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Stair Laguerre pseudospectral method for differential
equations on the half line
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A stair Laguerre pseudospectral method is proposed for numerical solutions of differential
equations on the half line. Some approximation results are established. A stair Laguerre
pseudospcetral scheme is constructed for a model problem. The convergence is proved. The
numerical results show that this new method provides much more accurate numerical results
than the standard Laguerre spectral method.
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1. Introduction

Spectral method employs global orthogonal polynomials as basis in spatial dis-
cretization of differential equations. It benefits from the rapid convergence of orthog-
onal systems, and so often provides good numerical results, see, e.g., [2, 3, 6, 7]. The
usual spectral method is available for bounded domains. But it is also interesting and
challenging to consider spectral method for unbounded domains. For instance, Fu-
naro [5], Guo [8], and Guo and Xu [11] developed the Hermite spectral and pseudospec-
tral methods for the whole line. While Maday et al. [13], Coulaud et al. [4], Irazo and
Falqués [12], Guo and Shen [10], Xu and Guo [18], and Guo and Ma [9] proposed var-
ious Laguerre spectral and pseudospcetral methods for the half line. Theoretically, the
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Figure 1. Distribution of interpolation nodes.

larger the number of terms involved in the Laguerre expansion of numerical solutions,
the smaller the errors of numerical solutions. However, there are still two difficulties in
actual computation, if we use the standard Laguerre spectral and pseudospectral meth-
ods.

The first difficulty comes from the appearance of the weight function ω(x) = e−x .
Indeed, many problems are well-posed in non-weighted Sobolev spaces, but not well-
posed in the weighted Sobolev spaces. On the other hand, the errors of the Laguerre
spectral method are measured in the weighted Sobolev spaces. Thus for large x, the
numerical errors might be big, even the errors in the weighted norms are small. To rem-
edy this deficiency, Guo and Shen [10] reformed differential equations on the half line
by using certain variable transformation so that the resulting problems are well-posed in
the weighted space, and then solved numerically by the Laguerre approximation. In this
case, the numerical errors of the original problems are measured in the non-weighted
spaces. Shen [15] also considered a modified Laguerre approximation and obtained
similar results for the solutions decaying fast at the infinity.

The second difficulty is caused by the distribution of the Laguerre–Gauss–Radau
interpolation nodes. Let N be the number of interpolation nodes. As shown in figure 1,
the distances between adjacent nodes increase very fast as N increases, especially for
those far from the left endpoint. Therefore, the numerical results only can fit the exact
solutions roughly for large x.

The aim of this paper is to develop a stair Laguerre pseudospectral method for
differential equations on the half line. Firstly, we follow the idea of Guo and Shen
[10] to derive some alternative formulations of the original problems, which are well-
posed in the weighted Sobolev spaces. Next, we use the standard Laguerre pseudospec-
tral method with relatively small mode N0 (the number of interpolation nodes) to ob-
tain the first numerical solution u0

N0
(x) on the half line. Since the largest interpola-

tion node x0
N0

= O(
√

N0) is not big, the numerical solution fits the exact solution
well at all nodes x0

j � x0
M0

, M0 � N0. Furthermore, we use the shift Laguerre
pseudospectral method with N1 interpolation nodes for the same problem on the in-
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finite subinterval [x0
M0

, ∞), and obtain the second numerical solution at the nodes
x1

j � x1
M1

, M1 � N1. By repeating the above procedure, we get the numerical solu-
tions at the nodes x0

0 , . . . , x
0
M0

, x1
0 , . . . , x

1
M1

, . . . . Since all Nk are not big, the above
nodes are located densely and almost uniformly. Therefore, the numerical solutions fit
the exact solutions properly even for large x. The small Nk also avoid bad condition
numbers of the matrices in the corresponding discrete systems with big Nk, as required
in the usual Laguerre pseudospectral method. Moreover, we do not need to resolve large
systems and so saves a lot of work. Furthermore, we can use this trick locally to improve
the accuracy of numerical results on any subintervals where the exact solutions change
rapidly.

This paper is organized as follows. In the next section, some basic results on the
stair Laguerre approximations are established, which form the mathematical foundation
of the related algorithms. In section 3, a stair Laguerre pseudospectral scheme is pro-
posed for a model problem on the half line. Its convergence is proved. In section 4, we
describe numerical implementations. A reasonable choice of base functions simplifies
calculation and saves work. Some numerical results are presented. They demonstrate
that this new approach provides much more accurate numerical solution than the stan-
dard Laguerre spectral method. The final section is for some concluding remarks.

2. Some basic results

Let I = (a, b), 0 � a < b � ∞, and χ(x) be a certain weight function on I in
the usual sense. Define

L2
χ(I ) = {

v | v is measurable on I and ‖v‖χ,I < ∞}
,

equipped with the following inner product and norm

(u, v)χ,I =
∫

I

u(x)v(x)χ(x) dx, ‖v‖χ,I = (v, v)
1/2
χ,I .

For simplicity, let ∂xv(x) = (∂/∂x)v(x), etc. Denote by N the set of all non-negative
integers. For any m ∈ N,

Hm
χ (I ) = {

v | ∂k
xv ∈ L2

χ(I ), 0 � k � m
}
,

with the semi-norm and the norm

|v|m,χ,I = ∥∥∂m
x v

∥∥
χ,I

, ‖v‖m,χ,I =
(

m∑

k=0

|v|2k,χ,I

)1/2

.

For any real r > 0, we define the space Hr
χ(I ) by space interpolation. Its semi-norm and

norm are denoted by | · |r,χ,I and ‖ · ‖r,χ,I , respectively. The space Hr
0,χ (I ) stands for

the closure of the set D(I ) consisting of all infinitely differential functions with compact
support in I . For χ(x) ≡ 1, we drop the subscript χ in the notations for simplicity.
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Now, let � = (0, ∞), ω(x) = e−x , and Ll(x) be the Laguerre polynomial of
degree l, defined by

Ll(x) = 1

l!e
x∂l

x

(
xle−x

)
, l = 0, 1, . . . .

They satisfy the equations

∂x

(
xe−x∂xLl(x)

) + le−xLl(x) = 0, x ∈ �, (2.1)

and

Ll(x) = ∂xLl(x) − ∂xLl+1(x), l � 0. (2.2)

The set of Laguerre polynomials is the L2
ω(�)-orthogonal system, namely,

∫

�

Ll(x)Lm(x)ω(x) dx = δl,m (2.3)

where δl,m is the Kronecher function. Moreover, by (2.1) and (2.3),
∫

�

∂xLl(x)∂xLm(x)xω(x) dx = lδl,m. (2.4)

Next, let 0 = a0 < a1 < · · · < aK < ∞, �k = (ak, ∞), and ωk(x) = ω(x−ak) =
eak−x . The index set K = {k | 0 � k � K}. For any k ∈ K, define

0H
1
ωk

(�k) = {
v | v ∈ H 1

ωk
(�k), v(ak) = 0

}
.

In numerical analysis, we need the following imbedding inequalities.

Lemma 2.1. For any v ∈ H 1
ωk

(�k) and k ∈ K,

sup
x∈�̄k

∣∣v(x)ω
1/2
k (x)

∣∣ � ‖v‖ωk,�k
+ √

2‖v‖1/2
ωk,�k

|v|1/2
1,ωk,�k

�
√

2‖v‖1,ωk,�k
. (2.5)

Moreover, for any v ∈ 0H
1
ωk

(�k),

‖v‖ωk,�k
� 2|v|1,ωk,�k

. (2.6)

Proof. For any x ∈ �̄k, we get from the Cauchy inequality that

v2(x)ωk(x) = −
∫ ∞

x

d

dy

(
v2(y)ωk(y)

)
dy

=
∫ ∞

x

v2(y)ωk(y) dy − 2
∫ ∞

x

v(y)∂yv(y)ωk(y) dy

� ‖v‖2
ωk,�k

+ 2‖v‖ωk,�k
|v|1,ωk,�k

.



L.-l. Wang, B.-y. Guo / Stair Laguerre pseudospectral method 309

This leads to (2.5). Next, for any v ∈ 0H
1
ωk

(�k) and x ∈ �̄k,

v2(x)ωk(x) =
∫ x

ak

d

dy

(
v2(y)ωk(y)

)
dy

= −
∫ x

ak

v2(y)ωk(y) dy + 2
∫ x

ak

v(y)∂yv(y)ωk(y) dy

whence

v2(x)ωk(x) +
∫ x

ak

v2(y)ωk(y) dy � 2‖v‖ωk,�k
|v|1,ωk,�k

.

Letting x → ∞ in the above, we get (2.6). �

We next consider some orthogonal projections. Let N = (N0, N1, . . . , NK) ∈
N

K+1, and PNk
(�k) be the set of all algebraic polynomials of degree at most Nk on �k.

Denote by c a generic positive constant independent of any function and Nk.
In order to describe the approximation error precisely, we introduce the weighted

Sobolev space

Ar(�k) = {
v | v is measurable on �k and ‖v‖Ar ,�k

< ∞}
,

equipped with the semi-norm and norm

|v|Ar ,�k
= ∥∥(x − ak)

r/2∂r
xv

∥∥
ωk,�k

, ‖v‖Ar ,�k
=

(
r∑

j=0

|v|2
Aj ,�k

)1/2

.

For real r > 0, we define the space Ar(�k) by space interpolation.
The L2

ωk
(�k)-orthogonal projection PNk

: L2
ωk

(�k) → PNk
(�k) is a mapping such

that for any v ∈ L2
ωk

(�k),

(PNk
v − v, φ)ωk,�k

= 0, ∀φ ∈ PNk
(�k).

Lemma 2.2. For any v ∈ Ar(�k) and integer r � 0,

‖PNk
v − v‖ωk,�k

� cN
−r/2
k |v|Ar ,�k

, k ∈ K. (2.7)

We can follow the same line as in the proof of Wang and Guo [17, theorem 4.1] to
prove the above result, see appendix.

We next consider the H 1
ωk

(�k)-orthogonal projection. Let ν = (ν1, ν2), ν1, ν2 > 0,

and

aν
ωk,�k

(u, v) = ν1(∂xu, ∂xv)ωk,�k
+ ν2(u, v)ωk,�k

.

The orthogonal projection P 1
Nk

: H 1
ωk

(�k) → PNk
(�k) is a mapping such that for any

v ∈ H 1
ωk

(�k),

aν
ωk,�k

(
P 1

Nk
v − v, φ

) = 0, ∀φ ∈ PNk
(�k). (2.8)
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Lemma 2.3. If ∂xv ∈ Ar−1(�k) and integer r � 1, then
∥∥P 1

Nk
v − v

∥∥
1,ωk,�k

� cN
1/2−r/2
k |∂xv|Ar−1,�k

, k ∈ K. (2.9)

Proof. For any φ ∈ PNk
(�k),

C1(ν)
∥∥P 1

Nk
v − v

∥∥2
1,ωk,�k

� aν
ωk,�k

(
P 1

Nk
v − v, P 1

Nk
v − v

) = aν
ωk,�k

(
P 1

Nk
v − v, φ − v

)

� C2(ν)
∥∥P 1

Nk
v − v

∥∥
1,ωk,�k

‖φ − v‖1,ωk,�k
,

where C1(ν) = min(ν1, ν2) and C2(ν) = max(ν1, ν2). Thus
∥∥P 1

Nk
v − v

∥∥
1,ωk,�k

� c inf
φ∈PNk

(�k)
‖φ − v‖1,ωk,�k

. (2.10)

Take

φ(x) = v(ak) +
∫ x

ak

PNk−1∂yv(y) dy.

Clearly, φ − v ∈ 0H
1
ωk

(�k). By (2.6), (2.10) and lemma 2.2,
∥∥P 1

Nk
v − v

∥∥
1,ωk,�k

� c‖φ − v‖1,ωk,�k
� c|φ − v|1,ωk,�k

= c‖PNk−1∂xv − ∂xv‖ωk,�k

� cN
1/2−r/2
k |∂xv|Ar−1,�k

.

This completes the proof. �

We now turn to the Laguerre–Gauss–Radau interpolation approximation. For
M ∈ N, let {xj }Mj=0 be the set of the Laguerre–Gauss–Radau interpolation nodes, i.e.,
x0 = 0, and {xj }Mj=1 be the zeros of the polynomial ∂xLM+1(x). The corresponding
quadrature weights are

ωj = 1

(M + 1)L2
M(xj )

, 0 � j � M.

We know from [16] that

∫

�

φ(x)ψ(x)ω(x) dx =
M∑

j=0

φ(xj )ψ(xj )ωj , ∀φ · ψ ∈ P2M(�). (2.11)

Further, let

xk
j = ak + xj , ωk

j = ωj , 0 � j � Nk, �Nk
= {

xk
j , 0 � j � Nk

}
, k ∈ K.

For simplicity, we introduce the discrete inner product

(u, v)ωk,Nk,�k
=

Nk∑

j=0

u
(
xk

j

)
v
(
xk

j

)
ωk

j , k ∈ K.
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By (2.11),

(φ, ψ)ωk,Nk,�k
= (φ, ψ)ωk,�k

, ∀φ · ψ ∈ P2Nk
(�k). (2.12)

For any v ∈ C(�̄k), the Laguerre–Gauss–Radau interpolant INk
v(x) ∈ PNk

(�k), satis-
fying

INk
v(x) = v(x), x ∈ �Nk

, k ∈ K.

To describe the interpolation approximation result, we introduce the space

Br(�k) = {
v | v ∈ Ar(�k) and ∂xv ∈ Ar−1(�k)

}
, r � 1,

with the semi-norm

|v|Br ,�k
= (|v|2Ar ,�k

+ |∂xv|2
Ar−1,�k

)1/2
.

Lemma 2.4. Let r be an integer. For any v ∈ Br(�k) and 0 � µ � 1 � r ,

‖INk
v − v‖µ,ωk,�k

� c(ln Nk)
1/2N

µ+1/2−r/2
k |v|Br ,�k

, k ∈ K. (2.13)

Proof. Let ÎM be the standard Laguerre–Gauss–Radau interpolation operator associ-
ated with the interpolation nodes {xj }Mj=0 and weights {ωj }Mj=0. By theorem 4.4 of Wang
and Guo [17], we have that for any u ∈ Br(�) and 0 � µ � 1 � r ,

∥∥ÎMu − u
∥∥

µ,ω,�
� c(ln M)1/2Mµ+1/2−r/2|u|Br ,�. (2.14)

Now, let

v(x) = v̂(x̂), x = x̂ + ak, x ∈ �k, x̂ ∈ �.

By the definition of INk
, we find that ÎNk

v = ÎNk
v̂. This fact with (2.14) leads to that

‖INk
v − v‖µ,ωk,�k

= ∥∥ÎNk
v − v̂

∥∥
µ,ω,�

= ∥∥ÎNk
v̂ − v̂

∥∥
µ,ω,�

� c(ln Nk)
1/2N

µ+1/2−r/2
k |v̂|Br ,� � c(ln Nk)

1/2N
µ+1/2−r/2
k |v|Br ,�k

.

This completes the proof. �

3. Stair Laguerre pseudospectral scheme

We consider the following model equation
{−∂2

xV (x) + λV (x) = F(x), λ > 0, x ∈ �,

V (0) = V0, lim
x→∞ V (x) = lim

x→∞ ∂xV (x) = 0.
(3.1)

In order to derive a well-posed weighted variational formulation, we follow the
idea of Guo and Shen [10] to make the variable transformation

U(x) = ex/2V (x), f (x) = ex/2F(x). (3.2)
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By (3.2), problem (3.1) is changed into





−∂2
xU(x) + ∂xU(x) +

(
λ − 1

4

)
U(x) = f (x), λ > 0, x ∈ �,

U(0) = U0 = V0, lim
x→∞ e−x/2U(x) = lim

x→∞ e−x/2∂xU(x) = 0.

(3.3)

Let ν1 = 1, ν2 = λ − 1
4 , Uk(x) = U(x)|x∈�k

and f k(x) = f (x)|x∈�k
. In

particular, U(x) = U 0(x) and f (x) = f 0(x). A weak formulation of (3.3) is to find
Uk(x) ∈ H 1

ωk
(�k) such that

aν
ωk,�k

(
Uk, v

) = (
f k, v

)
ωk,�k

, ∀v ∈ 0H
1
ωk

(�k), k ∈ K, (3.4)

with Uk(ak) = U(ak). Equivalently, it is to seek Uk∗ (x) = Uk(x) − Uk(ak) ∈ 0H
1
ωk

(�k)

such that

aν
ωk,�k

(
Uk

∗ , v
) = (

f k, v
)
ωk,�k

− aν
ωk,�k

(
Uk(ak), v

)
, ∀v ∈ 0H

1
ωk

(�k), k ∈ K. (3.5)

If for all k ∈ K, f k(x) ∈ H−1
ωk

(�k), then (3.4) has a unique solution such that Uk(x) ∈
H 1

ωk
(�k), k ∈ K.

Next, let 0PNk
(�k) = 0H

1
ωk

(�k) ∩ PNk
(�k), ν = (1, λ − 1

4) and

aν
ωk,Nk,�k

(u, v) = (∂xu, ∂xv)ωk,Nk,�k
+

(
λ − 1

4

)
(u, v)ωk,Nk,�k

.

The stair Laguerre pseudospectral scheme is to find uk
Nk

(x) ∈ PNk
(�k) such that

aν
ωk,Nk,�k

(
uk

Nk
, φ

) = (
f k, φ

)
ωk,Nk,�k

, ∀φ ∈ 0PNk
(�k), k ∈ K. (3.6)

Equivalently, it is to seek uk
Nk,∗(x) = uk

Nk
(x)−uk−1

Nk−1
(ak) ∈ 0PNk

(�k), k ∈ K (for k = 0,

uk−1
Nk−1

(ak) = U0) such that

aν
ωk,Nk,�k

(
uk

Nk,∗, φ
) = (

f k, φ
)
ωk,Nk,�k

− aν
ωk,Nk,�k

(
uk−1

Nk−1
(ak), φ

)
,

∀φ ∈ 0PNk
(�k), k ∈ K. (3.7)

We now turn to estimate the difference between Uk(x) and uk
Nk

(x). To do this, let
Uk

Nk
(x) = P 1

Nk
Uk(x) and Uk

Nk,∗(x) = Uk
Nk

(x) − Uk
Nk

(ak). Hereafter, we assume that for
certain constant c∗, supk∈K

{ak − ak−1} � c∗. We have the following convergence result.

Theorem 3.1. Let λ > 1/4. If for 1 � k � K and integers r, s � 1, Uk−1 ∈ Br(�k−1),
∂xU

k ∈ Ar−1(�k) and f k ∈ Bs(�k), then
∥∥uk

Nk
− Uk

∥∥
1,ωk,�k

� c
(
ln Nk−1

)1/2
N

1−r/2
k−1

∣∣Uk−1
∣∣
Br ,�k−1

+ cN
1/2−r/2
k

∣∣∂xU
k
∣∣
Ar−1,�k

+ c(ln Nk)
1/2N

1/2−s/2
k

∣∣f k
∣∣
Bs,�k

. (3.8)
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In particular,

‖uN0 − U‖1,ω,� � cN
1/2−r/2
0 |∂xU |Ar−1,� + c(ln N0)

1/2N
1/2−s/2
0 |f |Bs,�. (3.9)

Proof. By (2.12), (3.5) and (3.7),

C1(λ)
∥∥uk

Nk,∗ − Uk
Nk,∗

∥∥2
1,ωk,�k

� aν
ωk,Nk,�k

(
uk

Nk,∗ − Uk
Nk,∗, u

k
Nk,∗ − Uk

Nk,∗
)

= (
f k, uk

Nk,∗ − Uk
Nk,∗

)
ωk,Nk,�k

− aν
ωk,Nk,�k

(
uk−1

Nk−1
(ak), u

k
Nk,∗ − Uk

Nk,∗
)

− aν
ωk,Nk,�k

(
Uk

Nk,∗, u
k
Nk,∗ − Uk

Nk,∗
) + aν

ωk,�k

(
Uk

∗ , uk
Nk,∗ − Uk

Nk,∗
)

+ aν
ωk,�k

(
Uk(ak), u

k
Nk,∗ − Uk

Nk,∗
) − (

f k, uk
Nk,∗ − Uk

Nk,∗
)
ωk,�k

where C1(λ) = min(1, λ − 1
4). Thus, we have that

∥∥uk
Nk,∗ − Uk

Nk,∗
∥∥

1,ωk,�k

� 1

C1(λ)

{

sup
φ∈P0

Nk
(�k), φ 
=0

|aν
ωk,�k

(Uk∗ , φ) − aν
ωk,Nk,�k

(Uk
Nk,∗, φ)|

‖φ‖1,ωk,�k

+ sup
φ∈P0

Nk
(�k), φ 
=0

|aν
ωk,�k

(Uk(ak), φ) − aν
ωk,Nk,�k

(uk−1
Nk−1

(ak), φ)|
‖φ‖1,ωk,�k

+ sup
φ∈P0

Nk
(�k), φ 
=0

|(f k, φ)ωk,�k
− (f k, φ)ωk,Nk,�k

|
‖φ‖1,ωk,�k

}

. (3.10)

We now estimate the three terms at the right-hand side of (3.10). Firstly, by (2.5), (2.8)
and lemma 2.3,

∣∣aν
ωk,�k

(
Uk

∗ , φ
) − aν

ωk,Nk,�k

(
Uk

Nk,∗, φ
)∣∣ =

(
λ − 1

4

)∣∣(Uk(ak) − Uk
Nk

(ak), φ
)
ωk,�k

∣∣

�
√

2

(
λ − 1

4

)∥∥Uk − P 1
Nk

Uk
∥∥

1,ωk,�k
‖φ‖ωk,�k

� cN
1/2−r/2
k

∣∣∂xU
k
∣∣
Ar−1,�k

‖φ‖ωk,�k
. (3.11)

Similarly, we have from (2.5) and lemma 2.4 that
∣∣aν

ωk,�k

(
Uk(ak), φ

) − aν
ωk,Nk,�k

(
uk−1

Nk−1
(ak), φ

)∣∣

=
(

λ − 1

4

)∣∣(Uk(ak) − uk−1
Nk−1

(ak), φ
)
ωk,�k

∣∣

� c
∣∣Uk−1(ak) − uk−1

Nk−1
(ak)

∣∣‖φ‖ωk,�k

� c
∣∣Uk−1(ak) − INk−1U

k−1(ak)
∣∣‖φ‖ωk,�k

= ceak−ak−1
∣∣(Uk−1(ak) − INk−1U

k−1(ak)
)
ωk−1(ak)

∣∣‖φ‖ωk,�k
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� c
(∥∥Uk−1 − INk−1U

k−1
∥∥1/2

ωk−1,�k−1

∣∣Uk−1 − INk−1U
k−1

∣∣1/2
1,ωk−1,�k−1

+ ∥∥Uk−1 − INk−1U
k−1

∥∥
ωk−1,�k−1

)‖φ‖ωk,�k

� c(ln Nk−1)
1/2N

1−r/2
k−1

∣∣Uk−1
∣∣
Br ,�k−1

‖φ‖ωk,�k
. (3.12)

Furthermore, by (2.12) and lemma 2.4,
∣∣(f k, φ

)
ωk,�k

− (
f k, φ

)
ωk,Nk,�k

∣∣ = ∣∣(f k − INk
f k, φ

)
ωk,�k

∣∣

� c(ln Nk)
1/2N

1/2−s/2
k

∣∣f k
∣∣
Bs,�k

‖φ‖ωk,�k
.

The above with (3.10)–(3.12) gives that
∥∥uk

Nk,∗ − Uk
Nk,∗

∥∥
1,ωk,�k

� c(ln Nk−1)
1/2N

1−r/2
k−1

∣∣Uk−1
∣∣
Br ,�k−1

+ cN
1/2−r/2
k

∣∣∂xU
k
∣∣
Ar−1,�k

+ c(ln Nk)
1/2N

1/2−s/2
k

∣∣f k
∣∣
Bs,�k

.

Therefore, using (3.11), (3.12), lemmas 2.3 and 2.4, we obtain that for 1 � i � K ,
∥∥uk

Nk
− Uk

∥∥
1,ωk,�k

�
∥∥Uk

Nk
− Uk

∥∥
1,ωk,�k

+ ∥∥uk
Nk

− Uk
Nk

∥∥
1,ωk,�k

�
∥∥P 1

Nk
Uk − Uk

∥∥
1,ωk,�k

+ ∥∥uk
Nk,∗ − Uk

Nk,∗
∥∥

1,ωk,�k

+ c
∣∣Uk

Nk
(ak) − Uk(ak)

∣∣ + c
∣∣Uk(ak) − uk−1

Nk−1
(ak)

∣∣

� c(ln Nk−1)
1/2N

1−r/2
k−1

∣∣Uk−1
∣∣
Br ,�k−1

+ cN
1/2−r/2
k

∣∣∂xU
k
∣∣
Ar−1,�k

+ c(ln Nk)
1/2N

1/2−s/2
k

∣∣f k
∣∣
Bs,�k

.

This yields (3.8). Since uk−1
Nk−1

(ak) = Uk(ak) = U0, for k = 0, we find from (3.12) that
the second term at the right-hand side of (3.10) vanishes, and so (3.9) follows immedi-
ately. �

Remark 3.1. The condition λ > 1
4 is not essential. Indeed, for any λ > 0, we can

use a simple variable transformation to reform (3.1) so that λ satisfies the condition in
theorem 3.1.

Remark 3.2. For K = 0, this method is the same as in [10]. But we can use this method
with K > 1 to improve the numerical results, see section 4 of this paper.

In the last theorem, we estimated the numerical error of uk
Nk

(x). We now derive
an error estimate of the numerical approximation of the original problem (3.1). For this
purpose, let

V k(x) = e−x/2U(x)
∣∣
x∈�k

, F k(x) = e−x/2f (x)
∣∣
x∈�k

,

vk
Nk

(x) = e−x/2uk
Nk

(x)
∣∣
x∈�k

, k ∈ K.

In particular, V (x) = V 0(x), F (x) = F 0(x) and vN0(x) = v0
N0

(x).
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By theorem 3.1, we have the following result.

Theorem 3.2. Let λ > 1
4 . If for 1 � k � K and integers r, s � 1, ex/2V k−1(x) ∈

Br(�k−1), ∂x(ex/2V k(x)) ∈ Ar−1(�k) and ex/2Fk(x) ∈ Bs(�k), then
∥∥vk

Nk
− V k

∥∥
1,�k

� c(ln Nk−1)
1/2N

1−r/2
k−1

∣∣ex/2V k−1
∣∣
Br ,�k−1

+ cN
1/2−r/2
k

∣∣∂x

(
ex/2V k

)∣∣
Ar−1,�k

+ c(ln Nk)
1/2N

1/2−s/2
k

∣∣ex/2Fk
∣∣
Bs,�k

. (3.13)

In particular,

‖vN0 − V ‖1,� � cN
1/2−r/2
0

∣∣∂x

(
ex/2V

)∣∣
Ar−1,�

+ c(ln N0)
1/2N

1/2−s/2
0

∣∣ex/2F
∣∣
Bs,�

. (3.14)

Proof. Clearly,

vk
Nk

(x) − V k(x) = e−x/2
(
uk

Nk
(x) − Uk(x)

)
,

∂x

(
vk

Nk
(x) − V k(x)

) = e−x/2∂x

(
uk

Nk
(x) − Uk(x)

) − 1

2
e−x/2

(
uk

Nk
(x) − Uk(x)

)
.

Hence
∥∥vk

Nk
− V k

∥∥
1,�k

� c
∥∥uk

Nk
− Uk

∥∥
1,ωk,�k

.

The above with theorem 3.1 leads to the desired results. �

In the end of this section, we consider the global solution of the stair Laguerre
pseudospectral method and its error estimation. To do this, for any k ∈ K, let Mk

be the number of the nodes xk
j in the interval [ak, ak+1](aK+1 = ∞) and M =

(M0, M1, . . . , MK). The global numerical solution is given by

vM(x) = vk
Nk

(x), x ∈ [ak, ak+1], k ∈ K. (3.15)

For simplicity, let

H
r
(�) = {

v | ex/2v(x)
∣∣
x∈�k

∈Br(�k), ∀k ∈ K
}
,

equipped with the norm

�v�H
r
(�) =

(∑

k∈K

∣∣ex/2vk
∣∣2
Br ,�k

)1/2

.

As a consequence of theorem 3.2, we have the following results.

Theorem 3.3. Let V (x) be the solution of (3.1), and vM(x) be the numerical solution
given by (3.15). If for all k ∈ K, Mk � Nk, and for integers r, s � 1, V (x) ∈
H

r
(�), F (x) ∈ H

s
(�), then

‖vM − V ‖1,� � cG(N, r) �V�H
r
(�) +cG̃(N, s) �F�H

s
(�) (3.16)
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where

G(N, r) =
(∑

k∈K

(ln Nk)N
2−r
k

)1/2

, G̃(N, s) =
(∑

k∈K

(ln Nk)N
1−s
k

)1/2

.

Proof. By (3.15) and theorem 3.2,

‖vM − V ‖1,� �
∑

k∈K

∥∥vk
Nk

− V k
∥∥

1,[ak,ak+1] �
∑

k∈K

∥∥vk
Nk

− V k
∥∥

1,�k

� cG(N, r) �V �H
r
(�) +cG̃(N, s) �F�H

s
(�) .

This completes the proof. �

Finally, we give a pointwise error estimation of the global stair Laguerre pseudo-
spectral method. To do this, let

H̃ r(�) = {
v | ex/2v(x)

∣∣
x∈�k

∈ Br(�k), ∀k ∈ K, and �v�H̃ r (�) < ∞}
,

equipped with the norm

�v�H̃ r (�) = max
k∈K

{∣∣ex/2vk
∣∣
Br ,�k

}
.

Theorem 3.4. Let V (x) be the solution of (3.1), and vM(x) be the numerical solution
given by (3.15). If for all k ∈ K, Mk � Nk, and for integers r, s � 1, V (x) ∈
H̃ r(�), F (x) ∈ H̃ s(�), then

sup
x∈�̄

∣∣(vM − V )(x)
∣∣ � cW(N, r) �V�H̃ r (�) +cW̃ (N, s) �F�H̃ s (�) (3.17)

where

W(N, r) = max
k∈K

{
e−ak/2(ln Nk)

1/2N
1−r/2
k

}
,

W̃ (N, s) = max
k∈K

{
e−ak/2(ln Nk)

1/2N
1/2−s/2
k

}
.

Proof. By lemma 2.1,

sup
x∈�̄k

∣∣(vk
Nk

− V k
)
(x)

∣∣ � e−ak/2 sup
x∈�̄k

∣∣(uk
Nk

(x) − Uk(x)
)
ω

1/2
k (x)

∣∣

�
√

2e−ak/2
∥∥uk

Nk
− Uk

∥∥
1,ωk,�k

, k ∈ K.

Thus, by this fact and theorem 3.2,

sup
x∈�̄

∣∣(vM − V )(x)
∣∣ = max

k∈K

sup
x∈[ak,ak+1]

∣∣(vk
Nk

− V
)
(x)

∣∣ � max
k∈K

sup
x∈�̄k

∣∣(vk
Nk

− V
)
(x)

∣∣

� c max
k∈K

{
e−ak/2

∥∥uk
Nk

− Uk
∥∥

1,ωk,�k

}
� cW(N, r) �V�H̃ r (�)

+ cW̃ (N, s) �F�H̃ s (�) .

This ends the proof. �
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4. Numerical results

This section is for some numerical results. We first use scheme (3.7) to solve the
reformed problem (3.3) numerically. As in [10], we introduce the base functions

φk
l (x) = Lk

l (x) − Lk
l+1(x), k ∈ K. (4.1)

Since Lk
l (ak) = 1 for all l, we have φk

l (ak) = 0 and so

0PNk
(�k) = span

{
φk

0, φ
k
1, . . . , φ

k
Nk−1

}
, k ∈ K.

Furthermore, by (2.2),

∂xφ
k
l (x) = ∂xLk

l (x) − ∂xLk
l+1(x) = Lk

l (x).

Thus, by (2.3) and (2.12),
(
∂xφ

k
l , ∂xφ

k
m

)
ωk,Nk,�k

= (
∂xφ

k
l , ∂xφ

k
m

)
ωk,�k

= (
Lk

l ,Lk
m

)
ωk,�k

= δl,m.

Now, let

uk
Nk,∗(x) =

Nk−1∑

l=0

ĥk
l φ

k
l (x), k ∈ K,

and

Ĥk = (
ĥk

0, ĥ
k
1, . . . , ĥ

k
Nk−1

)T
,

Rk = (
rk

0 , rk
1 , . . . , rk

Nk−1

)T
, rk

l = (
f k, φk

l

)
ωk,Nk,�k

− aν
ωk,Nk,�k

(
uk−1

Nk−1
(ak), φ

k
l

)
,

B = (blj )l,j=0,...,Nk−1, blj = (
φk

j , φ
k
l

)
ωk,�k

.

In view of (2.3) and (4.1), we have that

blj =





2, l = j ,

−1, l = j − 1, j + 1,

0, otherwise.

Accordingly, the scheme (3.7) is equivalent to
(

I +
(

λ − 1

4

)
B

)
Ĥk = Rk, k ∈ K. (4.2)

Therefore, at each stair step k ∈ K, we only need to resolve the symmetric and tridiago-
nal system (4.2), and then uk

Nk
(x) = uk

Nk,∗ + uk−1
Nk−1

(ak) and vk
Nk

(x) = e−x/2uk
Nk

(x). This
feature simplifies computation and saves a lot of work.

We now present some numerical results. We take the following exact solution
of (3.1),

V (x) = e−(x−x0)
2/h, x ∈ �, h > 0. (4.3)
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Figure 2. V (x) with h = 10 and various x0. Figure 3. The errors for K = 0 and various x0.

As shown in figure 2, the interested information of V (x) is mainly contained in the
interval �(x0, h) = [x0 − 3

√
h/2, x0 + 3

√
h/2], where V (x) changes rapidly. For

description of the errors, let

EK(vM) = max
k∈K

max
0�j�Mk

∣∣vM

(
xk

j

) − V
(
xk

j

)∣∣.

We first take h = 10 and x0 ∈ [0, 40] in (4.3). The errors of the single-stair
method (K = 0 in (3.7)) with M0 = N0 = 32, and M0 = N0 = 64 are illustrated in
figure 3. It can be seen that the errors increase very fast as the center x0 of the interested
interval �(x0, h) moves away from the left endpoint. This is mainly due to the locations
of the Laguerre–Gauss–Radau quadrature nodes. As shown in figure 1, the nodes are
relatively denser near the left endpoint, and the distances between adjacent nodes grow
very quickly as x and the number of nodes increase.

We next use the two-stair method to solve (3.1) numerically. We plot in figure 4
the errors of the two-stair method with (i) N0 = N1 = 32, M0 = 16, M1 = 32, a0 =
0, a1 = x0

16, and (ii) N0 = N1 = 64, M0 = 22, M1 = 64, a0 = 0, a1 = x0
22. It shows

that the two-stair approximation provides better numerical results than the single-stair
approximation.

We now take h = 10 and x0 = 95 in (4.3). The errors of the single-stair
method with M0 = N0 = 32, 40, 45, 50, 60, 70, 80, 90, and the errors of the two-
stair method with N0 = 32, M0 = 30, a0 = 0, a1 = x0

29 and M1 = N1 =
32, 40, 45, 50, 60, 70, 80, 90, are illustrated in figure 5. It shows that the single-stair
scheme can not provide good numerical solutions when the interested interval �(x0, h) is
big and far from the left endpoint. However, the multiple-stair Laguerre scheme provides
very accurate numerical results. For example, the errors of single-stair approximation
E0(v(60)) = 8.16×10−2, E0(v(90)) = 2.42×10−2, but the errors of two-stair approxima-
tion (N0 = 32, M0 = 30, a0 = 0, a1 = x0

29) E1(v(30,32)) = 4.36 × 10−3, E1(v(30,60)) =
9.80 × 10−6. Thus multiple stair Laguerre pseudospectral method not only saves the
work, but also raises the accuracy. Figure 5 also indicates the rapid convergence of this
new method.
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Figure 4. The errors for K = 1 and various x0. Figure 5. The errors for K = 0 and K = 1.

Figure 6. V (x)(h = 10, x0 = 95) vs. v1
32(x). Figure 7. The errors for K = 0 and K = 1.

The stair Laguerre pseudospectral method can also be used to improve the resolu-
tion of the standard Laguerre approximation locally. For instance, we plot in figure 6
the exact solution V (x) (h = 10, x0 = 95, x ∈ [60, 120]) vs. the numerical solution by
the single-stair method with M0 = N0 = 32, and the numerical solution by the two-stair
method with N0 = 32, M0 = 30, a0 = 0, a1 = x0

30, and M1 = N1 = 32. Clearly, the
single-stair method cannot identify the interested structure of the exact solution in the
subinterval [90, 100]. But the two-stair method recovers the interested structure of V (x)

in this subinterval very well. It is noted that we usually take ak as some interpolation
points near the subintervals where the numerical solutions by the single-stair method
change very rapidly. In this example, there exists one peak. So we only need to use the
two-stair method with a0 = 0 and a1 = x0

30. Clearly the work is only double of the work
in the single-stair method.

This technique is also available for the solutions with several peaks. For instance,
we take the exact solution of (3.1) with two peaks

V (x) = e−(1−x1)
2/h1 + e−(1−x2)

2/h2, x ∈ �.



320 L.-l. Wang, B.-y. Guo / Stair Laguerre pseudospectral method

Let x1 = 10, x2 = 50, h1 = 20 and h2 = 10. The errors of the single-stair method with
M0 = N0 = 32, 40, 45, 50, 60, 70, 80, 90, and the errors of the two-stair method with
N0 = 32, M0 = 20, a0 = 0, a1 = x0

19 and M1 = N1 = 32, 40, 45, 50, 60, 70, 80, 90, are
illustrated in figure 7. It indicates that the multiple-stair scheme provides more accurate
numerical solution than the standard Laguerre pseudospecctral method.

5. Concluding remarks

Since the distances between the Laguerre interpolation nodes increase very fast as
the mode N increases, the numerical solutions cannot simulate the exact solutions prop-
erly for large x. In this paper, we first use small mode N0 to obtain accurate numerical
solutions at the nodes which are not far from the original point x = 0, and located al-
most uniformly. Thus we obtain better numerical results at those nodes. Then we use the
shift Laguerre pseudospectral approximation to extend the numerical results for large x,

step by step. Because at each step, the mode Nk is also small, so we also obtain accurate
numerical results for large x. The numerical results coincide the analysis. On the other
hand, using small Nk at each step, simplifies the computation and saves work.

For simplicity, we only take a simple model problem as an example to show how
the new algorithm works well. But it is not difficult to generalize this method to nonlin-
ear problems, evolutionary problems and multiple-dimensional problems in unbounded
domains.

Appendix. The proof of lemma 2.2

Proof. Let L(α)
l (x) be the generalized Laguerre polynomials of degree l. We know

from [16] that for α > −1,

∂xL(α)
l (x) = −∂xL(α+1)

l−1 (x), l = 1, 2, . . . , (A.1)

and
∫

�

L(α)
l (x)L(α)

m (x)xαe−x dx = γ
(α)
l δl,m, (A.2)

where

γ
(α)
l = �(l + α + 1)

�(l + 1)
. (A.3)

Next, let ak, ωk and �k be the same as in section 2. Denote L(α)
l,k (x) = L(α)

l (x −
ak), x ∈ �k. In particular, Ll,k(x) = L(0)

l,k (x). Clearly, for any v ∈ L2
ωk

(�k),

v(x) =
∞∑

l=0

v̂lLl,k(x), v̂l = (v,Ll,k)ωk,�k
.



L.-l. Wang, B.-y. Guo / Stair Laguerre pseudospectral method 321

Thus, by (A.1),

∂j
x v(x) =

∞∑

l=j

v̂l∂
j
xLl,k(x) =

∞∑

l=j

(−1)j v̂lL(j)

l−j,k(x). (A.4)

Moreover, by (A.2),
∥∥(x − ak)

j/2L(j)

l−j,k

∥∥2
ωk,�k

= γ
(j)

l−j .

Using (A.2) again, we obtain that

‖PNk
v − v‖2

ωk,�k
=

∞∑

l=Nk+1

v̂2
l � max

l�Nk+1

(
γ

(r)
l−r

)−1
∞∑

l=r

v̂2
l γ

(r)
l−r

= max
l�Nk+1

(
γ

(r)
l−r

)−1∥∥(x − ak)
r/2∂r

xv
∥∥2

ωk,�k
. (A.5)

Therefore, by using (A.3) and the Stirling formula,

�(s + 1) = √
2πssse−s

(
1 + O

(
s−1/5

))
,

we get that

max
l�Nk+1

(
γ

(r)
l−r

)−1 = �(Nk − r + 1)

�(Nk + 2)
∼ Nr

k . (A.6)

Finally, a combination of (A.5) and (A.6) leads to the desired result. �
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