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Abstract: With this paper we bring about a discussion on the computing 
potential of complex optical networks and provide experimental 
demonstration that an optical fiber network can be used as an analog 
processor to calculate matrix inversion. A 3x3 matrix is inverted as a proof-
of-concept demonstration using a fiber network containing three nodes and 
operating at telecomm wavelength. For an NxN matrix, the overall solving 
time (including setting time of the matrix elements and calculation time of 
inversion) scales as O(N2), whereas matrix inversion by most advanced 
computer algorithms requires ~O(N 2.37) computational time. For well-
conditioned matrices, the error of the inversion performed optically is found 
to be around 3%, limited by the accuracy of measurement equipment. 
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1. Introduction 

Optical techniques have shown great potential in various computing areas including NP-
complete problems [1–4], quantum [5–7] and reservoir computing [8–10]. The main 
advantage of optical systems resides in their inherent parallelism, which suggests the 
possibility to realize integrated high-speed parallel processors within complex optical 
networks. Here we are interested in a basic but very important mathematical problem: the 
matrix inversion. Calculation of matrix inversion is required in nearly all computational 
problems [11,12] and, for a NxN matrix, requires ~O(N 2.37) solving time even with most 
advanced algorithms on a conventional computer [13,14]. Early work on matrix inversion by 
optical techniques has been reported with free space optical design and photorefractive 
amplifiers [15], and some algorithms have been discussed on this platform [16–18]. However, 
free space optical experiments have very strict requirements on alignment, collimation and 
detection of the optical signals, and allow very limited integration. All these factors limit 
experimental calculation accuracy to a level around 10% [15]. Meanwhile, fiber technology 
enables alignment free and ultra-low loss optical networks with great interconnection and 
design flexibility. Here we demonstrate the possibility of using an optical fiber network to 
calculate inverse matrices with error as small as 3%, limited by the accuracy of measurement 
equipment. The overall solving time scales as O(N2) including O(N2) setting time of the 
matrix elements and O(N) calculation time of inversion. Besides the experimental 
demonstration, potential and limits of this approach are also discussed, including extension to 
complex matrix elements, calculation precision and accuracy, and scalability. 

2. Experiment and results 

A schematic diagram of an optical fiber network with three nodes is shown in Fig. 1(a). This 
network is built to map a 3x3 transfer matrix. Each node i (i = 1, 2, 3) has three inputs, one 
external (from outside the network), denoted as xi, and two from other two nodes, denoted as 
yj and yk (j, k = 1, 2, 3). Each node i has also three equal outputs, denoted as yi, one to the 
external output and two to other two nodes. The actual design of a node is shown in Fig. 1(b). 
Three 50:50 couplers are used to combine the input signals and split output signals. 
Attenuators can also be added to the input ports to adjust the transmission coefficients in each 
branch independently, corresponding to the set values of the input matrix elements. In 
addition, there are two ports denoted as monitor port and test port used to calibrate the 
transmission coefficients of the network. Note that, due to this specific configuration, signals 
experience 50% transmission loss when traveling through the 50:50 coupler. Therefore the 
external input and external output should be “4xi” and “2yi” so that the output to other nodes 
corresponds to “yi”. For node i, the output yi can be expressed by 

 i i ij j ik ky x m y m y= + +  (1) 

where mij represents the transmission coefficient from node j to node i. For the ideal case 
where there is no additional loss in the network, and the couplers have exactly 50:50 coupling 
ratio, all mij’s have the same values of 0.125. We then express Eq. (1) in matrix form as 

 Y X MY= +  (2) 

where Y = {y1, y2, y3} T, X = {x1, x2, x3}
T and 
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Equation (2) can be reorganized as 

 1 1( )Y I M X A X− −= −   (4) 

If one chooses the input vector X equal to {1, 0, 0}T, the output vector Y will then represent 
the first column of the inverse matrix A−1. Similarly, the other two columns of A−1 can be 
obtained choosing X equal to {0, 1, 0}T and {0, 0, 1}T, respectively. Therefore the elements of 
the inverse matrix A−1 can be simply obtained from the network by properly choosing the 
input signals and measuring their output intensities. Although within this formalism the 
diagonal elements are zero and non-diagonal matrix elements must be real and satisfy the 
condition 0< mij <0.125, any complex arbitrary element can also be implemented by 
considering the phase of the signals and refining the node design (see discussion in Section 
3.2). 

 

Fig. 1. (a) Schematic of an optical fiber network with three nodes where xi and yi (i = 1, 2, 3) 
are the input and output ports of each node; (b) Actual design of a node with optical fiber, 
couplers and attenuators and (c) Experimental setup of calculating matrix inversion. 

This concept is experimentally demonstrated with the setup shown in Fig. 1(c). We first 
setup the network without any additional attenuation, and estimated the following matrix 
elements: 

 

0 0.121 0.122

0.120 0 0.121

0.0979 0.0912 0

M

 
 =  
 
 

 (5) 

These values are obtained calibrating the network transmission coefficients with the help of 
monitor and test ports in each node, and using pre-determined coupling ratios of the couplers. 
Note that mij are not exactly equal to 0.125 due to the losses and the non-ideal coupling ratio 
of 50:50 couplers. All matrix elements are expressed with three significant digits due to the 
accuracy of the power meter used in the measurements, and the uncertainty in the 
determination of the matrix elements is estimated to be <3%. In numerical analysis of matrix 
inversion, the sensitivity of the output values on the error of input matrix elements is 
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expressed by the so-called condition number, κ = ||A−1||·||A||, where ||·|| represents the norm of 
the matrix (here we use ||·||2). If the condition number is close to one, the matrix is said to be 
well conditioned and its inverse can be computed with good accuracy. On the other hand, if 
the condition number is large, then the matrix is said to be ill-conditioned and the 
computation of its inverse is prone to large numerical errors. The condition number of  
A = I-M in Eq. (5) is ( ) 1.45I Mκ − = . 

To determine A−1, a light beam near 1550 nm is injected into node 1 via the x1 input, 
shown in Fig. 1(c). The light beam is generated by an amplified spontaneous emission (ASE) 
source. Use of a low coherent source avoids interference between different beams in the 
network, which would lead to output instability. The output power of the three nodes is then 
measured and normalized to the input power. With integration time of 100 ms the readings 
from the power meter did not change during the measurement, indicating effective averaging 
of the power fluctuations of the ASE source. The measured and calculated results of inverse 
matrix A−1 are: 

 1 1

1.020 0.139 0.144 1.030 0.138 0.143

0.137 1.040 0.143 , 0.138 1.030 0.142

0.113 0.109 1.030 0.113 0.107 1.030
meas calcA A− −

   
   = =   
   
   

 (6) 

The error on the determination of inverse matrix, ∆A−1, is defined by 

 1 1( )( )A A A A I− −+ Δ + Δ =  (7) 

where ∆A is the error in the definition of matrix A. The relative error of inverse matrix, ε, is 
then given by 
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1
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|| || || || || ||
|| || || ||

|| || || || || ||

A A A
A A

A A A A
ε κ

−
−

− −

Δ Δ Δ≤ ⋅ =
+ Δ

  (8) 

where ||∆A||/||A|| is the relative error of A. The inequality in Eq. (8) can be obtained by 
expanding the terms in Eq. (7) and calculating the matrix norms. 

Due to the uncertainty in the determination of A, both measured and calculated inverse 
matrices are affected by error, and absolute values of inverse matrix A−1 are actually 
unknown. Assuming 1 1 1|| || || ||meas calcA A A− − −Δ ≈ − , the inverse matrix error ε is 0.96%, and the root 

mean square (rms) error between corresponding elements in the two matrices is 1.02%. 
To further confirm the universal validity of our approach to calculate matrix inversion we 

modified the matrix elements attenuating the transmission from node 3 to node 1 and from 
node 2 to node 3. The new corresponding matrix elements m13 and m32 are given below: 

 

0 0.121 0.0763

0.120 0 0.121

0.0979 0.0345 0

M

 
 ′ =  
 
 

 (9) 

The measured and calculated elements of the inverse of B I M ′= − are given by: 

 1 1

1.020 0.128 0.092 1.030 0.127 0.094

0.135 1.030 0.135 , 0.136 1.020 0.134

0.104 0.048 1.020 0.105 0.048 1.010
meas calcB B− −

   
   = =   
   
   

 (10) 

In this case ( ) 1.39Bκ = , the inverse matrix error ε is 0.76% and the rms relative error 

between measured and calculated matrix elements is 0.96%. These values are consistent with 
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the upper boundary of 3% due to the uncertainty on the determination of matrix elements 
given by the accuracy of the power meter. Scaling of the error with matrix size will be 
discussed in the following section. 

3. Discussion 

3.1 Scalability 

To evaluate the accuracy of our optical approach in the case of general matrices, we simulated 
the inversion of 1000 matrices with random elements aij. To reproduce the experimental 
conditions achievable with our optical network, we assumed −0.125 < aij < 0 and aii = 1 for  
i, j = 1, 2, 3. Moreover, to mimic the experimental uncertainty in the determination of the 
matrix elements (<3%), a uniformly distributed random error from −3% to 3% was added to 
each element aij. The distributions of the original matrix error ||∆A||/||A||, condition number κ, 
and inverse matrix error ε are summarized in Fig. 2. With these constraints on the values of 
the matrix elements, condition numbers are mainly limited between 1 and 1.4, while the 
inverse matrix errors are mainly below 3%. This is consistent with the experimental results 
reported previously. 

 

Fig. 2. Simulation results obtained for the inversion of 1000 3x3 matrices A = I-M with 
random elements (−0.125 < aij < 0 and aii = 1 for i, j = 1, 2, 3) and ~3% error in the elements. 
(a) Matrix error and (b) condition number of matrix A; (c) Inverse matrix error. 

To investigate the scalability of the method, optical inversion of matrices with different 
sizes ranging from 3x3 to 100x100 was also simulated. 1000 simulations are performed for 
each matrix size with arbitrary (random) matrix elements (|aij|≤1) and 1% rms error in aij. (i.e., 

uniform error distribution from 3 1%− ⋅  to 3 1%⋅ ) The calculated distributions of 
condition numbers and inverse matrix errors are shown in Figs. 3(a) and 3(b). With the 
increase of matrix size, both condition numbers and inverse matrix error increase quickly, and 
for the large 100x100 matrices considered, 1% initial error already leads to significant errors 
in matrix inversion. If, for the sake of argument, we define a nominal inverse matrix error ε0 
where most inverse matrix errors distribute within the interval of ε0·[10-0.5, 100.5], one can 
estimate the dependence of nominal error on matrix size (Fig. 3(c)). In the case of initial 
matrix error of 1%, a linear fit to the nominal errors extracted from the simulations 
gives 2.1 0.59

0 10 Nε −≈ . Therefore, for NxN matrices, the nominal error of the inverse matrix 

scales roughly proportionally to N0.6. 
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Fig. 3. Calculated distributions of (a) condition numbers and (b) inverse matrix errors for 
different matrix sizes ranging from 3x3 to 100x100 and 1% initial (rms) error in matrix 
elements aij; (c) nominal error ε0 with respect to the matrix size. The solid squares are the 
values extracted from the simulation results in Fig. 3(b) with initial matrix error of 1%. The 

dashed line is a linear fit to the data according to 
0

log 0.59 log 2.1Nε ≈ − ; (d) inverse matrix 

errors for different initial (rms) errors ranging from 1% to 0.01% in matrix elements of 
100x100 matrices. 1000 simulations were performed for each case. 

Distributions of inverse matrix errors at different initial errors in the matrix elements aij 
are also calculated for large 100x100 matrices, shown in Fig. 3(d). An initial error of 0.1% 
can already guarantee inverse matrix errors smaller than 10% (log ε < −1) with likelihood 
>90%. An initial error of 0.01% can further improve the inverse matrix error to less than 1% 
(log ε < −2) with likelihood >90%. This nearly linear relationship between the initial matrix 
error and inverse matrix error is consistent with the inequality in Eq. (8). Accuracy of ~0.1% 
error in setting matrix element values by changing the network transmission coefficients is 
indeed within the capability of current optical technologies. 

3.2 Generalization of node design 

We provide a general design of the node that allows inversion of matrices with non-zero 
diagonal elements and complex terms: non-zero diagonal terms are implemented by a self-
feedback loop while complex elements are realized by considering amplitude and phase of the 
propagating signals. This could be done, for instance, on a nanophotonics platform using 
single-frequency light source and phase sensitive detection. 
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Fig. 4. General node design for NxN complex arbitrary matrices. Input signals are merged in a 
combiner after propagating through attenuators and phase shifters. The signals are then 
amplified to compensate for losses and split to generate the outputs. In the example shown for 
node 1, one of the outputs is fed back to the input corresponding to the diagonal element m11. 

Using node 1 as an example (Fig. 4), the external input to the node and inputs from the 
other nodes are merged by a combiner after propagating through individual attenuators and 
phase shifters. The combined signal is then amplified and split to generate one external 
output, one self feedback output, and N-1 outputs to other nodes. The main amplifier has a 
gain of N + 1 to compensate the loss induced by the splitter. For simplicity, we assume that 
the combiner and isolators are ideal and lossless. The output y1 can then be expressed by 

 1 1 1
1

N

j j
j

y x m y
=

= +  (11) 

where m1j is the transmission coefficient from node j (j = 1~N) to node 1. Thanks to the use of 
the amplifier and the self feedback loop, m1j can now be any arbitrary number within the 
dynamic range of the optical setup. Equation (11) holds in the case of any other node i, with 
proper substitution of subscript 1 by i. 

Implementation of complex matrix elements requires use of phase information. In our 
experimental demonstration based on fiber network, phase information cannot be maintained 
in the network due to the large length fluctuation of optical fibers, thus a wideband ASE 
source was used to avoid unstable interference in the network. However, in a platform with 
much smaller characteristic lengths, such as silicon photonic networks with a coherent and 
single-frequency light source, optical phase can be well controlled and maintained. To realize 
a node design such as the one in Fig. 4 in the silicon photonic platform, combiners and 
splitters can be realized using a Y-shape waveguide and its splitting ratio can be precisely 
controlled by adding micro-heaters near the waveguide. Tunable attenuators and tunable 
phase shifters can be realized using micro-electro-mechanical systems (MEMS). Optical 
amplifier requires semiconductor quantum well design, but this technology is also mature. 
Free space coupling between isolators, silicon photonic chips and semiconductor optical 
amplifiers may also be required. 
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Note that a network design based on the proposed nodes is robust against oscillations. The 
only condition for the network to oscillate would be with all signals propagating “in phase”, 
to make the oscillation self-consistent in the time domain. This is fulfilled only if the 
determinant of the matrix A is zero (A is singular). The convergence property and solving time 
of our approach are discussed in the following section. 

3.3 Convergence and solving time 

One key question is whether and when the output of the network will reach a steady state once 
an input is applied. To understand this, we expand Eq. (4) into the following expression [15]: 

 1

0

( ) k

k

Y I M X M X
∞

−

=

= − =  (12) 

Equation (12) converges if M k→0 elementwise when k→ + ∞. This requires |λ|<1 where λ’s 
are the eigenvalues of M. The requirement can always be satisfied by scaling the matrix M 
with its dominant eigenvalue λmax. For instance, the matrix can be scaled as 0.9M/λmax so 
that the dominant eigenvalue becomes 0.9. 

If a reconfigurable optical network had to be implemented for optical computing of matrix 
inversion, it would take O(N 2) time to set the N 2 matrix elements to the network transmission 
coefficients in each of the nodes.. Therefore the overall solving time would consist of the 
network setting time (typical MEMS reconfigurable switches can operate with switching time 
of ~1 ms) and the actual calculation time required for matrix inversion. The calculation time 
of matrix inversion is given by the calculation time of a column of the inverse matrix times 
the number of columns (N). To evaluate the calculation time of a single column, one can treat 
Eq. (12) as an iterative process: when the input X is applied to the network at t = 0, the output 
Y = X if propagation time inside a node is neglected. At time t = ∆t, where ∆t equals to the 
propagation time of an edge in the network (all the edges in the network have the same 
length), the output Y becomes X + MX (here M is already scaled). Then this X + MX becomes 
the new “internal” input and at t = 2∆t, Y becomes X + M(X + MX) = X + MX + M2X. This 
process is iteratively performed until the contribution from Mk is sufficiently small and below 
the required precision (e.g. 10−6, if the input power of 1 mW is applied and the minimum 
measurable output power is 1 nW). When this happens, we consider that the output has 
reached the steady state. For the particular scaling stated above, this requires 0.9k<10−6, or 
k>120, which means after time k∆t all network outputs are stable. With typical values of ∆t 
between ~10 ns (propagation time in 2-meters of optical fiber) and ~100 ps (1-cm Si 
waveguide in a silicon photonic network), the convergence time is of the order of ~10−9-10−6 s 
– much shorter than the setting and measuring time. The solving time of a single column 
depends only on the required precision and on the signal propagation time along the network 
edges, and therefore is independent of the size of the matrix. So the calculation time of the 
inverse matrix (with N columns) scales as O(N). This analysis shows that, in a noiseless 
optical network, the overall solving time of matrix inversion is limited by the setting time of 
the network transmission coefficients and scales as O(N2), whereas even the most advanced 
computer algorithms currently require a solving time ~O(N 2.37) [13,14]. 

To confirm our analysis, we use optical pulses as the input to the network and monitor the 
network output dynamics to experimentally investigate the convergence of the output. A pulse 
with duration of 300 ns is first injected to node 1, shown by the black dashed line in Fig. 5(a). 
The measured outputs of node 1 and 2 are shown in Figs. 5(b) and 5(c), respectively. All the 
nodes are nearly equally spaced to each other, that is, are connected by ~7 m single mode 
fiber which corresponds to a propagation delay of ~35 ns. In the output waveform of node 1, 
the step-up after 70 ns from the input (~100 ns position in time axis) is contributed by the 
signal returns from node 2 and node 3 (routes 1→2→1 and 1→3→1). In the output waveform 
of node 2 two steps-up are visible: the first step-up originates from the signal coming from 
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node 1 via node 3 (route 1→3→2), corresponding to a time delay of 35 ns with respect to the 
rising edge of the pulse (travelling along the route of 1→2), while the second step-up derives 
from the signal traveling along routes 1→2→1→2 and 1→2→3→2, which corresponds to a 
time delay of 70 ns. 

 
Fig. 5. Time-domain waveform of (a) input pulse, (b) output at node 1 and (c) output at node 2. 
The black dashed lines represent the waveforms generated by a 300 ns pulse and the red solid 
lines waveforms generated by an 8 ns pulse. 

To further verify the origin of the steps-up, we use a short pulse with duration of 8 ns as 
the input to node 1, shown by the red solid line in Fig. 5(a). In the outputs measured at node 1 
and node 2 shown in Figs. 5(b) and 5(c), one can clearly distinguish different pulses along the 
time axis. These pulses represent different routes reaching a certain node. Both the timing 
positions and amplitudes of these pulses match well with the waveform evolution of the node 
output measured with the long 300 ns pulse input. For example, in the output of node 2 shown 
in Fig. 5(c) the first pulse (red solid line) travels along the route 1→2. The next pulse travels 
along the route 1→3→2, and since it travels one more edge is delayed 35 ns with respect to 
the first pulse (its amplitude is also smaller than the first pulse due to the loss in node 3). This 
pulse has exactly the same timing position and amplitude of the first step-up in the waveform 
measured at node 2 output with the 300 ns pulse. The next pulse travels along the routes 
1→2→1→2 and 1→2→3→2, accumulating a 70 ns delay with respect to the first pulse, and 
its amplitude is even smaller due to the losses occurred at each node. Additional pulses would 
follow at longer delays, but their amplitudes are below the detection limit – consequently the 
amplitude of the waveform generated by the 300 ns pulse reaches steady-state after 
approximately 150 ns on the time axis. Therefore the output of a certain node reaches a stable 
power level when all the upcoming signal amplitudes are smaller than the precision required 
by the calculation. 

Here we shall emphasize that calculation precision refers to the number of significant 
(decimal) values of the measurement results, whereas calculation accuracy means how close 
the results are to the analytical values. For example, in the experiment presented in Eq. (6), 
the precision is 10−3 while the accuracy is 1-0.96% = 99.04%. Obviously, longer calculation 
time is required to achieve higher precision and very careful calibration of the transmission 
coefficients of the whole network is required to achieve higher accuracy. Main sources of 
noise in the optical network are the shot noise from the input laser and of the output signals, 
the noise from photodetector and amplifiers, and the setting error of the transmission 
coefficients. Shot noise turns out to be negligible: the shot noise power spectral density is 
given by 2hvP W2/Hz [19] and for 1 kHz detection bandwidth and 1 mW input power at  
1550 nm, the shot noise power of the input laser is ~0.5 nW (−63 dB smaller than the input 
power). Similarly, shot noise of the output signals is ~0.5 pW for a minimum measurable 
optical power of ~1 nW (−33 dB lower than the output signal). For the photodetector, typical 
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noise equivalent power (NEP) is of the order of 1.5·10−15 W/√Hz. For 1 kHz detection 
bandwidth (i.e. 1 ms integration time), NEP = 1.5·10−15·√103 W = 4.7·10−14 W, which is also 
much smaller than the minimum measurable output power of 1 nW and thus will not affect 
the measurement. The setting error in the transmission coefficients (0.1% for state-of-the-art 
power meters) is the dominant source of noise in the matrix inversion calculation, and the 
corresponding inverse matrix error has O(N0.6) dependence on the matrix size as discussed in 
Section 3.1. For large matrices, propagation losses and the use of amplifiers will also reduce 
signal to noise ratio, thus requiring longer integration time to achieve high accuracy. 

3.4 Applications 

A direct application of the optical method for matrix inversion is to use the network for the 
solution of linear equations. For example, by injecting certain amplitude values into input X, 
the output Y will correspond to the solution of the following linear equations 
 ( )I M Y X− =  (13) 

Another potential use of the network is for searching the matrix eigenvalues. If we set the 
amplifier in Fig. 4 to have gain G = (N + 1)/λ for all nodes and there is no input, i.e. X = 0,  
Eq. (11) becomes 

 1 1
1

;
N

j j
j

y m yλ
=

=  (14) 

in matrix form, this can be written as 
 Y MYλ =  (15) 
or 
 ( ) 0.I M Yλ − =  (16) 

If gain and phase of the amplifier are tuned to make the network oscillate, the determinant of 
the matrix λI-M must equal to zero, therefore the corresponding value of λ is the actual 
eigenvalue and the output Y the eigenvector of λ. 

4. Conclusions 

In conclusion, we proposed an analog optical processor realized with a simple optical fiber 
network to calculate matrix inversion. An NxN matrix can be presented by a network with N 
nodes where the matrix elements correspond to the transmission coefficients through the 
nodes of the network. The inherent parallelism of optical signals guarantees fast calculation 
time, which is proven to scale linearly with the size of the matrix (N) whereas the overall 
solving time is O(N 2) due to the O(N 2) setting time. A proof-of-principle demonstration of 
inversion of a 3x3 matrix is performed. For well-conditioned matrices, the calculation error 
can be as small as 3%, limited by the accuracy of measurement equipment. Moreover, it is 
shown that with 0.1% error in the determination of the initial matrix elements, our optical 
approach could potentially calculate the inverse of a 100x100 matrix with error smaller than 
10% and >90% likelihood. This approach could be further extended to silicon photonics 
networks, that could be easily scaled to the size of larger matrices and any complex arbitrary 
matrix element by considering the optical phase of the signals, with immediate application in 
analogue computing of linear equations and potentially for the solution of eigenvalue 
problems. By exploiting the slow dispersion of plasmon polariton pulses [20] this strategy 
can, in-principle, be also deployed on a plasmonics waveguide networks with femtosecond 
lasers. 
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