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Mosaic Nature of Biological Sequences

Circular map of theEscherichia coli K-12 MG1655 genome (N = 4639675 bp).
Reproduced from Ghai, Hain and Chakraborty,BMC Bioinformatics 5, 198 (2004).
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Mosaic Nature of Biological Sequences

horizontally transferred
(HT) genes
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Mosaic Nature of Biological Sequences

MAUVE alignment of threeE. coli strains: K-12 MG1655, O157H7 EDL933, and CFT073.
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The Biological Sequence Segmentation Problem

• Two motivating problems:

– HT segments(genomic islands)andlineage-specific segments(backbone)in
bacterial DNA.

∗ HT segments have different statistics from backbone.
∗ Pathogenic genes frequently found near HT segment boundaries.
∗ Gene-finding algorithms do not perform well in regions wherestatistics

differ significantly from backbone.
∗ Scoring problem even more severe for computational search of short reg-

ulatory elements.

– Mesoscopic description of genome: ‘Local’ statistics vary along DNA se-
quence. Break long sequence into intermediate length segments, based on
‘discernible’ changes in statistics. Coarse-grained description.

• DNA polymerization along 5′ → 3′ direction builds directionality into sequence.
Biases in dinucleotide and codon frequencies. Model asMarkov chainsrather than
Bernoulli chains with extended alphabets.
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Markov chains

• Statexi of Markov chain at sequence positioni can take on values in alphabetS of
sizeS . Example.For DNA sequences,S = {A, T,C,G}, andS = 4.

• Markov chains generated probabilistically. Existing subsequence extended

· · · x−K · · · x−2 x−1 · · · x−K · · · x−2 x−1 x0

by attachingx0 to end of subsequence withtransition probability

p(x0|x−1x−2 · · · x−K).

• Markov chain oforderK if p(x0|x−1x−2 · · · x−K′) = p(x0|x−1x−2 · · · x−K) for all K′ ≥
K.

• Transition probabilities can be organized intotransition matrixP = [pts], s = 1, . . . , S , t = t1 · · · tK ∈ S K.

• Equilibrium distributionπ = (P1, . . . , Pk, . . . , PS K) such thatπP = π, Pk = proba-
bility of finding kth K-mer in stationary Markov chain.
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Classification of Segmentation Schemes

• Matrix of segmentation schemes in literature:

dynamic programming

DNA walk

sliding window average

hidden Markov model

single−pass recursive local global

• All schemes rely on entropic measure of statistical dissimilarity, whether:

– computed directly; or

– in the form of inner product between quantized vectors of probabilities.
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The Jensen-Shannon Divergence

• Given length-N sequencex = x1x2 · · · xN, xi = A,C,G, T , assume composed of
M ≥ 1 Markov chains with boundaries ati1, . . . , iM−1. M-segment sequence likeli-
hood given by

PM(x; i1, . . . , iM−1; ˆP1, . . . , ˆPM) =
M
∏

m=1

∏

t∈S K

S
∏

s=1

(

p̂m
ts
) f m

ts ; p̂m
ts =

f m
ts

∑

s′ f m
ts′
.

• Jensen-Shannon divergence

∆M = log
PM

P1
= −
∑

t∈S K

S
∑

s=1

fts log p̂ts +

M
∑

m=1

∑

t∈S K

S
∑

s=1

f m
ts log p̂m

ts;

fts =

M
∑

m=1

f m
ts , p̂ts =

fts
∑S

s′=1 fts′

is symmetric relative entropy providing quantitative measure of ‘goodness-of-fit’
of M-segment model over 1-segment model.
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Segmentation with a Pair of Sliding Windows

ÂÂ

CT

sliding pair of windows

G AA T A

P

TG

R

T TG

P

G CA

L

T AAA AC T TGT GC T TA C GA G TC
n

AC C
n

T

• For a single sliding window of lengthn, spatial resolutiondecreases withn while
statistical significanceincreases withn.

• Solution: To not compromise spatial resolution, use an adjoining pair of sliding
windows, each of lengthn.

• Compute∆2(i) using ˆPL in left window and ˆPL in right window as function of
sequence positioni of centre of pair of windows.

• Segment boundaries appear as peaks in∆2(i). Strength of peak measure of statisti-
cal difference between the segments it separates.
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Segmentation with a Pair of Sliding Windows
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The interval (0, 40000) in theE. coli K-12 MG1655 genome (N = 4639675), showing theK = 0 Jensen-
Shannon divergence spectrum forn = 1000. Annotated genes on the positive (red) and negative (green)
strands are shown below the graph.
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Mean-Field Lineshape and Match Filtering

• Mean-field picture:
discrete sequence positions, integer counts

GTGGATAACTGTCTACAGCCCTTGATATTCAATGTGTACA

continuous sequence positions, real counts

• Mean-field analysis tells us that∆2 reaches a maximum at boundary betweenred
andgreensegments.

centre of pair of windows
n n

Jensen-Shannon divergence

• Nearly piecewise quadratic mean-field lineshape can be usedfor match filtering.
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Mean-Field Lineshape and Match Filtering
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Recursive Jensen-Shannon Segmentation

• STEP 1 (Segmentation):

– Given sequencex = x1x2 · · · xN, compute 2-segment Jensen-Shannon diver-
gence∆2(i) as function of cursor positioni.

– Find i∗ such that∆2(i∗) = maxi∆2(i). The best 2-segment model forx is
x = xLxR, wherexL = x1 · · · xi∗ andxR = xi∗+1 · · · xN.

• STEP 2 (Recursion):RepeatSTEP 1for xL andxR.

• STEP 3 (Termination):1-segment model selected over 2-segment model if:

– Hypothesis Testing:probability of obtaining divergence beyond observed∆2

greater than prescribed toleranceǫ; or

– Model Selection:information criterion (e.g. AIC, BIC) for 2-segment model
greater than that for 1-segment model.
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Recursive Jensen-Shannon Segmentation
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Jensen-Shannon divergence spectrum of orderK = 3 over the entire genome ofE. coli K-12 MG1655
(N = 4639675 bp). The first segment boundary to be obtained in thisfirst stage of recursive segmentation
is shown by the red arrow.
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Mean-Field Analysis of Recursive Segmentation

• Analyze recursive segmentation scheme entirely within mean-field picture:

– Peaks in mean-field divergence spectrum appearonly at segment boundaries;

– Segment boundaries also appear askinks, or even havevanishing divergence
in mean-field divergence spectrum.

– Recursive segmentation eventually discoversall segment boundaries.

• Problem of context sensitivity:

– Strengths of existing segment boundaries change as recursive segmentation
progresses;

– Segment boundaries not discovered according to order of true strengths in final
segmentation;

– Incomplete segmentation pick up weak segment boundaries, but miss stronger
ones.

– Problem especially severe withrepetitive sequences(e.g.abab · · · abab), com-
mon in biological sequences.
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Pitfalls of Recursive Segmentation
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Context Sensitivity:

− domain wall strengths change as recursion proceeds
− domain walls not discovered according to true order
− incomplete segmentation pick up weak domain walls,

− especially severe for repetitive sequences

Need to move or remove existing cuts for better segmentation
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Segmentation Optimization

• Two procedures to optimize segment boundaryim if we are allowed to move only
one segment boundary at a time:

im−2 im−1 im im+1 im+2

– First-order update:Compute∆m
2 (i) for supersegment (im−1, i, im+1), and choose

im = i∗, such that∆2(i∗) = maxim−1<i<im+1∆2(i), to be new position of segment
boundary.

– Second-order update:Compute∆m−1
2 (i) for supersegment (im−2, im−1, i) and

∆
m+1
2 (i) for supersegment (i, im+1, im+2), and chooseim = i∗, such that

∆
m−1
2 (i∗) + ∆m+1

2 (i∗) = max
im−1<i<im+1

[

∆
m−1
2 (i) + ∆m+1

2 (i)
]

,

to be new position of segment boundary.

• Segment boundaries{im}Mm=1 updated serially, or in parallel.

• Optimized recursive segmentation:Right afterSTEP 1 (Segmentation), optimize
segmentation using first- or second-order update algorithm.
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New Termination Criterion

• Hypothesis testingandmodel selectionframeworks to terminate segmentation as-
sumes statistically stationary null model.

• In practice, observer that as segmentation progress, the 1-segment null models ap-
pears less and less credible=⇒ measure relative intrinsic statistical fluctuations
instead.

• Coarse-graining procedure developed to extractsmoothed spectrum̄∆(i, n) from
raw spectrum∆(i). The parametern is the shortest ‘segment’ we allow in̄∆(i, n).

• Compute

δA(n) =
∫ N

0
di
∣

∣

∣∆̄(i, n) − ∆(i)
∣

∣

∣ , A =
∫ N

0
di∆(i).

• Through comparison against annotation, a termination criterion of (δA/A)∗ = 0.30
produces the most biologically meaningful segmentation.
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New Termination Criterion
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New Termination Criterion
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Conclusions & Further Works

• In conclusion, we have:

– Developed method of sliding pair of windows, and mean-field lineshape match
filtering;

– Identified problem of context sensitivity;

– Developed optimization algorithms for recursive Jensen-Shannon segmenta-
tion scheme; and

– Developed new termination criterion based on intrinsic statistical fluctuations.

• Further works:

– Incomplete segmentation misleading, cluster terminal segments instead to ob-
tain coarser scale description of genome.E.g. to distinguish lineage-specific
regions arising from HGT and the genetic backbone.

– Multiple sequence clustering for comparative, phylogenetic studies.
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