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1. Introduction

Spectral method has high accuracy, and so has been successfully used for com-
putations in science and engineering, see, e.g., Gottlieb and Orszag [16], Canuto
et al. [8], Bernardi and Maday [5], and Guo [18]. In particular, Legendre approximation
and Chebyshev approximation are widely applied to various non-singular problems in
bounded domains. But in many practical cases, solutions of differential equations are
singular. The singularities could be caused by several factors, such as degenerated co-
efficients in differential equations, unboundness of data and corners of domains. Some
techniques have been proposed to overcome this trouble. For instance, Boyd [6,7] used
some orthogonal polynomials to approximate solutions with endpointed weak singular-
ities. This method gives better numerical results near the endpoints. Stenger [36] fitted
singular solutions by Sinc base functions, which can reach a convergence of exponen-
tial order. Another method for solving singular problems numerically is to use Jacobi
approximations. Bernardi and Maday [4] considered ultraspherical approximations in
some weighted Sobolev spaces. Recently, Guo [21,22] developed Jacobi approxima-
tions in certain Hilbert spaces with their applications to singular differential equations.
A related problem is numerical simulation of differential equations in unbounded do-
mains. By some suitable variable transformations, the original problems may become
some singular problems in bounded domains. Guo [19,20] used Jacobi approximation
for such problems. Whereas in actual calculations, Jacobi interpolation approximations
are more preferable, since we only need to evaluate the values of unknown functions
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at the interpolation points. The purpose of this paper is to investigate Jacobi interpola-
tion approximations and their applications to numerical solutions of singular differential
equations. In section 2, we recall some basic results related to Jacobi polynomials and
Jacobi interpolations. In section 3, we derive several weighted imbedding inequalities
and inverse inequalities, and discuss various orthogonal projections in certain Hilbert
spaces. All results in this section will be used in the further discussions. In section 4,
we give the main results of this paper. We study three kinds of Jacobi—Gauss-type in-
terpolation approximations in specific Hilbert spaces. The corresponding results lay
the mathematical foundation of Jacobi pseudospectral approximation, and play impor-
tant roles in numerical analysis of Jacobi pseudospectral method for singular differential
equations and related problems in unbounded domains. Section 5 is devoted to some
applications. As examples, we consider a linear steady singular problem and a nonlinear
singular evolutionary problem. We construct the corresponding pseudospectral schemes
and prove their spectral accuracy. In section 6, we present some numerical results, which
coincide with the theoretical analysis. Finally, we discuss some other applications of the
Jacobi interpolation approximations.

2.  Some basic results

Let A = {x | |x] < 1} and yx(x) be certain weight function in the usual sense. For
1< p <oo,set

L§(A) = {v | vis measurable and ||v||L1X7 < oo},

equipped with the norm y
p
</ |v(x>|”x(x>dx) , 1< p<oo,
A

ol =
ess sup |v(x)|, p = o0.
xeA
In particular, [|v]|, = ||v||L§ and
(u, v) :/u(x)v(x)x(x)dx, Vu,v € L3 (A).
A

For simplicity, let 9, v(x) = (d/dx)v(x), etc. For non-negative integer m, define
HY'(A) = {v | 0fv € LY(A), 0 <k <m},

with the semi-norm and the norm as

m 1/2
2
Wl = 1800l [0llny = <Z|v|k,x> :
k=0

For any real r > 0, we define the space H, (A) by space interpolation as in Adams [1].
Its semi-norm and norm are denoted by | - |,., and || - ||, respectively. For x(x) = 1,
we denote (1, v) = (u, v)y, [[vll = |lvlly and [[v]l, = |[v]l;,. Besides, [[v]loc = [lV]|L.
Let D(A) be the set of all infinitely differentiable functions with compact supports in A,
and Hé,x (A) be its closure in HY(A).
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Let o, B > —1. The Jacobi polynomials are defined by
(=1
20
They are the eigenfunctions of the singular Sturm—Liouville problem

(1 =0 A+ 0 v0) + A1 —x0)*A+0)Pv(x) =0, xeA, (2.1)

(1 -0+ 01" Px) = (1 -0+, 1=0,1,2,....

with the corresponding eigenvalues k,(a’ﬁ )= I(l+a+ B+1). It is noted that the coefficient
of the term x/ in the expression of J,(“’ﬂ )(x) is

K(a’ﬂ) _ F(a + ,8 + 2l + 1) ' (22)
! 2NT(a+B+1+1)

Besides,
Frd+oa+1)
J(W»ﬂ) _ — _1 IJ(/B,W) , J(W»ﬂ) 1 — . 23
;T (=) = (=D () () TT@rl) (2.3)
Let I'(x) be the Gamma function. We know from Askey [3] that
I
w rc+p+1 Qk+a+BTk+a+pB) (o
TP (x) = > TP ), (2.4)
Fl+a+p+1) = Fk+B+1)
I
o F+a+1) 4 Ckta+Blk+ta+B) (p-
I (x) = > o (=n I (). 2.5)

Frd+a+pB+1) Ck+a+1)

k=0
The Jacobi polynomials satisfy several recurrence relations. One of them is as follows
(see Askey [3]),
o 1 o
3, P (x) = SUtatpt DD (). (2.6)

Another recurrence relation is stated as

t/#“@mewﬁmm—wﬁem+m@”%»4#%4»
1

+a( P - 54P -), 2.7)
where
20+a+B+1)

A A tatB+ D +at+p+2)

o 2@ —p) |
Ql+a+p2+atp+2)

" =2+ o)1+ PB)

T (Uta+ P tatpltatprl)
The derivation of (2.7) is given in appendix A.
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Let x @A (x) = (1 —x)*(1 + x)?. The set of Jacobi polynomials is the Liw) (A)-
orthogonal system,

(J(a P Je ﬁ))xw,m _ y,(“’ﬂ)Sz,m, (2.8)

where &; ,, is the Kronecker function, and

@p) _ 2PN +a+ DA+ B+ 1) 2.9
e T Glfa+ B+ DN+ DA +atB+1) '
By (2.1) and (2.8), the set {3, J,“" (x)} is the L2 .1 pury (A)-orthogonal system,
(a J(a .B) , 0, J(Ot B) )X(a+1 P A(“ /3) (01 /3)8 (210)

Now let N be any positive integer, and Py be the set of all algebraic polynomials
of degree at most N. The sets Py = {v | v € Py, v(—1) = 0} and 732, ={v|ve
Py, v(=1) =v() =0}.

We now introduce three Jacobi—Gauss-type interpolations. To do this, let A =
[—1,1)and A = [—1, 1].

Jacobi—Gauss interpolation. Denote by {éa,\’,g)J the zeros of J]f,“j)(x) 0<j <N

They are arranged in decreasing order. Let a)(“ ’3 ) . be the corresponding Christoffel
numbers,

. 1 VNRALEY) .
w(Gﬁ), = @B, @h) / NH(a B x“Pede, 0<j<N. 2.11)
Iyt g, ]) AX—=LG N

By formulas (15.3.1) and (15.3.10) of Szegé [38], we know that

9HBHID(N + o +2)I(N + B +2)
(a,B) __ (a,8) (@,B) (- (2, 8)
WG N,j = T(N+2)C(NtatB+2) ( (§GN]) ) (axJNH (§GN/))

(2.12)

and

@p at+f+1

GNJ N+ (
As pointed out in Szeg6 [38], for any ¢ € Poyi1,

o, a+1/2 o, 1/2
L= ) P g8, (2.13)

f ¢ () x @ (x) dx = Z¢ (&) o) (2.14)

For any v € C(A), the Jacobi—Gauss interpolant Zg y « gv(x) € Py, satisfying

Tonapr(Cen) =v(EEW)), 0<j<N.
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Jacobi-Gauss—Radau interpolati Letc™P — —1,and ¢, 0<j<N—-1

polation. etlp NN = sand Cp v U < ,

be the zeros of J 15,“”3 +l)(x). They are arranged in decreasing order. Set Rl(ilﬁ ) (x) =
1+ x)Jl(a"g +1)(x). Furthermore, let a)gf’lg) j be the corresponding Christoffel numbers,

(a,B)
R
N — ﬁ)l — / N+1(§’;)) K@P)dr, 0<j<N. (215
axRN.’H (é‘RN]) A X — gR,}V,j
Clearly,
cew =g, 0< <N (2.16)
‘We obtain from (2.11), (2.15) and (2.16) that
o, a,f+D) 1 (a, .
wh = (L+ 5T wg kit 0< <N -1 (2.17)
Therefore, by (2.13), (2.16) and (2.17),
20c+;3+27.[

(@.B)

o, a+1/2 o, B+1/2 .
R (1 =) T+ ) ™7 0<j<N-1. (218)

Moreover, for any ¢ € Pay,
N
[ onr @ ac =3 (eitoic 2.19)
j=0

Foranyv e C (1~\), the Jacobi-Gauss—Radau interpolant 7 y o gv(x) € Py, satisfying
Trnapv (i) =v(Eed)). 0<j<N.

Jacobi-Gauss—Lobatto interpolation. Let {L(a,\’,g)o =1, ;L(Ol]f)N = —1 and {L(al\’,g)J 1<

j < N — 1, be the zeros of d,J ]f,“’ﬂ )(x). They are arranged in decreasing order. Set

Lg\‘fﬁ) (x) = (1 —x2)d,J ]f,“’ﬁ )(x), and w;“ﬁ) ; be the corresponding Christoffel numbers,

1 L(a-ﬂ)
o@D — v O whyar, 0<i<N. (220)
L.N,j @B (@B — L @h
LN G N ) Iax =8N

Clearly, by (2.6),
G = SR 1< <N+ 1L 2.21)
It can be also verified from (2.11), (2.20) and (2.21) that
o, o s 2\ —1 o s .
w(ngirz] = (1 - (Cc(;;\;l]/irl)) ) wé;?rvljﬁ—tl) I<js<N+L (2.22)
This fact with (2.13) and (2.21) implies that

(@p) ¢ (a.B) \a+1/2 (@.f) \B+1/2
o ~ (=) g (2.23)
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Moreover, for any ¢ € Poy_1,
/ $(0)x @ (x) dx = Z S (0NN - (2.24)

For any v € C(A), the Jacobi-Gauss-Lobatto interpolant Z;, y o sv(x) € Py, satisfying

Tinapv(Siny) =v(Ein)), 0<j<N.

We next introduce the discrete norm || v|| LP oy 2N associated with the interpolation
x(@p)

points g} 15 )J and the weights a)(Z 16) j» hamely,

1/p
(Z‘ Qa]\‘?), g (Za]e)]> , forl < p< oo,

(a,8)
omax [v(¢ziv;)].

v
ller, , 2z =

for p = o0

where Z = G, R and L, respectively. In particular, the discrete Li“‘f” (A) inner product
and the corresponding discrete norm are defined by

N
W v)gen zy = D u( TN 0e N llen 2y = ©0.0) fap v
=0
By (2.14), (2.19) and (2.24),
@, V) yen zn = (@, V)yewn, YoYU € Panya (2.25)

where A = 1, 0 and —1 for Z = G, R and L, respectively. Besides, for any ¢ € Py
(see appendix B),

a+p+1
lollyern < NPllyen Ly <4/2+ TM’HXW% (2.26)

Generally, we have the following result.

Lemma 2.1. Let ¢ € Py and 1 < p < oo. In addition, ¢(—1) = 0 for Z = R, and
¢(—=1) =¢(1) =0for Z = L. Then

”¢”L[)(aﬂ)’Z’N g C(P)”d’”L”(aﬁ)’ Z = Ga Ra L7 (227)
X X

where c(p) is a positive constant depending on p.

Proof. Let u(x) be a Jacobi weight. & () and pW, 1 < Jj < M, are the nodes
and weights of the Jacobi—Gauss quadrature associated with p(x). Further, let m be
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a positive integer. Nevai [33] (also see Szabados and Vertesi [39]) proved that for any
Y € Puu, any Jacobi weight f(x) and 0 < p < oo,

S0 6 £ ED)0 < () f W fop@dn. 228)
j=1
Taking ¥ (x) = ¢(x), f(x) = land u(x) = x“P (x) in (2.28), we obtain (2.27) with
Z = G, immediately. We next take f(x) = (1 + x)~! and u(x) = x“P*Y(x). Then
by (2.16), (2.17) and (2.28),

I
M=

P (a, ;3) p (or 8) (a, ;3) r (a B)
16170 & 6 ()| okn; = § ﬁ|¢ Cew) | @0R N
x(*

> o~
Il
Lo

[ (e " (L4 g0 ot

=0

<c(p>/ lp)|”(1+x)7" x*PD(x) dx
A

=c(pligll?,

~.

This leads to (2.27) with Z = R. Similarly, taking f(x) = (1 — 22~ Vand u(x) =
x@tLA+D (%) in (2.28), we derive (2.27) with Z = L by using (2.21), (2.22) and a
similar argument as in the above. U

3. Jacobi orthogonal projections

In order to derive the main results, we need some preparations. They include
some weighted imbedding inequalities, inverse inequalities and various orthogonal pro-
jections.

Let N be the set of all non-negative integers. Denote by ¢ a generic positive con-
stant, independent of any function and N. But it might depend on real numbers «, 8, y
or §. Without further mention, we always assume that «, 8, y, 8 > —1.

We first give some inverse inequalities, see lemmas 3.1-3.3.

Lemma 3.1 (Theorem 2.1 of Guo [22]). Forany ¢ € Py and 1 < p < ¢ < o0,

By/p—1
Ille, , < NT@PUP DY), (3.1)
x\ x

where

2max(a, B) + 2, if max(e, B) = —

1, otherwise.

o(a, p) =
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Lemma 3.2 (Theorem 2.2 of Guo [22]). For any ¢ € Py and r > 0,

B, et < N[l @h - (3.2

If, in addition, o, 8 > r — 1, then

@1l y@tr < NPl y@rpn. (3.3)
Lemma 3.3. For any ¢ € PV,

181l ywpr < N [pl]amrpmn . G4
Proof. Let

LEP ) = (1= )80 0, 1=2,3,....
By (2.10),
(Ll(a,ﬁ)’ Lﬁ,‘f’ﬁ))xw,ﬂ,” — Py e@ps

Thus the set of {L,(a"g) (x)}is an Li(a,lﬂ,l) (A)-orthogonal system. Moreover, Ll(“’ﬁ)(x),
2 <[ < N, form a basis of 73]?,. Therefore, for any ¢ € 77]?,,

N
$(x) = ¢ L7 (x)

=2

and
N

2 (@.B) (@.B) (7%\2
”¢”X(a—l.ﬂ—l) = Z)‘lil Vlfl (¢1*) .

=2

Furthermore, by (2.1),
(1-x2)820 P (x) = ((@ — B) + (@ + B +2)x) 0.5 P (x) = AP I P (x).
This fact and (2.6) imply that
o 1 o o o
9L (x) = 5((0{ —B) + @+ B)x)I +a+ BT = AP ISP ().

Thus,
1 N
Bp(0) = S ((@ = B) + @+ Hx)WN. o B.x) = ¢ 2 I (),
=2

where
N-2
WN.a,B.x) =D (+a+p+2¢4,J " ).
=0
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For simplicity of statements, we use the following notations,

T+ B+2) F_(2k+a+ﬁ+2)1“(k+a+/3+2)
T Tl t+atB+2) £ Tk+B+2) ’
G _ Qk+a+B+2Tk+a+1) . Qj+a+B+DI(+a+B+1)
k= T+ B +2) o FG+a+1) ’

!
Vi = Z(—l)ka-

k=j

By virtue of (2.4), (2.5) and the fact that I'(x + 1) = xI"(x), we obtain that

W(N, a, B, x)—ZEl¢z+2(ZF 7 ’“”(w)

-2

N
I
=)

=

Ez¢>z+z(2( 1)"@(2( 1>fHﬂf"‘"”(x>>)

zm

=

)
E1¢1+2(Z( 1)/ H; j(a’ﬂ)(x)>

=0

Il
zm

-2

=

N-2
(=7 H; TP (x) < > Eﬂ/fj,ldA’ziz)-

I=j

I
=)

J

Let
Ck+a+B+3)I'k+a+1)
C'k+B+3) '

Ay =

It can be checked that
Git1 — Gr = (a — B)Ay.

By the Stirling formula (see Courant and Hilbert [12]),

T(s+ 1) =+2rss’e™ (1 + O(s™'7)), 3.5)
hence
|Ax] < ek + D* P71, |G| < ek + 1) P,
Wl <cl+D*?,  E<cl+D™  Hj<c(j+ DI

The above estimates with (2.8) lead to that
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||W(N,ot, ﬂ,-x)”z(a,ﬂ)
N=2 . 2
ZHz (e m(ZEle,lgblj-z)
j=0 1=
N-2 N2 =
< cZHz (@, 5)<2Elzwjl y(oc ﬂ))\(a ;3) )(Zy](a ﬂ))\(ot ﬂ)(¢l+2) )

Jj=0 I=j I=j
N-2
CZ(] + 1)2ﬁ+2<2(l+ 1~ 2h- 2>||¢||X(a 1.5-1)
J= I=j

< CN2”¢”X(a—l.ﬂ—l)-
Thus,
”axd)”i(a,ﬂ) < C(N2”¢”i(a—l,ﬂ—1) + |W(N, a, B, x)”i(a,ﬂ)) < CN2||¢”i<a71,571)
which completes the proof. g

‘We next establish some imbedding inequalities, see lemmas 3.4-3.8.

Lemma 3.4. If
l<a<y+2, l<B<é6+2, (3.6)
then for any v € H;(a,m (AN),
1ol < cllvlly yan- 3.7)
Moreover, for any v € H ;w,m (A) with v(xp) =0, xo € A,
lvllyoo < clvly yes, (3-8)
provided that
a<y+2, B<s+2. (3.9)
Proof. By a similar argument as in the proof of lemma 2.3 of Guo [22], we can get
the result (3.8) with (3.9). We now prove (3.7) with (3.6). Let A} = (0, 1) and A, =

(—1,0]. Following the same lines as in the proof of formula (13.5) of Bernardi and
Maday [5], we have that for o > 1,

2
/ vz(x)(l - xz)a—2 dx < max{a, 2} ((axv(x))2 + v2(x))(l - xz)a dx,
Ay

(@ — 1?2 Jy,

provided that the integral at the right side of the above formula exists. Hence

f V() x @ 2D (x)dx < cf ((axv(x))2 + 02 (%)) x“P (x) dx.
Ay

Ay
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A similar result on A, exists for § > 1. Finally, a combination of (3.6) and the above
inequalities leads to (3.7). O

Lemma3.5. If« > —l and —1 < B < 1 then forany v € H!, (A), v is continuous
s

on any subinterval A* = [—1,a] C A with a < 1, and max,c,- |[v(x)] < cllvlly, yen-
If, in addition, @ < 1, then these results can be extended to A.

Proof. For any x1, x, € A*, we have that

X X 1/2
lv(x2) — v(xy)| é/ |0,v(x)| dx <C|I8xvllx<a.ﬂ)(/ X(_“’_ﬁ)(X)dX) .

X1 X1

So v(x1) = v(x) as x; = xp, i.e, v € C(A*). Next, let |[v(x™)| = min,cp+ [v(X)].
Then
lo)| = [o(x®)| < clldcvll -
Moreover,
1 a

(x| < —— v dx < c||v]l e

v < - 1/ lv(o)| clvll s
which leads to the first desired result. Furthermore, if « < 1, then we can take a = 1
and so complete the proof. O

Next, let

0H s (A) = {v | v € Hyp (M), v(=1) =0}

Lemma 3.6. If one of the following conditions holds,
Ha<<y+2, 850,620,

) as<y+1, <6+2,0<a<l, <1,
then for any v € OH;(M) (AN),

vl o0 < clvly y@s. (3.10)

Proof.  Theresult (3.10) with condition (i) follows directly from lemma 2.4 of Guo [22].
Now, let condition (ii) holds. Denote A; = (0, 1) and A, = (—1, 0]. By the Hardy
inequality (see Hardy et al. [24]), we know that for any measurable function ¢ and real
number o < 1,

1 2
/ <L/‘ o (y) dy) (1 —-—x)%dx < i/ ¢2(x)(1 — x)%dx. (3.11)
Ay 1 — X Jx 1 — A
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For any v € oH ;(mm (A), we have from lemma 3.5 that v(x) is meaningful at x = 1.
Taking ¢ (x) = d,v(x) in (3.11), we get that

/ (v(x) — v(1))*(1 — x)* 2dx < f (Bvm)’ (1 —n*dx.  (3.12)
Ay Ay

l -«

Let [v(x*)| = max |v(x)|. Since v(—1) = 0, it can be verified that for o, 8 < 1,
xeA

lv(D] < o] < f_l |0, v(x) | dx < cl|dxv]l s . (3.13)
Furthermore, for a > 0,
/A (v(x) — v(D))*(1 = x)* " dx
>/A vz(x)(l—x)“_ldx—l—/A (v (D) = 2[v(D)|Jvx)]) A = x)* ' dx
>fA V@)1 —x0)* " dx + c(v(1) = 2Ju(x*)[[oD)]). (3.14)
So we have frorln (3.12)~(3.14) that
/A V() x T () d
gc/A v ()1 —x)* " dx
< c(/A (v(x) — v(D))*(1 = x)* " dx + |v(x*)||v(1)|>
< c(fA () — (D))’ (1 — )2 dx + ||axv||§(a,ﬂ>) <clevllep. (3.15)
On the other hand, v(—1) = 0 and so by the Hardy inequality,

/ 20 (1 + 0P 2 dx < cf (0.,v00)) (1 + ) dx.
Ap

Ay
Thus
/ v« dx < e / (3v())*x P (x) dx.
Ay A
Finally, we can get the desired result by condition (ii) and the above statements. g

Remark 3.1. Ifa > —1, B =0o0r —1 < a, B < 1, then the semi-norm | - || ,@p i a
norm of the space g H ;(a, s (A), which is equivalent to the norm || - ||} ,«p . Indeed, taking
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a =y and B = § in (3.10), we can get the desired result with « > —1 and 8 = 0. Next,
by (3.12),

/ (v(x) — v(1))x@P (x) dx < cf (v(x) — v(D))*(1 = x)* 2 dx
Ay

Ay

<4 (8,0(0))*(1 = x)* dx.

B
l—« Ay

Moreover, by a similar argument as in the derivation of (3.14),

/ (v(X)—v(l))Qx(“"g)(x)dX>/ V) x @P ) dx + ¢ (V1) = 2[v(x*) |[o(D)]).
Ay

Ay

We can also estimate the left side of the above inequality as (3.15). Therefore

f vz(X)x(“’ﬂ)(x)dx<C( f (axv<x>)2x<“*ﬁ><x>dx+\v(x*)va!)<c||axv||§<a,ﬂ>.
A Aq

A similar inequality is valid on A,. A combination of them leads to the desired result
with -1 <, 8 < 1.

Lemma 3.7. If one of the following conditions holds,
) a<y+2, <0,5620,
(i) «

(iii) o

0, <é+2, vy 20,

NN

y+2, <642, -1 <a,B8 <1,

then for any v € Hol,xm_ﬂ)(Q),

vl o0 < clvly s - (3.16)

Proof.  The validity of (3.16) with condition (i) or condition (ii) is ensured by lemma 2.4
and remark 2.3 of Guo [22]. Now let condition (iii) hold. Set A; = (0, 1) and A, =
(—1, 0]. Taking ¢ (x) = d,v(x) in (3.11), we get that

a—2,8— 2 (a
/ V) “ PP () dx < c/ (0v(x)) " x P (x) dx.
A Ay
A similar inequality is valid on A,. Then (3.16) follows. |
Remark 3.2. As a result of lemma 3.7, we assert that if one of the conditions holds:

Do >-1, =0,G0)a =0, B > —1, (iii)) —1 < «a, B < 1, then the semi-norm
|- 11,4@p is a norm of the space HOI’X(% s (A), which is equivalent to the norm || - ||| ,@p.

Lemma 3.8. For —1 < «, B < 1, the mapping £L%# : v — vx©@# is an isomorphism
from HOl,x“’*’” (A) onto Hy ., p (A).
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Proof. For any v € D(A), we get from (3.16) with condition (iii) of lemma 3.7 that
o, 2
H ax(UX( Jg))HX(—a,fﬂ)

< / (3.:0(0))*x P (x) dx + 4(a® + B?) / v2(6) x @A (x) dx
A A
< C”axv”i(a,ﬂ)'
Clearly,
10X “P [l e = 10l gan

The previous estimates imply that
” vX(a,ﬁ) ” —— < C||U||1’X(a,ﬁ).

So £%# is a linear continuous mapping from D(A) provided with the norm || - || 1,y @h)
into D(A) provided with the norm || - ||| ,-«-p. Conversely, we can use (3.16) with
condition (iii) of lemma 3.7 to show that the inverse mapping £L™*# : v — vy %=#
is also a linear continuous mapping from D(A) provided with the norm || - ||} ,«-p)
into D(A) provided with the norm | - ||, ,@s. Finally, a density argument leads to the
conclusion. Il

We now consider various orthogonal projections. For technical reasons, Guo [22]

introduced the Hilbert space H 4 ,(A). Foranyr € N,

H;(a,,g) A(N) = {v | vis measurable and V|, y@p 4 < oo},

where

[(r=1)/2] - . 12
[Vl ywpr g = ( Z I(1 _x2)r/ - a;—kvux(mﬁ) + ||U||[2r/2]’x(a,ﬂ>> :
k=0

In particular, H)(()(a,ﬂ)’A(A) = Li‘“ﬁ) (A). For any real r > 0, the space H;(a,ﬂ),A(A) is
defined by space interpolation. Guo [22] also introduced other spaces. For any u € N,

Hywp, (M) ={v]dlve H;;f,;)’A(A)}

with the norm

lvll, y@p v p = ”afv”r_ﬂ,)((a,m,f;-
For any real v > 0, the space H; @h) 1t (A) and its norm are defined by space interpola-
tion. In particular, H;(a,m’*(A) = H;<a,ﬂ>,*,1(A) and [[vll, yep = IVl y@p 41
The first orthogonal projection Py o : Li‘“ﬂ) (A) — Py is a mapping such that
for any v € Li(m (A),

(PNapV —V,@),@pn =0, ¢ € Py.
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Lemma 3.9 (Theorem 2.3 of Guo [22]). For any v € H’ (A)andr >0,

x@h) A
1PN.apv = Vyen < N0, y@m - (3.17)
In particular,
I Py,a,pv — vl yem < N7 oly gwripen. (3.18)

As is well known, we usually consider the H;(a, s (A)-orthogonal projection in nu-
merical analysis of differential equations. But in many practical problems, the coef-
ficients of derivatives of different orders may degenerate in different ways. In these
cases, it is not possible to compare the approximate solutions with the exact solutions
in the Sobolev spaces. Whereas it might be carried out in certain Hilbert spaces. To
do this, let «, B8, y,8 > —1, and introduce the space H 5)/ s(A), 0 < pu < 1. For

=0, H wpys(B) = Li(y,&)(A)- For u =1,
Ho},ﬁ,y,é(A) = {v | vis measurable and [|v|l1 ¢.p,y.5 < oo},
where
1/2

2 2
1llapys = (V1] ywp + 10I00)

For 0 < u < 1, the space H, 5 ,.5(AA) 1s defined by space interpolation. Its norm is
denoted by ||v]l,1,.p,y.5- Let

Qg p.y.5(, V) = (Optt, V) @p + (U, V)0, Vu,v e H Boys(D).

In particular, a, g(u, V) = ag g o.p(Ut, V).
The orthogonal projection P]{,’a’ gy Hy ﬂ ,.5(A) = Py is a mapping such that
forany v € H, 4 5(A),

apys(PyopysV— V) =0, Vo e Py.
In particular, P},,a’ﬁ = P},,a’ﬁ’a,ﬂ.
Lemma 3.10 (Theorem 2.5 of Guo [22]). If (3.9) holds, then for any v € H;(W)’*(A)
andr > 1,

1Py apy sV — vHLa,ﬂ,y,a <Nl g e (3.19)
If, in addition,

a<y+1, B<Lé+1, (3.20)

then forO < u < 1,

1Py w.py s — v||ﬂ wpiys SNV g s (3.21)
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Remark 3.3. As a special case of lemma 3.10, we get that for any v € H;m_ﬂ) L(A) and
O<pu<li<r,

| Pyt = vl e < NPT I0N gan e (3.22)

In some practical problems arising in fluid dynamics, biology and other fields, the
unknown functions vanish at one of the extreme points, say x = —1. So we need other
orthogonal projections. Let

OH;,ﬁ,y,g(A) = {U |ve H B, y(S(A) and v(—1) = O}

The orthogonal projection OP]{,’Q, By :oH! py.s(A) = oPy is a mapping such that for
any v € OH;,ﬂ,y,S(A)’

aa,ﬁ,yﬁ( Pi\l/aﬁyav ¢) =0, V¢ eoPn.

In particular, oPﬁ,a,ﬁ = oP,%,,a’ﬁ’a,ﬂ.

Lemma 3.11. If one of the following conditions holds,

) a<y+1, B<s+2 O<a<l, B<l, (3.23)
(i) a<y+2, pB<O, § =20, (3.24)

then for any v € OH;,,«;,M(A) NH oy (A)andr > 1,

loPy gy v — vl bys S N, @b s (3.25)
If, in addition, (3.20) holds, then for 0 < u < 1,

||0Plf,,a’5’%5v—v||u s SENTVI e e (3.26)

We can prove this lemma by a similar argument as in the proof of theorem 2.6 of
Guo [22]. Furthermore, we have the following result.

Lemma 3.12. If 8 < 1, then there exists a projection PN(X Byd Ho},ﬁ,yﬁ(A) — Py

such that PN wpy sv(—1) = v(—=1). Further, if the conditions for which (3.26) holds are
fulfilled. Then for any v € H;(W)_*(A) and0< u<<1<r,

| Py apys? — Ol apys < ENFT 0N g e (3.27)

Moreover, if, in addition, y, § < 0, then forany v € H,, ﬂ ” s(A)N Hdm 5 *(A) NHY(A)
andd > 1,

~

1Py apysVlle <c(lvlages s+ 10la + [10lapy.s)- (3.28)
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Proof. Let A* be any closed subset of A. Then for any v € H, p.y.s(8), we have
that v € C(A*) and |v(0)| < c||v|l1,a,8,y,5- Thanks to B < 1, we have that for any

x1,x2 € (=1,0],

|v(xl)|<\v(Xz)|+/ |0,v(x)| dx

0 1/2
< Jvx)| +C(/ (3xv(x))2(1 +x)? dx> < o) |+ Ivllap.y.s-
-1

Letting x; — —1 and x, = 0, we know that v(x) is meaningful at x = —1, and
[v(=D] < cllvll1,a,8,y.6- SO we can define the desired projection as

ﬁ}v,a,ﬁwv(x) = v(=1) 40Py 4 5.,.5(vx) — v(=D). (3.29)
Clearly, ﬁ,{, wpy sV(x) = v(x) for x = —1. Furthermore, it is not difficult to reach

(3.27) by using (3.26) and (3.29).
We now prove (3.28). For any u € OH;’ By s(A), we get from imbedding theorem
that ford > 1,

HOPAl/,a,,g,y,gMHoo < lullayz + C”OP]\II’a,ﬁ,%Su - PN,O,Oqu/Z + || Pn,o,ou — ullay2.
By lemma 3.2 and lemma 3.11,
loPw.apystt = Prooull gy < eN(loPrapystt =] + 11 Proou —ull)

< eN(loPyap.ystt = ]| v + I Prvo.0u — ull)

< c(lullg,gem o + Nl yoo ) < c(lully, o .+ lulla)-
Moreover, according to the property of the Legendre approximation,

| Pnv,oou — ullaz < cllullza/s.
So the above facts lead to that
NPy wpystt] o < el yem . + llulla)-

Taking u(x) = v(x) — v(—1) in the above inequality, we use (3.29) and the fact that
[v(=1D)| < cllvll1,q,,y,s to obtain the desired result. O

In particular, for « = y and 8 = §, we have the following approximation result.
pl pl
Let Py o5 = Pyopoap

Lemma 3.13. If one of the following conditions holds,

i) a>-1, =0,

i) —-l<a,p<l, (3.30)
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then for any v € OH;W_@ (M NH(p (A)and0<p <1<,

loPyasv = v, en < NNVl e (3.31)

Moreover, for any v € H;(a,ﬂ>’*(A) andO< u<1<r,

” Is}/,a.ﬂv - v” < CNM_r”v”r,x(“’ﬂ),*' (3.32)

oy @

Proof.  If (i) of (3.30) holds, then (3.31) and (3.32) follows directly from lemma 3.11
and lemma 3.12 with @ = y and B = & = 0, respectively. We now prove (3.31) with
condition (ii) of (3.30). We first consider the case u = 1. Let

60 = [ Prrasdvndy.
-1
Clearly ¢ € (Py. By the projection theorem, remark 3.1 and lemma 3.9,
1
||0PN.,oc,ﬂv —vf 1@

<@ — vl yen < clloxd — vl @p

< C”PN—I,a,ﬁaxv - axv”X(D‘-ﬂ)

< N0l ywm a0 < N0l g e
We next deal with the case u = 0. Let g € Li‘“* s (A) and consider an auxiliary problem.
Itis to find w € OH;W) (A) such that

dap(w,2) = (8, 2)yen, Y2 € oH up(A). (3.33)
Taking z = w in (3.33), we get that
lwlly e < cligll . (3.34)

Now let w(x) vary in D(A), and so in sense of distributions,
=3, (Bw () x “P () = (g(x) — wx@)) x P (x). (3.35)

For simplicity of statements, let n(x) = 9, w(x)x“? (x). Then we know from (3.35)
that for any x, x; € A,

X2 1/2
[n(x2) = (x| < cllg - w||xw>(/ x P (x) dx) :
X1
Thus, n(x;) — n(xy) as x; — Xx», ie, n(x) € C(A). Furthermore, multiply-
ing (3.35) by any z € OH):(oc.ﬂ) (A) and integrating the resulting equality by parts, we
obtain from (3.33) that
n(Dz(1) —n(=Dz(=1) =/ (xw(x)9,2(x) 4+ w(x)z(x)

A
— g(x)z(x)))((“”s)(x) dx =0, Vze QH;(M, (A).
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Hence, n(1) = 0. Next, by (3.35),
—8w() = ((@ = ) + @+ Bx)x TV WawE) +g() —w).  (3.36)
Let A; and A, be the same as before. It can be verified that
JoFw(1 ~ xz)l/2 ||i<a,ﬂ> < Di+ Dy,

where D; = D{(A) + D{(A,), and

Dl(Aj):S(oz2+ﬂ2)/ (wa(x))zx(“_l’ﬁ_l)(x)dx, j=1,2,

Aj

Dy=2 / (8(x) — w(x)) x “H+D (x) dx.
A

Clearly, D, < cllg — w”i“’*’”' So it remains to estimate D;. Thanks to n(1) = 0 and
la| < 1, we get from (3.11), (3.34) and (3.35) that

1 2
Di(Ay) =8(a + B7) / x(_“_l’_ﬂ‘”(x)( / (g<y>—w<y>)x<“*ﬁ><y>dy) dx
Al X

1 1 2
<c / (1— f (g(y)—w(y>)x(“*ﬂ>(y>dy) (1—x)""dx
Aq — X Jx
c / (g00) — w@) ) “P (x) dx < cllglup- (3.37)
Ay

If B > 0, then n(—1) = 0. In this case, a similar argument as in the derivation of (3.37)
leads to that

Di(Ay) <cliglwp-
If —1 < B < 0, then we deduce from (3.11), (3.34) and (3.35) that

Di(A3)

X 2
= 8(c* + B%) f <—“—‘*—ﬁ—”(x>< / 1 (g —wM)x Py dy — n(—l)) dx
X 2
( (1+x)7°" 1<f1(g(y)—w(y>)x<“*ﬁ>(y>dy) dx+n2(—1)>
2
( (g(y> —w)x“P(y) dy) (1+x)Fdx + 772(—1)>

(g(x) —wx)*x P (x) dx + 172(—1)>

< c(||g||x(a,ﬁ> +n*(=D).
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Besides, due to (1) = 0, we have from (3.34) and (3.35) that
2
(=1 < (f 19,720 dx) < f (3:1(0) % P (x) dxf x P (x) dx
A A A

2
<e [ (g0~ we0)x P dx < cligl
A
A combination of the above inequalities leads to that
[7w@ = x)"2| s < cligllyen-
Therefore, by (3.31) with u = 1,
||0P1{z,a,,3w - wHLX(a,ﬂ) < CN—1||w||2,X<a,ﬂ>,* <cN! 10xwlly yep) 4
<eN7igllyen.

Taking z = o Py, 40 — v in (3.33), we obtain that

1 1

|(OPN,a,ﬁU - 8)X<a,ﬂ>| = |aa,ﬁ(0PN’a,ﬁU -, w)|

= |a%ﬁ(0PI{’,a,ﬂv -, OP]{’,a,ﬂw - w)|

1 1
< HopN,a,ﬂ” - le,Xm,m HOpN,a,ﬁw - wul,xw-ﬂ)

<N lglyen vl yes s (3.38)
Consequently,
Pl - a,
loPh . 50— ] — w [0 Py o gV — Vs &) )|
0FN.a.p y@h p 12l
geL? , 5870 8l y@p
e
<N vl y@p - (3.39)

Moreover, (3.31) with < 1 and 8 = 0 is a special case of lemma 3.11 with ¢ = y
and B = & = 0. Therefore, (3.31) follows from the previous statements and space
interpolation. We now prove (3.32) with condition (ii) of (3.30). By (3.31),

”i)}/,a,ﬁv - v”M,X(a,m = ||0P1{’,oc,/3(v(x) —v(=D) = (v(x) —v(=D) ||#,X<a,ﬂ>

<N [[0() = 0(=D], i, < N[0l e

This implies the desired result. g

When we study movements of fluid flows in bounded domains with fixed non-slip
walls, the populations of budworms in bounded forests with lethal boundary conditions,
and some other problems, we encounter homogenous boundary conditions. In these
cases, we have to consider other projections. To do this, let

G, p (U, V) = (Dytt, D) yah),s g p(u, v) = (deut, 3, (v P (x))).



G. Ben-yu, W. Li-lian / Jacobi interpolation approximations 247

The orthogonal projection 13]\1,2 ’x HOIXW) (A) — PY is a mapping such that for any
vE H()I,Xm,ﬁ) (L),

aa,ﬂ(ﬁi\ll’,?x,ﬁv —v,9)=0, V¢ ePy.

The orthogonal projection F]l\}?% g HO1 ((@h) (A) — PY is a mapping such that for any

v e H()I’X(ot,ﬂ) (A)’

da,p (F;\}?a,ﬁv —v,¢) =0, V¢ePy.

We first analyze some properties of the bilinear form a, g(-, -).

Lemma3.14. If -1 <, 8 < 0o0r0 < «, B < 1, then the bilinear form a, g(u, v) is
continuous on H):(a_ﬂ) (A) x HOI’X(QV,;) (A) and elliptic on HOI’X(QV,;) (A) x HOI’X(QV,;) (A).

Proof. By the Cauchy—Schwartz inequality and lemma 3.7,

Eo,,,g(u,v):/ABxu(x)axv(x)x(“’ﬁ)(x)dx—I—[\Bxu(x)v(x)ax(x(“’ﬁ)(x)) dx

< N0xutll yem 1050 | gy + 4(0® 4 B7) 19 te]l yap [0]] yta—2.5-2
Sclloullyes |9x vl @ .

On the other hand, integrating by parts yields that

_ I .
Tt 1) = 100 By + 5 /A B, (12(0) 3 (x P (1)) dx

1
=ll0cullyep = 5 / w? ()07 (x P (x)) dx
A

1
= el + 5 / W20 W () X P (x) dx,
A

where
W(x) = _a? (X (a,8) (x))X (—a,—B) (x).

We now determine the ranges of o and 8 such that W(x) > 0 for all x € A. Let
f(x) = (1 —x??W(x). A calculation shows that

f)=—(@+Ba@+B-Dx*+2(B—a)@+B—Dx+a+B—(B—a)
By the properties of the quadratic function, we find that f(x) > 0 for all x € A, if

(a+B)a+p—1) =0,
f(=1) =—4B>+4B >0, (3.40)
f(1) = —4a* + 4o > 0,
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or
(a+B)a+pB-1)<0, (341)
4B —a)@+B—1D*+4@+Bla+p—D(e+p—(B—a)?) <O0. '
Solving (3.40) and (3.41) yields that O < «, B < 1. Therefore, if 0 < «, B < 1, then we
obtain that
o p(ut 1) = clull} ap- (3.42)

Furthermore, if —1 < o, B < 0, then we set w = uy @ . So we know from lemma 3.8
that w € Hj . (A). Hence, by (3.42),

— — 2 2
Ao pu,u) =0 g, p(w, w) 2 clwll  a-p = cllull wp-

Finally, a combination of (3.42) and the above inequality leads to the conclusion. U

To estimate the difference between ﬁ;‘; sV and v, we need a useful lemma. For
—l<a, p<l,let

UnapD) ={v|v=x"P¢, ¢ € Py}

The orthogonal projection Ty 4 p Li(_m_ﬁ) (A) = Uy o p(A) is a mapping such that for
any v € Li(—a.—ﬁ) (A),

(TN =V, D) yapp =0, Vo € Uy p(N).

We shall compare 7y o, gv with v in the norm || - ||, a5 .

Lemma 3.15. If -1 < o, 8 < 1, then forany v € H;ea,—m A),
1 Tv.0.pv — VIl ety < NP0l camp, (3.43)

where o (o, 8) = max(«, 8, 0).

Proof. Lemma 3.5 implies that H 1(,,1 »(A) C C(A). So we can define an affine
(o
function as

vi(x) = %v(l)(l +x) + %v(—l)(l —x), xe€A. (3.44)
Let v0(x) = v(x) — v*(x). Obviously = H()l’x(,a,,ﬂ> (A). By remark 3.2,
[0, can <€Vl ycamn < c(levllyces + [0(1) = v(=D))
gc(llavaX(_m_ﬁ) + /A |8xv|dx) < cl|0y vl yamp. (3.45)

Furthermore, let

W) = x P Pyt 000 x TP (1)),
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Then v, € Uy 4.5(A). By (3.18),

[0k = "l cmn = [ Pvorap (0O T 77) =X TP
<N 0 (0% )| e
<eNTH (00| cannopen + [0 camriopn):
Clearly, by (3.45),
0001 carrpon < cllvll e
By virtue of lemma 3.7 and (3.45),
o] |

y(—a—1,—f=D) < C”U 5 (—a=2.-f-2) < C”vo ||1,X(7ot,fﬂ) < cllvlly yemp -

Therefore,
0 0 —1
[} = ) oy N0 yan. (3.46)

Next, we consider the bound of || 7y 4 gv* — v*||,a-p . It suffices to estimate the
bounds || 7y o pw — wll,-e-p, w = 1, x. Due to the definition of 7y 4 g,

00
TN,a’}gl —1=- Zdlx(a,ﬂ)(x)Jl(a,ﬁ)(x)
=N

with

o a, -2 a, 1 a,
d = HX( ’ﬁ)Jl( ﬂ)‘|x(—a.—ﬁ>f Jl( P(x)dx = P / J,( P (x) dx.
A v, A

According to (2.7),

/ 7P dx =a (157 1) = I D) + b (5P @) = 1P - 1)
A
+a (P M = 3P =),
By (2.3) and (3.5),
v <, b<a [IEPO <ar, [P =] < b

Moreover, by using (2.3) and the expressions of a; and ¢; in (2.7), we derive from a direct
calculation that
o o 20+ )T+ a)pd)
aJ 5P (D) + P ) = . :
(+ D +a+ B+ D[[isg@ +a+B+k)

I+1
where p(/) is a polynomial of degree 3, i.e.,

p)y=0U+a+D(+a+B)+a+B+1D)2l+a+B)—-IU0+1D){I+B)Q2l+a++2).
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Thus by (3.5),

| )P )+ e SP )] < el

Similarly,

|l 1P (1) + 1P (D] < elf2

Let n(a, B) = max(c, B). We deduce from the above statements that |d;| < cI"@A 1,
Thus

S 172
17N .ap1 — Ll ey < c(ZF"(“*ﬁH) < NP (3.47)

Similarly,
1T ,0,p% — x|l -ampy < NPT, (3.48)
Finally, we derive from the projection theorem, lemma 3.5 and (3.46)—(3.48) that

17,080 — VIl oty < (|| T, p0°

—v' HX<—m—ﬂ> + || Ty apv — v ”X(—a,—ﬂ))
<c([oy = can + (o[ + [o(=D])

X (1 Tn.apl = Ul yap + 1Ty X — Xl ycompr))
<eNTCP oy L camp

which completes the proof. g

Lemma 3.16. If —1 < «, B8 < I, thenforany v € Holxw,m (MNH o p (A)andr > 1,

|| PN a,pV — U”l @ < CNl_r”UHr,X(a,ﬂ),*- (3.49)
If, in addition, —1 <, 8 <0or0 <o, < 1,thenforO < u <1 < r,
| Pvesv =l am < cN“—’nvnr,Xm,m,*. (3.50)

Proof.  We first prove (3.49). Let

X 1 1
v*(x) = f <PN_1,a,ﬁ8},v(y) — E/ PN_l,a,;;aZU(Z) dZ)dy.
-1

-1

Clearly v* € PY. By the projection theorem, remark 3.2 and lemma 3.9,

||P NoapV — UHLX(a,m

<clv—v Hl,xw,ﬂ) <cfaw - axv*“X(a,m

1
/ (Prtapd o) - ayv(y>)dy')

< C”PN—I,a,ﬁaxv - axv”)((“vﬂ) < CNl_r”v”r,X(D‘vﬂ),*'

C(lIPN—l,a,ﬁaxv - axvllx(%ﬂ) +




G. Ben-yu, W. Li-lian / Jacobi interpolation approximations 251

The above estimate completes the proof of (3.49).
We now turn to prove (3.50) with —1 < o, 8 < Oand u = 0. Let g € Li@‘ﬂ) (A)

and consider an auxiliary problem. Itis to find w € HO1 (@ (A) such that

Gup(w,2) = (8, Dyp, Y2 € Hy wp(h). (3.51)

In sense of distributions,
=3, (x P () w(x)) = g(x)x P (x). (3.52)

Let u(x) = x“P (x)d,w(x). We take w = z in (3.51) and integrate the resulting equa-
tion by parts. Due to [|u|| ,«-s = |w|; y@p and the Poincaré inequality, we assert that
lully—e-p < cligll,@p . Moreover, by taking the Li(,m,ﬂ) -norms of both sides of (3.52),
we obtain that

0ty = | =8 “P @ o < cligllyan

Next, let 7y 4 g be the same as in lemma 3.15, and
1
un () =Ty a,pu(x) — EX(“”B) (x) / T pu () x T4 7P () dx,
A

wN(x)z/ uyMx TP (y) dy.

-1

Clearly, uy € Uy o,p(A) and wy € 73]9,. It is noted that

f Ty pu()x " P (x)dx = f (T o pre(x) — u(x)) x 7P (x) dx.
A A

For simplicity, we denote the right side of the above formula by n(x). Then by
lemma 3.15,
10w = dewnllyen = [ x " Pu = x " Pun|
=llu —unllyu-p
— = Toap+ 20y
<N Tyapu — ullyap + cln(x)]
<l Ty apit — ]l y-o-p)

<N Ml yewp < eNTHgl - (3.53)

Taking z = Py ;v — v in (3.51), we obtain from (3.49) and (3.53) that

|(13‘1$/’,g,,3v -, g)x<a,ﬂ>| = |5a,ﬁ(ﬁ1%/’,g,ﬁv -, w)|
= [ (Pylapv — v w — wy)|
< ﬁ;\lf,?x,ﬁv - U||1’X<a,,g>||3xw — dwn |l @p
<

cN7lgly@n vl @p (3.54)
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Consequently,
|(1;1’0 v—uv,g) |
pLo N,a,p > 8)y@p)
| Py s = U||X<a,ﬂ> = sup
geL? 4 .870 gl @
1@B)
gCN_r”v”r,x(“*/”,*' (3.55)

Finally, the result (3.50) for 0 < u < 1 follows from (3.49), (3.55) and space interpola-
tion.

We now consider the case with 0 < ¢, 8 < 1 and u = 0. Taking z = w in (3.51),
we get from remark 3.2 that |wll; y@s < cllglly@s. Also, in sense of distributions,
(3.52) holds, and 3, w(x)x “# (x) — O as |x| — 1. By a similar argument as in the last
part of the proof of lemma 3.13, we assert that (3.55) is also valid for 0 < «, 8 < 1.
Then we reach (3.50) by space interpolation. O

Remark 3.4. The result (3.18) and the derivation of (3.49) imply that

51,0 ~1][42
” PN,a,ﬂU o U||1,X<W> ScN ” avaX(aH,ﬂH)' (3.56)
. . —1.0
Now, we estimate the difference between P , ;v and v.

Lemma3.17. If -1 < o, 8 < 0or0 < o, 8 < 1, then for any v € HOIX(W)(A) N
H;m_ﬂ) L) andr > 1,

—1,0 1—
[ PNt =l ywn < NIV g (3.57)

Proof. For any ¢ € PY, we get from lemma 3.14 that

—1,0

1,0 ,
PN’a_ﬂv —v,¢ — v)

— _ 0 —1,0 _
[Py apv— U”T,X«x,rs) Sap(Pyopv =V, P;V,a.ﬂv —v) = (

—1,0
< C”PN,a_ﬂU - U”LX(a.ﬂ) ¢ — vl yen.
Thus
|73, v — v <c inf ¢ — vlly ywn-
N,a,B Ly X pePy Lx'*
Taking ¢ = 131\1,(; U in the above inequality, we get (3.57) by using lemma 3.16. g

The following result plays an important role in analysis of Jacobi interpolation
approximation.

Lemma3.18. If —1 < &, f < I, then there exists a projection Py , g Hywp (D) —
Py, such that

Py pp() =v(l), Py, u(=1)=uv(-1), (3.58)
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and for any v € H;(a,m LA andr > 1,

1 1—
| Py v — v||1’x(a,ﬂ> <Nl @b (3.59)

If, in addition, -1 < o, 8 < 0or 0 < a, B < 1, then for any v € H;m_ﬂ) *(A) and
O<u<sl<r,

| Py g sv — v S (1] (3.60)

s x @)

Proof. By lemma 3.5, we can define an affine function v*(x) as in (3.44). Clearly,
V=" € H p(A). Now, let

Py o g0 () = v (x) + Py 5 (v(x) — v* (x)). (3.61)
Obviously, (3.58) holds. By remark 3.2,

v — vl yen <clv = v s < (10,0l @ + [v(1) — v(=1)])

1
<C<||3xvllx<a-ﬂ) +/ I3xv|dX) < cllvlly s
-1

In view of this, we get from (3.49) and (3.61) that
D 1,0 * *
[ Pz{',a,ﬂ” - le,Xm,m =| Py —v) = (=0 )| 1x@h
<clloy(v - v*)HX(a,ﬁ) < cllvlly s 4 (3.62)
This implies (3.59) for r = 1. If r > 2, then we have from (3.49) and (3.61) that
1 51,0
| Prap? =0l ywn = [ Prias@ = v = @ =0, wn
<N v = V¥l @)« < N0 @b s

Therefore, we can get (3.59) by using the above fact, (3.62) and space interpolation.
Furthermore, (3.60) follows from (3.50), (3.61) and a similar argument as in the above
lines. Il

There exists a more precise result, stated below.
Lemma 3.19. If 0 < o, § < 1, then for any v € H;(W) *(A) andr > 1,

- 3
| Prast = vl sy SN0 gwn o (3.63)

Proof. Letg € Li«m, 41y (A) and consider the auxiliary problem

o p(w,2) = (8, Dy, V2 € Hy (D). (3.64)

Clearly, 3, w(x)x*# (x) — 0, as |x| — 1. A similar process as in the proof of the last
part of lemma 3.13 yields that

lwllz y@n « < clliglly@-15-1. (3.65)
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Let v*(x) be the same as in (3.44). The definition (3.61) implies that
aa,,g(ﬁ,lvwv —v,0) = G p(Pyl s(0—v")—(v—0"), ) =0, Vo € PY(A). (3.66)

By taking z = N wpl — U in (3.64) and using (3.62), (3.65) and (3.66), we derive that

~

1 _
[(Pyapv = v.8) jwrpn| S ENTNgl e 1s-0 0l gwn .

Then the conclusion follows from a duality argument. g

4. Jacobi interpolation approximations
In this section, we establish the main results of this paper. We shall compare
27 N,«pv With v in various norms. We first consider the Jacobi—Gauss interpolation,
and begin with a result related to the stability of interpolation.
Theorem 4.1. Forany v € H 141 (A) N L2 5 (A),
1Z6, 5.0, @ < (vl @pm + N7 ol gerrsn). “4.1)

Proof. By (2.13) and (2.25),

N
2 2 (e, 8) B)
1Z6 3080w = 1T N pVowm gy = DV (Eon )G N
j=0
N
-1 (e, B) (a.B) ya+1/2 (a.B) \B+1/2
SceN Z (gG N. 1)( — LG, /) (1+ §G,N,j) :
j=0

Let x = cos @ and D(f) = v(cosf). Then
g(a B\ 2a+1 9(0( B\ 28+1
1Z6. 508010y < eN™ IZAz (o5°7) (sm TJ> (cos 2’ > :

According to theorem 8.9.1 of Szegé [38],

6P — o)), 0<j <N, 42
NI =N +1(]7T + O(1)), j (4.2)
where O(1) is bounded uniformly for all 0 < j < N. Now, let ay = O(1) /(N + 1) and

= (N7 + O(1))/(N + 1). Then 63" € K, C [ao, a1], K being of size ¢/(N + 1).
Therefore

||IG,N,a,ﬁv||i<a_ﬂ) cN™ lzesulg [0(6)(sin )” H/z(cos %)‘3+1/2|2.
-0 €
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By using an inequality of space interpolation (see (13.7) of Bernardi and Maday [5]), we
know that for any f € H'(a, b),

1
afgféb | f(0)] < C<m||f||L2(a,b) + Vb — a||axf||L2(a,b))-

Hence

=

1Z6. .00 Ppy <€ Y <||ﬁ(0)(sin ) cos )2,
=0

+ N 72|35 (9(0) (sin )T (cos £)717?) ||iz(Kj))

< C(Hﬁ(@)(sin %)a+1/2(cos %),3+1/2||iz(0m

_ ~ . a 1/2\ 12
+ N2y @(0) (sin ) (c05 1)) [y )

< c(”ﬁ(@)(sin %)‘Hl/z(cos Q)ﬁ+l/2

2
2 ” L2(0,7)

+ N2 3,50) (sin §)" " (cos ) )

1 ~ . 1/2 B+1/2)2
I ALCC L G

2 -2 2
<c(llvll @p T N77|lo v]| (a+1.8+1) ) -
X X

This yields (4.1). U

The above theorem leads to another stability result, which is very useful in numer-
ical analysis of Jacobi pseudospectral method for nonlinear problems.

Theorem 4.2. Let M, M’ € N. For any ¢ € Py and ¢y € Py,

M
1Z6.N 0,88l et < C<1 + ﬁ) [ CR (4.3)

Moreover,

/

M M
(@ V) yem on| < c<1 + N) (1 + W) @1l 111y - 44
Proof. By (3.3) and (4.1),

_ M
1Z6.5.0.0 Nl yerr < @l am + N7l eripen) < C(l + ﬁ) 1l @s -
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Next, by (2.25) and (4.3),

|(@, V) @ .o.n| = |T.n0wpb Lo N.ap¥) gt Gy
=|(Z6,n.ap. Lo.N.ap¥) gt |
<NZ6.N.ap®llye@r 1 Z6.8.apV |l y@p

M M’
<e(14 5 )(1+ 5 )1@len 19l 0

We now deal with Jacobi—Gauss interpolation approximation. Usually, we only
consider the approximation in Sobolev spaces. But in many practical problems, it is
more reasonable to deal with it in certain Hilbert spaces.

Theorem 4.3. If
y <a<y+l, §<BLS+, 4.5)
then for any v € H;(a,ﬂ) *(A) and0 < u<<1<r,
1Z6.n.y.60 = Vllpapys < NI, e - (4.6)
If, in addition,« =y + 1 and 8 = § + 1, then

1ZG,n,y,60 = Vllwa,py.s < NNV @ s 4.7

Proof. By virtue of (4.1) and lemma 3.10,
1
|Z6.n.y.5v = PN,a,ﬁ,y,Bv”X(%S)
1 —1| pl
< C(“ PN,a,ﬁ,y,av - vHX(M) + N ‘PN,a,ﬁ,y,Bv - v|1,x<y+1,8+1>)
- ~1| pl
(NNl y@n o+ NPy yp 50— v|l,x(mﬂ))
< N0l s o (4.8)
Hence,
1 1
1Z6.n.y.5v — Vil 00 < || Zg.n.p5v — PN,a,ﬁ,y,5U||X<y,s> + | Py o pysV— UHX(M)
SN vl y@p
Furthermore, by (3.2), lemma 3.10 and (4.8),
1
‘IG,N,MU - PN,a,ﬁ,y,sv‘l,Xm,ﬁ)
2 1
SN ||IG,N,V,5U - PN,a,ﬁ,y,évHX(mﬂ)

2 ! 2—
< eN?|Zo, w0 = PN,a,ﬁ,y,av“me SNl g@p -
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Therefore

1 1
1Z6,n.y.sv — V] y@p ‘IG,N.,)/.,SU - PN,a,ﬁ,y,svh,Xm.ﬂ) + PN,a,ﬁ,y,Sv Ul y@p

<
N0l g

Then (4.6) comes from the previous statements and space interpolation.
We now prove (4.7). Thankstoo = y + 1 and 8 = § + 1, we have from (3.3),
lemma 3.10 and (4.8) that

|Z6,n.y.50 = stf,a,ﬁ,y,av|1,x<a,ﬂ>
< eN|Zowysv = stf,a,ﬁ,y,avnxw—l.ﬂ—l)

S EN|ZG N30 = Pyapyst | o < N TV gwp 4.9)
Therefore, (4.7) follows from the same argument as in the previous paragraph. U
Remark 4.1. For any v € H;(a,m_*(A) and0< <1<y,

2pu—
1Z6,N,0,8V = Vll @ty < N0l @b s (4.10)

We now give another main result on the Jacobi—Gauss interpolation approximation,
in which we use different interpolation points from those in the last theorem.

Theorem 4.4. If (3.9) holds, then for any v € H;m_ﬂ) LA)andr > 1,
IZ6.N.0.p = Vll1apiys < N>l yan s (4.11)
Proof.  (3.8) with (3.9) implies that

”IG,N,oc,ﬂv - U||X<v-8) < C|IG,N,a,;3U - v|1,x<avﬂ>-

So it suffices to estimate |Zg y.opV — V|; y@p. In fact, we have from (3.2), (3.22)
and (4.10) that

1Z6.N,a.8V — U]} y@p

< |P]\1/,a,ﬂv Uy @p + |IG.,N,a,;3U - PAl/,a,ﬁv‘l,X(a,m
< Pyapv =l + N | Tonwpy = Pyogvl e
< (Nl y@m « + N*(IZ6.5.apV = Vllyei + | Py g p0 — v”X(mm))
< CNZ_r||U||r’X(a,ﬂ)’*.
This leads to (4.11). O

We next deal with Jacobi—Gauss—Radau interpolation approximation. As usual, the
first result is related to the stability of the interpolation.
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Theorem 4.5. For any v € OH;(HLM)(A) N Liw) (A,
I1Zr NapVll et < (vl @pn + N7l gersem). 4.12)

Proof. By (2.18) and (2.25),

N
2 2 2( () (a,8)
”IR,N,a,ﬁv”X(a,ﬂ) = ”IR,N,a,ﬁv”X(a,ﬂ)’R,N = Z v (CG,N,j)wG,N,j
Jj=0
N-1
—1 2( s (e, ) (a.p) \a+1/2 (a,) \B+1/2
SeN Z v (Een. ) (1= San.s) (1+¢5)) :
Jj=0

Then (4.12) follows from (2.16), (4.2) and the same strategies as in the proof of theo-
rem 4.1. O

The following result also plays an important role in numerical analysis of Jacobi
pseudospectral method for nonlinear problems.

Theorem 4.6. Let M, M’ € N. For any ¢ € (Py and ¥ € oPyy,

M
1ZR NPl y@p < C(l + ﬁ) 1y @ - (4.13)

Moreover,
M M’
@, V) yem en| <l 14+ ) (14 = 1ol enlWllwn.  @14)
N N
Proof. By (3.3) and (4.12),

_ M
I1ZgN.0.p0 yarr < (Il arm + N7l yerpim) < C(l + ﬁ) s .

Next, by (2.25) and the above fact,

(@, V)t gov| = | TR NP TRN0. V) @t RN
=|(Tr NP IR N.0.p V) gt |
SIZRN.ap®llyep | IR N.ap ¥l @p

M M’
Se 1+ ) (1 7 )19 en ¥l e

which completes the proof. g

We now estimate the difference between v and Zg v, gv in the weighted Sobolev
space H)’(L(a,,” (A), 0< <1,
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Theorem 4.7. If (3.30) holds, then for any v € H;w) LMDand0s <1<,

IZR. N0, sV — Vo gerr < NP0 g e (4.15)

Proof.  The space interpolation allows us to only consider the cases © = 0, 1. Let
P]{, B be the same as in lemma 3.13. Since Zg y ,g(PN ﬂv) coincides with PN B>
we have that

1ZR,N,a.pV — VIl s < ||PNa,3U v”X(am + || Zrov s (v = Na,gv)”X(am (4.16)
Furthermore, by (3.2),
| ZR N,V — V1 yap
”PN(xﬂv U||1X<ars>+|IRNaﬁ(U Iilaﬁv)|1 @p)
< (| Pyapv - o ywrm + N[ Zrvap - Naﬁv)” wn) (41D

We can use (3.32) to estimate the first term at the right side of (4.17). Thus it suffices to
estimate the second one. By (3.32) and (4.12),

| Zr. .05 (v — I/J}/,a,ﬁv) ||X<ars> <<(] Plil BY T U”X(aﬂ) +N” 1|P13/a;3v ”|1 PCast pe)
<e(IPyapv = vl yom + N7 Phasv = v, an)
SNl e 4 (4.18)
The combination of (4.16)—(4.18) leads to (4.15). O

We can also deal with the Jacobi—Gauss—Radau interpolation approximation in the
Hilbert space H, ﬁ ,.5(A), 0 < < 1, as in the following theorem.
Theorem 4.8. If one of the following conditions holds:

G y<a<<y+1l, §<p<L6+1, O0<a<l, B<l, 4.19)
) y<a<sy+1, p=65§=0, (4.20)

then for any v € H;(mﬁ),*(A) and0 < u<<1<r,

1ZR N.p50 = Vs < ENFT VI an . 421
If, in addition,« =y + 1 and 8 = § + 1, then

1Zr.N.y.5V = Ve < CNUT0] y@h) 4.22)

Proof. We first prove (4.21). By (4.12), (3.27), (4.19) and (4.20), we find that

HIR,N»V»S(U - ﬁl\l/,a,ﬁ,yﬁv) HX<%5>

C(H ﬁl%/,a,ﬁ,y,av - vHXw) + N_l‘i)}/,a,ﬁ,y,év - v|1,x<y+1,8+1>)
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C(H ﬁ]\l/,a,ﬁ,y,ﬁv - UHX(y,a) + N7 ﬁ]\ll,a,ﬁ,y,ﬁ - U|1,X(a,ﬂ>)

<
< cN™’ ||v”r,x(0hﬂ),*' (423)

Using (3.27) again yields that

||IR,N,y,8U_U||X(%5> ||PNQ,,3V3U U” s T ||IRN}/8(U Na,sysv)HX(ya)

<
< ”v”r,x(“vﬁ),*' (424)

Furthermore, the previous statements and (3.2) imply that for@ > y and 8 > §

|IR Ny, 3(” - ﬁl\l/aﬁ yﬁv)|1,x(a,ﬂ>
SN HIR Ny, 5( Pli’,a,ﬁ,y,ﬁv) ||X<a,ﬂ)

<N |Zowys(v = Py oy s¥) o < NI m
This fact and (3.27) lead to
| ZR N,y,6V — U]y y@p < ‘PN wpys? =V, e T+ | Tk, Ny (v ﬁl\ll,a,ﬂ,y,av)‘l,xm,ﬂ)
SN vl ywh - (4.25)

Then, (4.21) follows from (4.24), (4.25) and space interpolation.
If, in addition,¢ = y + 1 and 8 = § + 1, then we get from (3.3) and (4.23) that

|IR,N»V»8(” - ﬁ]{',a,ﬂ,y,ﬁv)h,x(a,ﬂ) SceN ”IR»N,M(U - ﬁl&/,a,ﬁ,y,év)HX(y,é)
<
~

Nl g

Thus by (3.27),

51
1 Zr.N.y.s0 — V] yep < |PNa B.y.sV ”|1 @p T |IR»N,%5(U - PN,a,ﬁ,y,5U)|1,X<a,ﬂ>
SeN Tl y@p s
Finally, we reach (4.22) by the above facts and space interpolation. U

In the end of this section, we consider the Jacobi—-Gauss—Lobatto interpolation
approximation. The first result is also related to the stability of interpolation.

Theorem 4.9. Forany v € H, Garnpn (A 0 L? e (D),

1Z0 N apvll s < c(lvllj@s + N7l gespem). (4.26)

Moreover, for any v € Hol,xw"J (A)N Li(u—l,ﬂ—l)(A)’

1Z1 3,08V yers-0 < (vl ar-n + N7 ol s ). 4.27)
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Proof. By (2.23) and (2.26),

N

2 2 2(»@.p) (a,B)
1Ze.N gVl @ S CNZinapVlseen vy =¢ Z V(SN ) ol
=0

=

-1
<eNT' Do) (= ) T )T
1

~.
I

Thus we reach (4.26) by (2.21), (4.2) and the same strategies as in the proof of theo-
rem 4.1.

We now prove (4.27). Clearly, (IL,N,a,ﬂv(x))z(l —x3)~! € Pyy_s. So by (2.23)
and (2.25),

2 —1/2,~1/2) |2
||IL,N,a,/3v||X(a—l,ﬂ—l) = HIL,N,a,ﬂUX( /211 )me.ﬂ)’L,N
N-1
-1 2(-(@.p) (a,) \a—1/2 () \B—1/2
SceN Z v () (1= ¢0v ) (1+¢v)) :
j=1
The rest part of the proof is similar to the proof of theorem 4.1. g

Theorem 4.10. Let M, M’ € N. Forany ¢ € Py, ¥ € PY, and u =0, 1,

M
120 N.a.pPll yenp-w < C<1 + N) NNy @rnpsmr- (4.28)

Moreover,

/

<cl1 M 1 M 4.29
@, ¥)yem L] \c< +N)( +W)||¢||X<a-ﬂJ||1ﬁ||X<wﬁ>- (4.29)

Proof.  The result (4.28) with u = 0 follows from (3.4) and (4.26). While (4.28) with
@ = 1 comes from (3.4) and (4.27). We can prove (4.29) by a similar argument as in the
derivation of (4.14). O

We now turn to the main result on the Jacobi—Gauss—Lobatto interpolation approx-
imation.

Theorem 4.11. If -1 < o, 8 < 0o0r0 < o, B < 1, then for any v € H;(a,ﬂ) *(A) and
O<pu<lI<r,
1Z0.N.apV — Ul y@n < CNz“_r”UHr,X(a,ﬁ),*- (4.30)

In particular, if 0 < «, B < 1, then

1Z0.N.apV =Vl y@pn < NUT0]L y@p 4.31)
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Proof. Let 13]3,,0[’/3 be the same as in (3.61). Since ﬁ;,,a’ﬁv(x) = T1 Napv(x) = v(x)
for [x| = 1, we can apply (4.26) to 71 o,V — ﬁ]{,a V- So by (3.60),

”IL»Nﬂ»ﬁv_ﬁ]\ll,a,ﬂvux(aﬂ) € (HPI\llaﬁU vHX(aﬂ) +N- 1|Pl\llaﬂ U|1X<a+1ﬂ+1>)
§ cN™ ||v||, X(oc.ﬂ) %o

Replacing Zg v «,p and P 1n (4.16)—(4.18) by Z; n.«,p and PN B respectively, we
reach (4.30) by using (3. 3) (3 60) and a similar argument as in the proof of theorem 4.7.

We now prove (4.31). Since 0 < «, 8 < 1, we deduce from (3.4), (4.27) and (3.60)
that

| T2 N = PNa ﬁv|1 x@h S N |Zoyap(v = i)}',a,ﬂv) “X«x—l.ﬂ—l)
<c(N| Pl\ll,a,ﬁ” - U”X(afl,ﬂfn + |P1\1/,a,ﬁv - ”|1,X<a,ﬂ>)
SNl g s

Thus, by remark 3.2 and (3.60),

”IL,N,a,ﬁU - v”l,X(a-ﬂ) < C(‘IL,N,a.ﬂv - Fl\l/,a,ﬁv‘l,)((“ﬂ) + ‘ijll,a,ﬁv - v|1,x(a.ﬂ))

<N ol - (4.32)

Eventually, (4.31) follows from (4.30) with u = 0, (4.32) and space interpolation. O

5. Applications

This section is for Jacobi pseudospectral method for singular differential equations.
We first consider the following equation:

{—3x(a(X)3xU(X)) +cUX) = fx), x €A,

a(x)o,U(x) = 0, as x| — 1, (5.1)

where a(x) > 0, c(x) > 0 and f(x) are given functions, and a(x) and c(x) degenerate

as |x| — 1. Such problems appear in many fields, see Ames [2], Chamber [9], and

Keller [31]. Also there are many literatures concerning their numerical simulations,

see, e.g., Jesperson [27], Eriksson and Thomee [15], Elgebeily and Abuzaid [13], and

Schreiber [35]. Here, we use Jacobi pseudospectral method to resolve (5.1) numerically.
For simplicity, assume that

a(x) = a;(x)x“P(x), c(x) = e () x "V (), (5.2)

ai(x) € H° (M), c1(x) € HS/(A), s, s > ;1 (5.3)

and for x € A,

a)(x) =2 amin > 0, c1(x) = Cmin > 0. (5.4



G. Ben-yu, W. Li-lian / Jacobi interpolation approximations 263

Let
ba,ﬁ,y,S(“v v) = (a;0yu, axv)xw,ﬂ) + (c1u, U)X<y,5).

A weak formulation of (5.1) is to find U € Ho},ﬁ,yﬁ(A) such that

bapys(U.v) = (fiv), YveHy,. (M) (5.5)
Now, let N be any positive even number, @ = Py/p000001 and ¢ =

Py/2.0,0,00c1. Further, let f(x) = x 79 (x) f(x). The numerical scheme for (5.5)
is to find uy € Py such that

bapysnn,®) = (F.8) oo gy Y0 €Pn, (5.6)
where

ba.g,y.5.n (W, v) = (@101, 3xV) y@p gy + (€11, V) yoo) G N-
We know from (2.25) that for any ¢, ¢ € Py,
|ba,ﬁ,y,8,N(¢a W)| < ||51 ”oo”ax(»b”)((“vﬁ),G,N”axw”X(“vﬁ),G,N
+ €l @l 0 6 N I¥ Nl o0 Gn

< (1@ oo + 1E Hoo) D110,y 51 11 .75

Moreover, we have from the property of the Legendre approximation (see Canuto, Hus-
saini, Quarteroni and Zang [8]), that for any v € H" (A) with r > 3/4,

I Py.0.0.0.00 — Vlloo < N4 0], (5.7

The above inequality with the imbedding theorem implies that

a1 lloo < cllaillsya, €1 llse < clicillzya-
Therefore
|bapy.o.n @ )| < cllarllzz + leillza) 1@11a.8.y.61¥ 108,y (5.8

On the other hand, we have from (5.3), (5.4), (5.7) and (2.25) that for s, s’ > 3/4, large
N and any ¢ € Py,

bopys.n(@ ) = clDl o py s (5.9)

Hence, by the Lax—Milgram lemma, (5.6) has a unique solution such that

lunllepys < C”IG,N,V,&f”X(y,S)'

Now, we compare the numerical solution u with the exact solution U.

Theorem 5.1. Assume that
D) a<y+2 B<5+2,
(i) a1 € H(A), ¢; € H¥ (A) with s, s’ > 3/4,
(i) U € H' (. (A) withr > 1, and fe HY,, (M) witho > 1.
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Then

N 1—r 3/4—s
lun = Ullapys < d(;) NU Iy, g s + C((5> larlls1 U,y

N 3/4—s’ N
+ <5) lells 1T es + N_G||f||a,x<%8>,*), (5.10)

where d is a positive constant depending only on the norms ||a;[3/4 and [|c||3/4.

Proof. 'To obtain better error estimations, let Uy = Pl\l,,a’ By sU. By (5.5), (5.6) and the
ellipticity (5.9),
clluy — UNllio,,,g,y,g <bapysnuy — Uy, uy — Uy)
= (f un — UN)X@,(;)’G,N — bupysnUy.uy — Uy)
=bypys(U,uy —Uy) — Ea,ﬁ,y,S,N(UN’ uy — Uy)
+ (foun = UN) o gy — (Frun = UN) 45 (1D

Thus
bOl U’ - Ea U 5
lun — Unlliapys < c( sup 1ba.p.y8U. &) L 5N Un, 9|
¢€Pn,¢p#0 ||¢||1,a,5,y,s
4 (2 @)y = (. “”)W’”’G’M) (5.12)
$ePy .$#0 P1l1.0.8.y.5 T

We now estimate the first term at the right side of (5.12). For simplicity, let

~

bag.y.s(u, v) = (@10,u, 0,V) ywp + (Crut, V) 009

and
bapys(U, ) — bupysnUy,¢) = Gy + G,
where
G1=bupys(U.9) = bupys(U. $).
Gay=bypys5(U, @) —bypysnUn, ).
By (5.7),

1G11 < (131 = aillool U1 ywn + 1161 = cilloo1U 00 19 111.0..y.5

N 3/4—S N 3/4_“‘,
<C((E) ”alllslUll,x<w>+(5) ||c1||s/||U||X<y.5))||¢||1,a,,3,y,5. (5.13)

On the other hand, by (2.25),

Ea,ﬂ,Vﬁ,N(PJ{'/z,a,ﬂ,y,sUa ¢) = 5%}3-,)/-,5(})13//2,(1,5,)/,6(]’ 4’)’ V¢ € Py.
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So
1Gal < By (PhjnaspysU = Us @) + [Bprsn (PjzapysU = Uns 8)]-
According to (5.8),

|gf1»5»%5,N(Plii/Z,a,ﬁ,y,(SU — Uy, 9)|
<d|Py)rapysU—Un H1,0,,5,%5||¢||1,a,,3,y,5
<A(1PY2.aprsU = Ulyapys + 10N = Ullapys) 16 ]1.ap.ys:

Using lemma 3.10, we get that

|G2| < d(” PI\II/Z,a,ﬁ,)/,(SU — U’|1,a,,3,%5 + ”UN - U”l,a,ﬂ,y,S)||¢||l,a,ﬁ,y,8

N 1—r
<d<7) 1Ol x s s Pll1,ap,y.6- (5.14)

Next, we use (4.10) to obtain that

(. ®) = (F.8) o gl <N ZowysF = Fllonlldlon
<N F1, 0w N8 pys- (5.15)
A combination of (5.12)—(5.15) leads to (5.10). Il

Remark 5.1. If ay € Pryn, ¢1 € Py, k = 0, and (5.4) holds, then we can approxi-
mate (5.5) in another way. In this case, let

bapy.s.8 W, V) = (@195u, 3,V) @i gy + (€1, V) jow gys  Yu, v € CH(A).
The corresponding numerical scheme is to find uy € Py such that
bap.ysnUn, P) = (f ¢)X<y,a>,g,N’ V¢ € Py.
It can be verified that for ¢, v € Py,
‘ba,ﬂ,y,S,N(¢’ ‘//)| < C(”allloo + lle ||oo)||¢||1,a,ﬁ,y,5||1ﬁ||1,a,ﬁ,y,5-
Also by (5.4), for any ¢ € Py,
bap.ys.N(@, D) = c”d)”%,a,ﬂ,yﬁ’

Therefore, we can derive estimates like (5.11) and (5.12). But l?o,, g.y.6,N(Un, @) is now
replaced by b, g5, v (Un, ¢). Thanks to (2.25),

ba,ﬁs}’s‘s(PI%/—k,a,ﬁ,y,éU’ ¢) = ba»ﬂ»V»S’N(Plil—k,a,ﬁ,y,éU’ ¢)’ V¢ € Py. (5.16)

If conditions (i) and (iii) of theorem 5.1 are fulfilled, then by (5.16) and an argument
similar to the derivation of (5.14), we assert that
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|ba,ﬂ,y,8(U’ @) — bap,ys.nUy, (f))!
< ‘ba,ﬁ,y,é(PAl/—k,a,ﬁ,y,sU - U, ¢)| + ‘ba,ﬂ,y,é,l\’(szll—k,a,ﬁ,y,sU — Un, ¢)|
NN Bl ap.ys-

In addition, (5.15) holds too. Finally, we conclude that

lin = Ulliapys < N TNl ywm s+ NN, 0m.0): (5.17)

We next take the Fisher-like equation as an example to show how to deal with
nonlinear problems. We consider the problem

QU x, 1) — 9 (w)oUx,0))=Ux, (1 —=Ux, D))+ f(x,1), xeA,te(0,T],
U(=1,0)=limw®)d.U(x, 1) =0, tel0,T1,
U(X,O):U()(.x), XEX,

(5.18)

where w(x), Up(x) and f(x, t) are given functions. The coefficient w(x) degenerates as
x — 1. For simplicity, suppose that w(x) = (1 — x)*. Let

ae (U (1), v) = (8, U (1), va)x(am + (U@, v).
A weak formulation of (5.18) is to find uy € L*(0, T; oH,  ; o(A)) such that

(B,U 1), v) +ae(U@),v) = U @) — U*(1), v) + (f (1), v),
Vv € oHy00(A), 1€(0,T], (5.19)
U(0) = Up.

If feL?0,T; (OHo},O,O,O(A))/) and Uy € L*(A) then (5.19) has a unique solution.

For simplicity, let Ry = Zg n,0,0, (- )nv = (-, )00 gy and |-y = |-l 00 g y-
Let uy be the approximation of U. The numerical scheme for (5.19) is to find uy (¢) €
oPn such thatforall 0 < ¢ < T,

(Bun (@), @)y + aan(un (@), @) = Quy (@) —u3 (1), ¢), + (f (1), )
V¢ € ¢Pn, t € (0, T], (5.20)
un(0) =uyo=RyUo,

where

aa,N(uN(t)’ U) = (axuN(t)’ axv)x(a,0>,R,N + (MN(I), U)N’

We now analyze the stability of scheme (5.20). Since it is a nonlinear problem,
it is not possible to possess the stability in the sense of Courant et al. [11], also see
Richtmeyer and Morton [34]. But it might be stable in the sense of Guo [17]. Suppose
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that uy o and f have the errors Uy o and f , respectively, which induce the error of u,
denoted by uy. By (5.20), we get that for any ¢ € (Py and t € (0, T,

QN (1), )N + dan (n (D), D)
= (2un (1) — 2un (DN () — U3 (1), }), + (f(D). D), (5.21)
un(0) =y 0.
Taking ¢ = uy(¢) in (5.21), we get from (2.25) that
I, i~ 2~ 2 < ~
L lav O + [0 g0 < P70 52
where
F(t,iiy) =2|an® | = Qun Oiin @) + 7% @), iy @), + (FO), v (1) -
We now estimate |F (f, uy)|. By (2.25), we have that
| (un iy (0), iy (1) | < MunlloollEn @117, (5.23)
where |||uy|||co = maxo< <7 |ty (2)]loo. Similarly,
~ - 1 ~ -
|(Fo.an )| < 5(1FOI5 + Javo]). (5.24)
Moreover, by (2.25) and (3.1),

@), iy ®) | < [T O] [T O] < NIy | o [Ev©]7 (525
X

On the other hand, we get from (3.8) with (3.9), lemma 3.5 and remark 3.1 that for any
vE gHLyo0(A) and o < 3,

[v=vO) | 121 +c[0(0)]

|
v - v(0)|1’x(3/2,3/2) + € et @)

vl ;1212 <
<

<c(lvly yeo + vl @) < clvl) @o.

Thus for any ¢ > 0,

~ ~ N -
@iy ®) | < v O] 000+ 3-[N O] (5.26)

Next, let 0 < g < 2 and ¢ = 2 — g. Substituting (5.23), (5.24) and (5.26) into (5.22),
we obtain that

aain | + TN} 4000 < c(1+ Nunlloo) [An @ |* +eN[an@ |* + | 7]
(5.27)

For description of the errors, let

E0.0 = o0+ [ o0 0004
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and
p(v, w, 1) = [|v]? +/0t |w) |3 ds.
Integrating (5.27) with respect to ¢, we get that
E@iy. 1) < p(no, fo1) +d(uy) /ot (E(iy, s) + NE*(iiy, s)) ds

where d(uy) is a positive constant depending only on ||uy|||c. Finally, we use
lemma 3.2 of Guo [18] to conclude that

Theorem 5.2. Let uy be the solution of (5.20), and Uy be its error induced by uy o and
S If there exist positive constants b and b, depending only on ||[uy [||o, such that for
certainty < T, p(tino, f,11) < by/N,then forall 0 < 7 < 14,

En(iy, 1) < p(iino, fon0)e™. (5.28)

We next deal with the convergence of scheme (5.20). Putting Uy = ﬁ]\},a,O,O,OU ,
we get from (5.19) that

(3, Un (1), $) , + aan(Un(2), ¢)

5
= QUN() = U (). )y + (f ). 8), + Y _ Gi(t. ¢).

Vo € ¢Pn, t €(0,T], B (5.29)
where
Gi(t. )= (0,Un®). 8), — (2U ). $).
Ga(t,9)=(U0),¢) — (Un(1). 9) -
G3(t,¢) = (3:Un(1), 8:9) wnr ., — (B:U (1), 8:9) oy
Gt )= (Uy(1). 9), — (U(1). 9).

Gs(t,¢) = (f(1), ) — (f(1), 8),.

Let U ~ = uy — Uy. By subtracting (5.29) from (5.20), we obtain that for any ¢ € (Py
andr € (0, T],

5
0,0y (1), ¢) y+aan (Un(0). §)+Y Gt ¢) = 2Un()-2Un O U (1)~ Uy (1), ) .-
=1
' (5.30)
In addition,

Un(0) = RyUp — Py 4 0.00U0-
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Taking ¢ = U () in (5.30) and comparing (5.30) with (5.21), we can derive an esti-
mate like (5.27). But uy, iy and |||uy ||« are now replaced by Uy, Uy and |||Uy|||o»
respectively. Thus, it remains to estimate |G (¢, Uy)|. We first use (3.27) to get that for
r>1,

|G1(t, U)| < 91 (Py q.000U ) = UO) || On ()]
SN [UD|] o, + 3 Tn @,

rx @0 %

2
rox @0 x

|Ga(t, Ow)| < eN U] +3Ov o]

and

|G (. Ux)| <

CN—Zr ~
de “ U(t) ||f+1’x(a,0),* t+e H UN (t) H T,a,0,0,0'

Next, by theorem 4.7, lemma 3.12 and the imbedding theorem, we get that for
r>1,d>1landd > 1/2,

|Ga(t, Uy)| < |(Ra (UR(0) — UP®), Uy)| + | (RyU*@) — U(2), Uy)|
<JUun@® +U®| |[RyU@ = Un@ ||| Uy @)
+ [RyUP @) = U@ || O |
<MWON(JUD]} oo .+ VO]
+UO [ [VON o,
<MON (D]} 00, + 1T} o,
2

HUOL 2ot VO 00.) + T8O

r,x 00 5

2
r,x @0

)+ | Ovn) |

where
2 2 2
M) = e max (JUO[2+ VO] on, + VO] 000+ )
Moreover by theorem 4.7, we obtain that for s > 1,
Gs(t. Un)| < N[ £ O 00, + 51O
Using theorem 4.7 and lemma 3.12 again, we get that for s > 1,
H ﬁN(O) H2 = ||RN Uo — ﬁl\},a,O,O,OUO ”2 < 2l RwUo = Uoll® + 2” ﬁl\},a,O,O,OUO = Uo H2
<N (UM oo, + 10012 e )

Finally, we reach the following result.

Theorem 5.3. Let U and uy be the solutions of (5.18) and (5.20), respectively. Assume
that
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) U e L*0,T; H iy (A N H g (A) N L0, T;0Hy 0,0(A) N HGyp (AN
HY N NHH M) NHNO, T H o (M), r > 1, d > 1, d > 1/2,

(i) Uy € Hl o (D) N H g (A), [ € L20,T; Hi gy ,(A), 5,5 > 1.
Thenforall 0 <¢ < T,
En(uy — Uy, 1) < M*(N"¥ + N5 4 N7¥), (5.31)

where M* is a positive constant depending only on the norms of U, Uy and f in the
mentioned spaces.

Remark 5.2. The condition on U in theorem 5.3 can be replaced by

UelL*0,T; H;j;_lo),*(A)) N L*(0, T; H oy (M) N Wwl72heo(p)y)
NL¥(0, T35 0Hy 0,0(8) N Ho (A NHU(A) NH'(0,T; HY o (D).

Remark 5.3. The Jacobi pseudospectral method is also applicable to differential equa-
tions on infinite intervals. For example, we consider the logistic equation governing the
population of budworms in an unbounded forest, say A* = {y | 0 < y < oo}. Sup-
pose that the boundary condition at y = 0 is lethal, and the population V (y, t) grows
infinitely as y — o0, but at least e7¥d, V (y, t) — 0. This problem is of the form

V(0,t) = lim e“V/3,V(y, 1) =0, 0<r<T, (5.32)
y—00
V(y,0) = Vo(y), y € A%,

Now we make the variable transformation (see Guo [20]),
y(x)=-=2In(1 —x)+2In2

and set U(x,t) = V(y(x),t) and Up(x) = Vy(y(x)). Then the original problem be-
comes
QUM 1) — 11 =03 (1 —x)3,Ux, ) =U(x,0)(1 = U(x, 1),
xeA, 0<t<T,
U(=1,1) = lim(1 — x)¥?9,U(x,t) =0, 0<r<T,
U(x,0) = Uy(x).

(5.33)

So we can construct the corresponding pseudospectral scheme to resolve (5.33) numeri-
cally, and analyze its stability and convergence.
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6. Numerical results

This section is for some numerical results. We first consider problem (5.1) with
a(x) = 1 — x? and ¢(x) = 1. The test function is

U(x) =xarcsinx ++v1—x2—1. 6.1)

It can be checked that |8§U(x)| — ocas x| > I,but U € H;“,,)’*(A), 3 <r <4
We solve it by (5.6) witho = 8 = 1 and y = § = 0. By theorem 5.1, scheme (5.6)
is convergent in this case. Let uy(x) be the numerical solution. For description of
numerical errors, let
N 1/2
B0 = (D) - el
j=0

and

N (0,0 0,0) \\2_ (0,00 \ 1/2
E)(v) = (Zj—O(U(CG,N,j) - U(CG,N,J‘)) wG,N,j)
- N (0.0) (0.0) :
Zj:o |U(§G,N,j)|2wG,N,j

The errors E1(uy) and E,(uy) with different N are illustrated in figure 1(a).
We also consider (5.1) with a(x) = 1 — x? and ¢(x) = 1. The test function is

Ux) = (1 —x?)log,o(1 — x%) + 1. (6.2)

Clearly, 0, U has a logarithmic singularity. We also use scheme (5.6) witha = = 1
and y = § = 0 to solve this problem numerically. Let uy (x) be the numerical solution.
The errors E1(uy) and E,(uy) are presented in figure 1(b).

Figure 1 shows that scheme (5.6) provides very accurate numerical solution even
for small N. It also indicates that the numerical solution converges fast as N increases,
and that scheme (5.6) possesses the spectral accuracy. It coincides with the theoretical
analysis in section 5.

Euy)
=

0 20 40 60 80 100 120 140 0 50 100 150 200 250 300
N N

(a) (b)

Figure 1. The errors E|(uy) and Ep(upy).
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1

0 10 20 30 40 56 60 70 1075 10—4 10—3 1072 104
N Time Step

(a) (b)

Figure 2. The errors E1(up,t) and Ex(upy,t): (a) T = 10_3, t=1b)N=32,t=1.

Next, we consider problem (5.18), and take the test function

Ux,t) =1 —x)" sin(%(l +x)(1+ t)). (6.3)

Clearly, the regularity of U (x, t) depends on 7 essentially. We use scheme (5.20) to
solve (5.18). In actual computation, we advance in time by using Runge—Kutta method
of fourth order with mesh size 7. Let uy (x, t) be the numerical solution. For description
of numerical errors, let

N ) 1/2

(0.0) (0,0) (0,0)
Ei(uy,t) = (Z (U(Crjo 1) —un(Crnj» 1)) wR,N,j)
=0

J

and

N (0,0 (0,0) 0,00 \ 1/2
Y o(Urin o 1) —un(Cply ;D) 2wg ,)
N 2¢+(0,0) 0,0) ’

Zj:() U (é‘R,N,j, Z‘)C()R’qu

Let « = 1 and n = —0.01. The numerical errors at 1 = 1 of scheme (5.20) with
7 = 1073 and different N are illustrated in figure 2(a). While the errors at + = 1 with
N = 32 and different time step 7 are given in figure 2(b). Figure 2 indicates that the
numerical solution converges as N increases and t decreases. The errors Ey(uy, t) and
E>(uy,t) at different time ¢ with N = 32 and T = 10~ are presented in figure 3. It
shows the stability of computaions. Moreover, we illustrate the exact solution (6.3) at
t = 1 with n = —0.2 and the corresponding numerical solution of scheme (5.20) with
N =32and t = 1073 in figure 4. We find that the numerical solution fits the singularity
of the exact solution very well.

EZ(MN7 t) = (

Remark 6.1. In this paper, we only considered the Jacobi interpolation approximations
in one dimension. It is more interesting to develop the Jacobi interpolation in multiple
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— Exact solution
Numerical solution

Efut)

0 05 1 15 05 0 05 1
t X

Figure 3. The errors with N =32, 7 = 1073, Figure 4. u3p(x, 1) fits U(x, 1).

dimensions and their applications to numerical solutions of differential equations. Some
results have been obtained, see Wang and Guo [42], and Guo and Wang [23].

Remark 6.2. The Jacobi interpolation approximations are also widely used in numeri-
cal solutions of singular integral equations, see Junghanns [28], Junghanns and Silber-
mann [29], Karpenko [30], Elliott [14], Chawia and Ramakrishnan [10], Krenk [32],
Toakimidis and Theocrais [25,26].

Remark 6.3. In this paper, we considered the Jacobi interpolation approximations with
o, B > —1. But the Jacobi interpolation approximations with o, 8 < —1 are used
for supersingular boundary integral equations arising in boundary element methods for
differential equations, see Stephan and Suri [37], and Tran and Stephan [40,41].

Appendix A. The proof of (2.7)

In fact, f J,(a’ﬁ ) (x)dx € P41. So it can be expressed as

I+1

f TP Gyde =) de &P (). (A.1)

k=0
By differentiating (A.1) and using (2.10), we deduce that

1

a,ﬂ)kl(ca,ﬁ)

di = —
Yk

/ TP )0, JEP ) @D () dx, 1<k<I+1. (A2)
A

Since JI(O‘"3 ) (x) is orthogonal to any polynomial in P;_;, with respect to the inner product
of Li“‘f” (A), we have from (A.2) that d; = 0, for k < [ — 2. For clarity, we denote the
expression (A.1) by

TP () = 1, %P (x) + b1 P (x) + €0, 1P (x). (A3)
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We first compare the coefficients of the term x™ at the both sides of (A.3). We obtain
from (2.2) and (2.6) that

2K P B 204+ a+B+1)
(l+a+ﬁ+2)K,(a+l"3+l) Ql+a+B+DRI+a+B8+2)

a =

Letting x = %1 in (A.3) and using (2.3), we get a system of equations for the unknown
coefficients b; and ¢;. By solving it, we obtain that

2(x — B)
Ql+a+pRl+a+p+2)

=2+ o)1+ B)
(+a+BQ2l+a+BRL+a+B+1)

b=

c =
Finally, by (A.3),
/ Jl(a»ﬂ)(y) dy =q (J[(_:_Xlﬁ) (x) J(a /3)( 1)) + b (J(W ﬂ)(x) J(W»ﬂ)(_l))
—1

_J’_CI(J(a ﬁ)(x) J(a }3)( 1))

which completes the proof of (2.7).

Appendix B. The proof of (2.26)
Let
vx) = (1P ) + %(1 — x2) (3,78 (x))
Due to (2.2) and (2.6), ¥ (x) € Pay—1. So by (2.25),
(NP ICP) e =LA gem Ly = /A Y ) x P (x) dx

1
(@.p)  jla.p) (@.8) (a.B)
= (JN Iy )X«xﬂ) + 2 N2 (8 I Oy )X<a+l-ﬂ+l)'

We deduce from (2.8) and (2.10) that

@B J@p) a+B+1\ wp
(JN Iy )X«x.ﬂ),L,N: <2+T Vv - (B.1)

For any ¢ € Py, let

N
$) =Y 60" (x).
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By (2.25) and (B.1),

o a+p+1 o
11y = 24’2 0+ < +—)$2 o

N
Thus
a+B+1) w
Zd)z (@p) ”(b”i(“vﬂ),L,N < <2+ >Z¢2y(aﬂ)
Jj=
which leads to (2.26).
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