Market Crashes as Critical Points

Siew-Ann Cheong

Jun 29, 2000

Stock Market Crashes

- In the last century, we can identify a total of five large market crashes:
	- **–** 1914 (out-break of World War I),
	- **–** October 1929 (triggering the Great Depressions of the 1930s),
	- **–** October 1987 (the Black Monday),
	- **–** July 1997 (onset of the Asian Economic Crisis), and most recently,
	- **–** the NASDAQ crash of April 2000.

Large Market Crashes are Extraordinary!

- By plotting the cumulative frequencies of daily loses in the stock market against the log-magnitude of the loss, Sornette et al found that:
	- **–** "normal day-to-day" trading results in an exponential daily loss distribution.
	- **–** the above large crashes are statistical outliers, very much out of the ordinary.

3

Market Crashes and Earthquakes Precursors and Aftershocks

S&P 500

Modeling Market Crashes — Macroscopic Considerations

- Rational market with incomplete information: not every aspect of the market is known, but whatever is known is reflected in the price of stocks and their fluctuations.
- Price of stock reflects not only the fundamental worth of whatever it represents, but also possible future gains, which comes at ^a risk (or hazard rate).
- The more risky the stock, the higher it is priced.

Modeling Market Crashes — the Microscopic Model of Sornette and Johansen

- \bullet System of N traders in a trading network, in which each trader $i=1,\ldots,N$ is connected to $N(i)$ nearest neighbors in its neighborhood \mathfrak{N}_i according to some graph.
- Traders interact only locally via such a network.
- In this highly simplified model, each trader *i* can only be in one of two states $s_i = -1$ (BUY) or $s_i = +1$ (SELL) at any one time, reflecting the major pre-occupation of the trader at that time.
- Decision process of trader *i* only influenced by
	- **–** opinions of the *^N*(*i*) traders in its neighborhood;
	- **–** an idiosyncratic signal received by trader *i* alone.
- Time evolution governed by a cellular automaton rule:

$$
s_i(t+1) = \text{sign}\left[K\sum_{j\in\mathfrak{N}_i} s_j(t) + \sigma \epsilon_i(t)\right], \qquad i=1,\ldots,N.
$$

- $K =$ coupling strength orders the system of traders, $\sigma =$ strength of noise term – disorders the system of traders. Relative size of K and σ determines whether system is ordered or disordered.
- In this language, a market crash occurs whenever instantaneous correlations due to local fluctuations get magnified to *^O*(*N*) proportions by the positive feedback intrinsic in the interactions.

Results from the Sornette-Johansen Model

- $\bullet~$ Existence of critical points K_C on most networks.
- $\bullet~$ Susceptibility χ = sensitivity of system to small perturbations diverges as power law as K approaches K_C from below:

$$
\chi \sim A(K_C - K)^{-\gamma},
$$

where $\gamma>0$ is the *critical exponent* of the susceptibility.

 Assume that the system is driven exogeneously slowly, such that *K* approaches K_C linearly as

$$
K_C - K(t) \approx \alpha (t_C - t),
$$

where the critical time $t_C=$ most probable time for market crash.

 \bullet Reasonable to assume that the average hazard rate $h(t)$ in the market should be positively correlated with $\chi(K(t))$, i.e.

$$
h(t) \sim B(t_C - t)^{-\alpha},
$$

for $0 < \alpha < 1$ (so that the stock price remains finite at the critical point).

• Rational Expectation Model implies

$$
p(t) = \int_{t_0}^t h(t') dt',
$$

where $p(t)$ = price of stock, or stock index at time $t \implies$ power-law acceleration of price increase near t_C .

Additional Results of Model on Hierarchical Lattice

 $\bullet\,$ Power-law divergence of χ decorated by *log-periodic oscillations* due to discrete scale invariance in hierarchical lattice;

$$
\chi \sim A'_0(K_C-K)^{-\gamma} + A'_1(K_C-K)^{-\gamma} \cos [\omega \log(K_C-K) + \psi] + \cdots
$$

- $\bullet\;$ Such log-periodic oscillations reflected in $p(t)$ too;
- \bullet Sornette et al and Feigenbaum et al fitted market data to extract t_C —
—— reasonable agreement. (include Feigenbaum's graphs)

Examples of Small-World Networks

(a) ⁼ regular 1-dimensional clustered lattice with range of interaction *k*, (b) ⁼ Watts-Strogatz small-world network — randomly rewiring *^qkN* bonds, (c) ⁼ Newman-Watts small-world network — addition of *^qkN* random bonds.

Majority-Rule

- I chose states $s_i \in \{0, 1\}$ to use boolean variables. $0 = BUY$, $1 = SELL$.
- Majority-rule to generate time evolution. Stochastic parameter $p =$ probability that trader will take risk to change trading strategy when local trading network ambivalent.

$$
s_i(t+1) = \begin{cases} \text{MAJORITY} \left[s_i(t); \{ s_j(t) \mid j \in \mathfrak{N}_i \} \right], & \text{if } R_i(t) < 1 - p, \\ \text{MAJORITY} \left[\text{NOT} \left[s_i(t) \right]; \{ s_j(t) \mid j \in \mathfrak{N}_i \right], & \text{otherwise}; \end{cases}
$$

where MAJORITY-function returns 0 if majority of traders buying and 1 if majority of traders selling. NOT is binary negation.

Preliminary Results

Random Network

Newman-Watts Small-World Network

- Equilibrium state when roughly half of the traders buying and half of the traders selling;
- Equilibrium state of random network much more sensitive to small perturbations than that for Newman-Watts small-world network.

Continuous Phase Transition for $k=1!$

12

- Signs of continuous phase transition;
- $k = 1$ corresponds to 1-dimensional Ising model. If $p \leftrightarrow T$, then $T_C = 0$ for 1-dimensional Ising model $\implies p_C = 0$. But not the case: $p_C > 0$!
- No such qualitative changes for *k* > 2.

Further Investigations

- $\bullet\,$ Critical exponent of $k=1$ phase transition in Newman-Watts small-world network;
- Comparision between majority-rule and Sornette-Johansen sign-rule can we have phase transitions for $k>2$ Newman-Watts small-world networks?
- Sornette and Johansen used hierarchical lattices real world traders organized into hierarchies. But hierarchical lattice exhibit no clustering — Newman-Watts random rewiring to give hybrid hierarchical small-world networks?
- Stock index as an endogeneous global influence term?
- Fundamental diagram for the stock market?
- Random update rules and effective update rules?

Comments, suggestions and collaborations welcomed!