layer nodes seems to have negligible 
infuence on the optimal input image size.

As for the U-Net, one setting that notably afects performance is the number of convolutional flters. We 
denote the number of U-Net flters used in Rahmani et al.18 as < 1× =. Ve saturated SSIM score increases as the 
number of flters in increased up to 4× , which is the baseline value that we adopted. Further increases in the 
number of flters leads to a substantial increase in training time, without signifcant performance improvement. 
Another possible setting is the number of convolutional layers; we verifed that deeper or shallower U-Net 
structures adversely afect the performance. Moreover, we fnd that removing the skip connections leads to a 

Figure 2.  Demonstration of MMF image reconstruction on the MNIST digit dataset (frst three columns) and 
the MNIST-Fashion dataset (last three columns). (a) A representative sample of 28 × 28 ground truth images. 
(b) Ve corresponding 64 × 64 images obtained from the MMF. (c) Reconstructed 28 × 28 images produced 
by the SHL-DNN. Ve structural similarity (SSIM) relative to the ground truth image is shown below each 
reconstructed image. (d) Ve corresponding results produced by the U-Net.
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slight decrease in performance slightly; hence, the skip connections are included in our baseline confguration 
(although the reason these connections are advantageous for the present task is somewhat unclear). Some of 
these comparisons are shown in Fig. 3e.

Ager these optimization studies, we arrive at the SHL-DNN and U-Net confgurations shown in Fig. 1c,d. 
In these confgurations, the SHL-DNN has 20 million trainable parameters and takes 39.9 million FLOPs per 
forward pass, and the U-net has 31 million trainable parameters and takes 62.8 million FLOPs per forward pass.

Figure 3.  (a)3(c) Training curves for SHL-DNN and U-Net, using SSIM as the objective function and with 
27685 training images and 3077 validation images. Epoch numbers are indicated by the numbered circles on 
each curve. (a) SSIM versus training time. (b) Mean squared error (MSE) versus training time. (c) Classifcation 
accuracy versus training time, obtained by feeding the output images from each neural network into an auxiliary 
classifer network, serving as a measure of legibility. In (a)3(c), the converged performance measure for the 
SHL-DNN is indicated by horizontal dashes. (d) SHL-DNN performance with diferent settings, calculated 
with a training set of 8709 images: the baseline network used in (a)3(c) and depicted in Fig. 1c, with 64 × 64 
inputs and 4096 hidden layer nodes (blue), a network with 28 × 28 inputs (purple), a network with 84 × 84 
inputs (green), and a network with 512 hidden layer nodes and 64 × 64 inputs (red). (e) U-Net performance 
for diferent settings: the baseline U-Net with < 4× = flters [used in (a)3(c) and depicted in Fig. 1d] (brown), 
removed skipping layers (light green), < 3× = flters (dark green), and < 1× = flters (pink). In the last case, 
convergence is achieved about as quickly as the SHL-DNN, but at signifcantly lower SSIM.
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Performance over time. It is interesting to ask whether the image reconstruction ability of the NNs is 
persistent, or whether it degrades over time due to a drig in the MMF9s transmission characteristics. Such tem-
poral changes can be caused by thermal and mechanical perturbations of the environment, which induce minute 
deformations of the fber.

To address this question, we validate the NNs (trained using images from the frst 19 h of the dataset) against 
images collected during the subsequent 235 h. Ve results are shown in Fig. 4. Ve validation data are sorted by 
collection time and batched into 5 minute intervals.

In terms of both SSIM and digit classifcation accuracy, the image reconstruction performance for both 
NNs fuctuates over time, but is overall remarkably robust. It can be noticed in Fig. 4a,c that the performance 
fuctuations for the SHL-DNN and U-Net are correlated over time. In fact, their SSIM scores have a correlation 
coeocient of 0.950. Vis implies that the performance fuctuations are caused by the MMF undergoing physical 
fuctuations in its transmission characteristics (relative to the training set), which simultaneously impacts the 
performance of both NNs. Over the 235 h period, we observe only a slight long-term degradation in performance 
(both in terms of SSIM and digit classifcation accuracy), indicating that there is neligible sustained <drig= in the 
MMF9s transmission characteristics. Over the entire experimental period, the SHL-DNN and U-Net consistently 
have similar performance, with SSIM variance of about 0.02.

Hybrid neural network. Rahmani et al.18 studied the use of another type of NN for unscrambling MMF 
images: a hybrid convolutional and dense network of the type pioneered by Oxford9s Visual Geometry Group 
(VGG). VGG-type networks are typically used for  classifcation43, and they were used in Ref.18 for digit classif-
cation with the MNIST digit dataset. In this paper, we are mainly interested in image reconstruction rather than 
classifcation. Nonetheless, it is helpful to study the performance of a VGG-type network for this purpose, as a 
further test of the usefulness of convolutional layers for extracting structural information from MMF images.

Figure 4.  MMF image reconstruction metrics using data collected at diferent times subsequent to the training 
set. Ve SHL-DNN and U-Net are trained using 27685 images collected over 19 h, and then validated against 
images collected over the subsequent 235 h. Ve time axis is divided into 5 minute bins with 137 validation 
images per bin. (a) SSIM. (b) Variance of SSIM, corresponding to the spread of the SSIM in each 5 minute bin. 
(c) Classifcation accuracy, obtained by feeding the output images from each neural network into an auxiliary 
high-accuracy classifer.
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We implement a simple VGG-type network as shown in Fig. 5a, consisting of two convolutional layers, a 
hidden dense layer with Nh nodes, and a dense output layer. Figure 5b shows the training curves for VGG-type 
networks with several choices of Nh , as well as for the baseline SHL-DNN. When Nh is equal to the number of 
hidden layer nodes in the SHL-DNN, the saturated SSIM is 0.714comparable to but certainly not better than 
the SHL-DNN (SSIM 0.775). For smaller values of Nh , the performance is substantially worse. We also inves-
tigated reversing the confguration by placing the dense layers at the input and the convolutional layers at the 
output, but this not produce any improvement. Vese results seem to bolster the case that convolutional input 
layers do not provide additional benefts for MMF image reconstruction, a point that will be further discussed 
in <Discussion= section.

Transfer learning and alternate image set. Transferability is a common concern in machine learning. 
In the present context, one may ask whether NNs trained using one kind of ground truth image4say, MNIST 
digits4can successfully reconstruct more general images. In other words, are the networks broadly capable of 
undoing the efects of mode mixing in the MMF, or are they merely recognizing patterns that are highly specifc 
to the sort of images in the training set?

To investigate this, we train the SHL-DNN by withholding one digit from the MNIST digit dataset, and 
validating it against the omitted digit. Figure 6a shows representative results for the case of an omitted digit 899. 
Although this SHL-DNN has not seen any examples based on the digit 899, it reconstructs the images reasonably 
well, albeit with lower SSIM, as shown in Fig. 6b. Here, the training set (with 899 excluded) has 14565 images, and 
the other network settings are the same as in the baseline network described in <Image reconstruction fdelity= 
section. Over 1000 instances of the digit 899, the mean SSIM is 0.72, compared to SSIM 0.86 for a validation set 

Figure 5.  Performance of a VGG-type network for MMF image reconstruction. (a) Schematic of the VGG-type 
network, which consists of two convolutional layers, a dense hidden layer with Nh nodes, and a dense output 
layer. (b) Training curves for SHL-DNN and VGG-type networks: the baseline SHL-DNN corresponding to 
Fig. 1c, with 4096 hidden layer nodes (blue), and VGG-type networks with Nh = 4096 (dark green), Nh = 784 
nodes (light green), and Nh = 128 (yellow).

Figure 6.  Reconstruction of images of the digit 9 from the MNIST digit dataset, using a SHL-DNN trained 
with a modifed MNIST digit dataset excluding all instances of the digit 9. (a) Ground truth images. (b) 
Reconstructed images of digit 999 by the SHL-DNN trained with the modifed dataset. (c) Reconstructed images 
of digit 999 by the U-net trained with the modifed dataset. SSIM scores are shown below the reconstructed 
images.
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of 2913 images that exclude the digit 899. Ve performance of U-net is quite similar to SHL-DNN, as shown in 
Fig. 6c: the mean SSIM is 0.70 over 1000 instances of the digit 999.

When we attempt to reconstruct MNIST-Fashion images using a SHL-DNN trained on MNIST digits, or 
vice versa, the results are extremely poor (SSIM close to zero). Likewise, when we attempt to reconstruct images 
consisting of random uncorrelated pixel intensities, all three trained networks (SHL-DNN, U-Net, and VGG-
type) give very poor results; over 1000 images, the MSE is in the range of 0.0830.09 for all the three networks, 
comparable to the nascent training stage of Fig. 3b.

Discussion
We fnd that CNNs ofer no performance advantage over the traditional dense NN architecture for MMF image 
reconstruction. In fact, the tested SHL-DNN is able to produce the same results as U-Net with much shorter train-
ing time and less network complexity, and this seems to be robust over various diferent NN settings. Moreover, 
a VGG-type hybrid convolutional/dense NN ofers no obvious improvement over the SHL-DNN. Vese results 
suggest that the SHL-DNN, though a simple architecture, already gives a ceiling for the performance of neural 
networks on MMF image reconstruction. For practical real-time imaging applications, simpler NN architectures 
may be desirable as they can be trained more quickly and with fewer computational resources.

Our interpretation of the situation is that convolutional layers, though well-suited to extracting local features 
in natural images, do not provide any special advantage in processing speckle patterns of the sort produced by 
 MMFs30,31. Vese speckle patterns are known to contain global correlations created by the superposition and 
dispersion of diferent transmission modes in the  MMF44,45. By design, CNNs excel at processing local features 
and do not perform as well in processing global  features46. It would be interesting to explore modifcations to 
the CNN scheme, or preprocessing schemes for the speckle pattern, to improve  performance22.

Ve trained NNs can reliably reconstruct images collected long ager the training set. Specifcally, ager train-
ing over a period of 19 h, robust image reconstruction can be achieved over the subsequent 235 h, with no 
degradation corresponding to a long-term drig in the fber transmission characteristics. Ve implication is that 
the 19 h training set is suociently representative of the perturbations (thermal fuctuations and weak dynamic 
disturbances) that can occur during the validation  period19,47. Fan et al. have suggested that NNs can even be 
trained to perform image reconstruction over large varieties of deformations and confgurations, such as twist-
ing the MMF in diferent  ways19.

Ve NNs perform poorly on images that are too diferent from those in the training set, which is a common 
problem with NN-based machine learning. Recently, Caramazza et al. have demonstrated using an optimization 
algorithm to learn the complex transmission matrix for MMF image  reconstruction35, which bypasses the transfer 
learning limitations of the NN approach. However, this method requires much more computer memory, and the 
resulting image fdelity is lower; from our testing based on the same dataset from MNIST digits, the SSIM scores 
are ∼ 0.42 , compared to ∼ 0.75 for the SHL-DNN. In the future, it would be interesting to attempt to combine 
these two approaches in a way that overcomes their individual limitations.
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