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Abstract: We demonstrate an all-optical computer that solves one of the most difficult complexity problems, 

the Hamiltonian challenge of finding if a map can be travelled in a way that each town is visited exactly once. 

 

There is a class of diverse mathematical complexity problems such as the travelling salesman problem of looking for a 

shortest possible route on a map, often referred as Nondeterministic Polynomial (NP) complete problems. There is still yet 

no efficient algorithm to solve these problems within polynomial time by a deterministic Turing machine. Besides the 

conventional approach with electronic computers, Non-Turing approaches such as DNA, quantum and optical computing 

may work. Here we show that these NP-complete problems may be solved by using a new type of all-optical computer. A 

proof-of-principle demonstration was performed on a fiber network representing a map of five towns on the NP-complete 

directed Hamiltonian path problem of deciding if a map can be travelled in a unidirectional way that each town is visited 

exactly once. The decision was successfully obtained only in a few tens of nanoseconds. We argue that current fiber 

technology shall allow interrogating graphs of hundreds of nodes and providing a simple-to-implement alternative to a 

quantum computer approach. 

We look at a graph consisted of 5 nodes (towns) connected by some 

directed paths (roads), as shown in Fig.1. Node 1 is set as both starting and 

ending node. It is easy to find that there exists a Hamiltonian path of 

1(inject)→2→5→3→4→1. The idea is we inject an optical pulse into the 

graph from node 1 to mimick the behavior of a “travller”. The pulse 

“traveller” will simultaneously try all the possible routes in the graph. For 

example, a pulse reaching node 2 from node 1 will be equally split to 

generate two pulses traveling from node 2 to node 3 and to node 5, 

respectively. We monitor the pulses returning to node 1. These pulses 

represent different routes in graph which all starts from and ends to node 1. 

These routes include three basic loops which are a) 

1(inject)→2→3→4→1, b) 1(inject)→5→3→4 →1 and c) 

1(inject)→2→5→3→4→1, and the conbinations of these basic loops such 

as 1(inject)→2→3→4→1→2→5→3→4→1. So what we need to do is to 

separate these pulses traveling along different routes and let them tell us 

whether a Hamiltonian path exists or not. The method we use is to assign 

delays to the nodes, i.e., node j has delay Tj ( j = 1~5 ). The delay of each node is chosen such that its sum 
5

1 jj
T  can only 

be obtained by summing each node’s delay exactly once. That means for a pulse visiting all the nodes exactly once, the 

delay it experienced is unique. If such a pulse from the 

returning pulses after a delay of 
5

1 jj
T  is observed, the 

Hamiltonian path exists., otherwise not exist. The 

experimental results are shown in Fig.2 (a). The delays 

of each node are 18.8 ns for node 1, 14.8 ns for node 2, 

15 ns for node 3, 5 ns for node 4 and 28.4 ns for node 5. 

So the total delay 
5

1 jj
T  is 82 ns. The 3

rd
 pulse has a 

delay of 82 ns, meaning that the Hamiltonian path exists. 

The 1
st
 pulse travels along the route of 

1(inject)→2→3→4→1 and the 2
nd

 pulse travels along 

the route of 1(inject)→5→3→4→1. It can be seen that 

these pulses travelling along different routes have been 

separated succesfully. The 4
th
 to 7

th
 pulses travel multiple 

cycles in the graph. For example, the 4
th
 pulse travels 

along 1(inject)→2→3→4→1→2→3→4 →1. Fig.2 (b) 

& (c) shows the output from node 3 and node 5 for 

(a) node 1 

(b) node 3 

(c) node 5 

(a) 

Fig.2 Pulse output from node 1, 3 and 5 with (a)-(c) and without 
(d)-(f) path 2→5 connected 

Fig.1 Optical network representation of a 

Hamiltonian path problem 
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monitoring purpose. If we break the connection 2→5, there is no Hamiltonian path any longer and it can be seen that the 3
rd
 

pulse disappears from the output of node 1, 3 and 5, as shown in Fig.2 (d)-(f), which verifies the validity of our optical 

method of determining the existence of Hamiltonian path. 

 

In conclusion, we demonstrate an optical network approach to non-Turing optical computer to solve NP-complete 

problems. A proof-of-principle demonstration of solving directed Hamiltonian path problem was performed on a map with 

five towns built based on optical fiber network. The decision of the existence of Hamiltonian path can be made by 

monitoring the delayed output pulses from the fiber network where a positive answer means a pulse appearing at the delay 

equal to the total delay of the whole graph. The decision was successfully made in 82 ns. Considering the maximum 

obtainable pulse energy of ~10 µJ in fiber and minimum 10 photons for a reliable detection, we argue that current fiber 

technology shall allow interrogating graphs with up to a few hundred nodes. Moreover, it is known that all the NP-complete 

problems can be transferred to each other with a polynomial complete reduction, meaning that our optical computer can be 

applied to solve all kinds of NP-complete problems. 


