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Part I

Many-Body Fermion Density Matrices

2



Why Numerical Methods?

• Ground-state properties (energy, correlations,T = 0 phase diagram) of N →
∞ interacting QM degrees of freedom (spins, bosons, fermions) can be cal-
culated from the ground-state wave function.

• Exact analytical many-body wave functions rare.

• Approximate analytical many-body wave functions

– Perbutative:not valid over all Hamiltonian parameter(s); or

– Variational: involvea priori assumptions on structure of wave function.

• Numerical methods like

– Exact Diagonalization (ED); and/or

– Quantum Monte Carlo (QMC)

to obtain numerical wave functions or correlations offinite systems. Extrap-
olations then needed forN → ∞.
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Why Density Matrices?

• Build up QM state of infinite system from QM states of finite subsystems.

numerically tractable
finite system

copies of
finite system

• Pure stateon infinite system=⇒ mixed stateon finite subsystem.
(wave functionΨ) (density matrixρ)
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Why Density Matrices?

• Calculation of correlations of products of local observables.

c†1 c†2

c3

c4

A

B

• Expectation:〈Ψ|c†1c†2c3c4|Ψ〉 = 〈c
†

1c†2c3c4〉 = Tr ρABc†1c†2c3c4.

Nanyang Technological University, 19 July 2005 5



Quantum Renormalization Group (QRG)

• Repeated cycles oftruncationandrenormalization. [S. R. White, PRL69,
2863 (1992); R. J. Bursill, PRB60, 1643 (1999)]

• Truncation naturally guided by density matrix (DM).

|Ψ〉

trace down
STEP 1

ρ

STEP 2
truncate

ρ̃

build up
STEP 3

|Ψ̃〉

• Understanding structure of DM may lead to algorithmic improvements (e.g.
Transfer-Matrix Renormalization Group (TMRG)) and better ways to build
symmetries of problem into RG.
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Noninteracting Spinless Fermions in d Dimensions

H = −t
∑

〈r i,r j〉

[

c†i c j + c†jci

]

, |ΨF〉 = Fermi sea ground state

N-site system

NC-site cluster

(N − NC)-site
environment
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Exact Formula for Cluster DM

• For cluster ofNC sites, DM found to have the structure[M.-C. Chung and I.
Peschel, PRB64, 064412 (2001)]

ρC ∝ exp
[

−
∑NC

l=1
ϕl f †l fl

]

, { fl, f †l } = 1.

• Start from normalized grand-canonical DM of system

ρ0 = Q
−1 exp

[

−β(H − µF)
]

= Q
−1 exp

[∑

i, j

Γi, jc
†

i c j

]

= Q
−1 exp

[∑

k

Γ̃kkc̃
†

k c̃k

]

,

chemical potentialµ, inverse temperatureβ, fermion number operatorF =∑
i c†i ci =

∑
k c̃†k c̃k, grand-canonical partition functionQ, and coefficient ma-

tricesΓ (Γ̃ in momentum space).

• Introduce fermionic coherent states

|ξη〉 = |ξ1 · · · ξNC; η1 · · · ηN−NC〉 = exp
(

−

NC∑

i=1

ξic
†

i −

N−NC∑

j=1

η jc
†

j

)

|0〉 .

ξi andη j are anticommuting Grassman variables.
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Exact Formula for Cluster DM

• Matrix elements ofρ0 are

〈ξη|ρ0|ξ
′η′〉 = Q

−1 exp

[
(

ξ∗ η∗
)

eΓ
(

ξ′

η′

)]

.

• Coefficient matrices
� + eΓ =

[

A B
BT C

]

,
(

� + eΓ
)−1
=

[

D E
ET F

]

,

A andD squareNC×NC symmetric matrices,B andE nonsquareNC×(N−NC)
matrices,C andF square (N − NC) × (N − NC) symmetric matrices.

• Partial trace over environment, gaussian integration and matrix block inver-
sion gives matrix elements of cluster DM

〈ξ|ρC |ξ
′〉 =

∫

dη∗dη e−η
∗

� η 〈ξ −η|ρ0|ξ
′ η〉

= detD exp
{

ξ∗
[

D−1 − �

]

ξ′
}

.
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Exact Formula for Cluster DM

• Organize two-point functionsGī j = 〈ΨF |c
†

i c j|ΨF〉 into Green-function matrix
G andcluster Green-function matrixGC:

GN1 GN2 · · · GNNC
GNNC+1 · · · GNN

... ... . . . ... ... . . . ...

GNC+11 GNC+12 · · · GNC+1NC
GNC+1NC+1 · · · GNC+1N

GNC1 GNC2 · · · GNCNC
GNCNC+1 · · · GNCN

... ... . . . ... ... . . . ...

G2̄1 G2̄2 · · · G2̄NC
G2̄NC+1 · · · G2̄N

G1̄1 G1̄2 · · · G1̄NC
G1̄NC+1 · · · G1̄N

G =

GC

︸                                       ︷︷                                       ︸

block
︸                           ︷︷                           ︸

environment
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Exact Formula for Cluster DM

• Momentum space matrix elements ofG̃ andΓ̃,

G̃kk = 〈ΨF |c̃
†

k c̃k|ΨF〉 =
1

expβ(εk − µ) + 1
, Γ̃kk = −β(εk − µ)

• Matrix relations

eΓ̃ = G̃ ( � − G̃ )−1 =⇒ eΓ = G ( � − G )−1, � + eΓ = ( � − G )−1.

• Cluster matrix relations

D = � −GC, D−1 = ( � −GC)−1, D−1 − � = GC( � −GC)−1.

• Cluster DM matrix elements

〈ξ|ρC |ξ
′〉 = det(� −GC) exp

[

ξ∗GC( � −GC)−1ξ′
]

.

• Exact formula for operator form of cluster DM[SAC and C. L. Henley, PRB
69, 075111 (2004); I. Peschel, J. Phys. A: Math. Gen36, L205 (2003)]

ρC = det(� −GC) exp
{∑

i, j

[

logGC( � −GC)−1
]

i j
c†i c j

}

Nanyang Technological University, 19 July 2005 11



Many-Body Eigenstates and Eigenvalues of Cluster DM

• Eigenstates and eigenvalues of cluster Green-function matrix

|λl〉 = f †l |0〉 , GC |λl〉 = λl |λl〉 .

• |λl〉 simultaneous 1-particle eigenstates ofρC,

ρC |λl〉 = det(� −GC) e−ϕl |λl〉 , ϕl = − ln
[

λl(1− λl)
−1

]

.

• P-particle eigenstate ofρC described by a set of numbers (n1, . . . , nl, . . . , nNC),
nl = 0, 1,

|w〉 = f †l1 f †l2 · · · f †lP |0〉 , nl = δl,li,

with eigenvalue (DM weight)

w = det(� −GC) exp(−Φ) , Φ =
NC∑

l=1

nlϕl.
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Statistical Mechanics Analogy

• [SAC and C. L. Henley, PRB69, 075112 (2004)]

free spinless fermion ρC

Hamiltonian H =
∑

k εkc̃
†

kc̃k H̃ =
∑

l ϕl f †l fl pseudo-Hamiltonian
1-particle energy εk ϕl 1-particle pseudo-energy

1-particle operator c̃k fl 1-particle pseudo-operator
occupation number nk nl pseudo-occupation number

total energy E =
∑

l nkεk Φ =
∑

l nlϕl total pseudo-energy
Fermi level εF ϕF pseudo-Fermi level

• Based on analogy, average pseudo-occupation is

〈nl〉 = λl =
1

expϕl + 1
.

• Most probable eigenstate ofρC has structure of Fermi sea:ϕl ≤ ϕF occupied,
ϕl > ϕF empty.

• Other eigenstates look like ‘excitations’ about Fermi sea.
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Operator-Based DM Truncation Scheme

• DM eigenstates with largest weights always haveϕl � ϕF occupied and
ϕl � ϕF empty. These differ in nl for ϕl ≈ ϕF;

• Keep only f †l with ϕl ≈ ϕF:

ϕ ϕF 〈nl〉
truncate ϕF

〈nl〉 = 0

〈nl〉 = 1

}
m = γNC

f †l ’s retained

• Compare with weight-ranked truncation (used for e.g., in the DMRG):

– eigenstates with largest weights all kept;

– some eigenstates with intermediate weights not kept, but replaced with
eigenstates with slightly smaller weights;

– eigenstates with small weights not kept.
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Results: 1D Noninteracting Spinless Fermions
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Cluster DM on 2D Square Lattice

• Definition of system:

R1

R2

• 5-site cluster, various system sizesN = |R1 × R2|.

• Computation of cluster DMρC:

– obtain ground state|Ψ〉 (exact diagonalization or otherwise);

– ρ0 = |Ψ〉 〈Ψ|
partial
−−−−→

trace
ρC (care with fermion sign!);

– translational invariance;

– degeneracy, orientation and twist boundary conditions averaging.
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2D Cluster DM Weights

• nearest neighbor hopping (noninteracting) and nearest neighbor hopping+
infinite nearest neighbor repulsion (strongly interacting);

• 0-particle weight not interesting — monotonic decreasing with filling n̄, very
similar for noninteracting and strongly interacting systems;

• 5 1-particle weights, characterized by “angular momentum”quantum num-
berss1, px, py, d, s2.

• Infinite system limit for noninteracting system,∼200 sites for a squarish finite
system without twist boundary conditions averaging;

• Small finite systems (noninteracting & interacting) of∼20 sites, strong influ-
ence from finite size effects (most severe ford state, least severe fors1 state)
=⇒ require twist boundary conditions averaging.
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1-Particle Weights (Noninteracting)
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1-Particle Weights (Strongly Interacting)
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Correlation DM

• Entanglement entropyS = −Tr ρC logρC as gross diagnostic of correlations.
[Vidal et al, PRL90, 227902 (2003)].

• Systematic extraction of order parameters from cluster DM:

– Disconnected clustersA at r andB at r ′;

– Cluster DMsρA andρB, supercluster DMρAB;

– Define correlation DM,ρc = ρAB − ρA ⊗ ρB;

• Correlation DM containsall correlations betweenA and B — want to at-
tribute these correlations to various order parameters.
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Singular Value Decomposition of Correlation DM

• Start from operator basis of referencing operators

Kn =
∏

i

[

nici + (1− ni)cic
†

i

]

, Kn |n′〉 = δnn′ |0〉 .

• Writeρc =
∑

n,n′

[

(−1)fnn′ 〈n|ρAB|n′〉 − 〈l|ρA|l′〉 〈m|ρB|m′〉
]

K†l Kl′K
†
mKm′, where

|n〉 = |l〉 |m〉, andKn = KlKm.

• Product of referencing operators orthonormal with respectto Frobenius norm

Tr Xll ′Xl′′l′′′ = δll ′,l′′l′′′, Tr Ymm′Ym′′m′′′ = δmm′,m′′m′′′;

• Numerical singular value decomposition (SVD) of coefficient matrix ofρc

gives
ρc =

∑

α

σαXαY
†
α;

• XαY
†
α andXβY

†

β
represent independent quantum fluctuations on clustersA and

B, i.e. can treatXα andYα as order parameters.
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Extended Hubbard Ladder of Spinless Fermions

a = 1

a = 2
−t

−t
−t′

︸︷︷︸

Vj − 1 j j + 1

H = −t
∑

a

∑

j

(

c†j,ac j+1,a + c†j+1,ac j,a

)

− t
∑

j

(

c†j,1c j,2 + c†j,2c j,1

)

− t′
∑

j

(

c†j,1n j+1,2c j+2,1 + c†j+2,1n j+1,2c j,1

)

− t′
∑

j

(

c†j,2n j+1,1c j+2,2 + c†j+2,2n j+1,1c j,2

)

+ V
∑

a

∑

j

n j,an j+1,a + V
∑

j

n j,1n j,2
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Expected Order Parameters

• V → ∞, no nearest-neighbor occupation, smaller Hilbert space for exact
diagonalization.

• Basic physics that of spinless Luttinger liquid:

– Power-law decay of charge density wave (CDW) and superconducting
(SC) correlations;

– CDW dominate at long distances ifKρ < 1, SC dominate at long dis-
tances ifKρ > 1, Fermi liquid (FL) ifKρ = 1;

– Insulator at half-filling.

• Tunable parameters in model:

– Filling fraction n̄: fermion fluid for n̄ & 0, hole fluid forn̄ . 1
2;

– Correlated hopt′ favors pairing and hence SC correlations.
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Results From SVD of Correlation DM
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Conclusions for Part I

• Learning from noninteracting spinless fermions:

– Exact formula for cluster DM;

– Statistical mechanics analogy;

– Operator-Based DM Truncation Scheme;

– When 2D infinite-system limit reached numerically;

– Effectiveness of averaging aparatus.

• Applying to strongly interacting spinless fermions:

– Adaptation and extension of Operator-Based DM Truncation Scheme;

– Signatures of quantum phase transitions.

• SVD of correlation DM

– Systematic extraction of order parameters;

– Signatures of quantum phase transitions.
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Part II

Pattern-Forming Cellular Automata
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Cellular Automata

• A collection of finite state machines. The state of theith machine at timet
given bysi(t) ∈ A, whereA is a finite set, also called thealphabet;

• A collection of neighborhoods. The neighborhood of theith machine is de-
noted byNi;

• A dynamical ruleϕ : Ni → A, such thatsi(t + 1) = ϕ(s j(t) | j ∈ Ni).
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Classification of CAs

• Elementary and compound CAs. Examples are Game of Life (GOL)and the
Nagel-Schreckenberg model of traffic flow respectively.

• Wolfram classified all 256 1D elementary CAs (ECAs) by their dynamical
properties. Types I, II and III.

• Wolfram naming convention: if the ECA is

111 110 101 100 011 010 001 000
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

α7 α6 α5 α4 α3 α2 α1 α0

then Wolfram rule number is
∑7

j=0α j2j.

• No known attempts at classifying ECAs of higher dimensions.
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From Pattern to ECA

• In P681 Pattern Formation and Spatio-Temporal Chaos/Prof Eberhard Bo-
denschatz, given PDE model, find what patterns form spontaneously. Can do
the same for CA models.

• Ask the inverse question instead: given a pattern, what are all the possible
CAs that spontaneously generate it?

• Two parts to this question:

– what CA rules will have given pattern as fixed point; and

– under which CA rules is the pattern stable?

Nanyang Technological University, 19 July 2005 29



Striped Phase in 1D

• Consider striped phase in 1D:

• Fixed point requirement implies the transition rules

→ and → .

• Does not uniquely determine ECA rule, 6 more transition rules to specify.
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Defects in Striped Phase

• To analyze stability of striped phase, need to investigate behaviour of depar-
tures from pattern, i.e. defects, under various ECA rules.

• Point defects:

vacancy interstitial

• Domain walls:

−1 domain wall +1 domain wall
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Strips Stable in Presence of Point Defects

• Since ECA not completely specified, can choose remaining transition rules
to stabilize striped phase in presence of point defects.

• Demand that isolated vacancy ‘heals’: implies transition rules

→ , → , → .

• Demand that isolated interstitial ‘heals’: implies transition rules

→ , → , → .

• ECA completely specified by requirements that: (a) striped phase is fixed
point; (b) isolated vacancies ‘heal’; and (c) isolated interstitials ‘heal’.
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Completed ECA Rule

ECA is Rule 77 in Wolfram’s classification scheme:

s j−1(t) s j(t) s j+1(t) s j(t + 1)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0
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Further Considerations

• Domain Wall Dynamics. Both±1 domain walls stationary under Rule 77,
i.e. if start from random initial configuration, all domain walls initially present
will be ‘frozen in’.

• Robustness of Striped Phase.By modifying some transition rules in Rule
77, can test genericity of striped pattern. Found that:

– Striped phasemost stable under Rule 77, but also stable under 6 other
ECA rules derived from Rule 77, in which a single transition rule is
modified.

– Striped phasemarginally stable under 4 ECA rules derived from Rule
77, in which one or two transition rules are modified.

– Striped phase unstable once more than two transition rules are modified
from Rule 77. Oscillatory phase nucleates.
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2D ECAs

• In 1D, neighborhood simple, unless one wants to go to next nearest neighbor.

• In 2D, greater variety of neighborhoods. Simplest neighborhood for 2D CA
is von Neumann (VN) neighborhood:

CW

S

E

N

• With VN neighborhood, total of 25 = 32 possible local configurations=⇒
total of 232 = 4,294,967,296 2D ECAs.
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λ = 4, v = +1 Traveling Wave Phase

• A traveling wave phase withλ = 4 andv = +1 looks like

• The traveling wave transition rules are

→ , → , → , → .

Nanyang Technological University, 19 July 2005 36



Multiple Defect Analysis & Transition Rule Conflict

• Unlike in 1D, point defect analysis alone cannot fully specify ECA. Need to
do multiple defect analysis.

• Four types of point defect:

VL VR IL IR

• In this chosen pattern, transition rules implied byVL conflicts with that im-
plied byVR, and transition rules implied byIL conflicts with that implied by
IR.

• Generic problem.
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Protocol for Conflict Resolution

• When transition rule implied by two configurations in conflict, give prece-
dence to configuration with lower number of defects.

• When transition rule implied by leading edge configuration conflicts with
that implied by trailing edge configuration, give precedence to trailing edge
configuration.

• Can show that some multi-defect configurations whose implied transition
rules are forfeited will still be ‘healed’.

• Compromise necessary because traveling wave breaks left-right symmetry.

• Completed CA rule is Rule 2,383,284,874.
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Simulating Rule 2,383,284,874
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Compound CAs

• Some patterns cannot be achieved using ECAs because conflictresolution
protocol used cannot ensure stability of desired pattern.

• What to do?

– Use larger neighborhoods — equivalent to a restricted classof com-
pound ECAs.

– Use larger state space, saysi(t) = 0, 12, 1.

• The main idea is to increase the number of transition rules available for pat-
tern matching.

• Another way is to compound together ECAs.

– Enumerate all defect configurations that can be ‘healed’ in afew time
steps.

– For each defect configuration, find the ECA that ‘heals’, while acting
as identity map on other configurations, other than the desired patterned
configurations.
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λ = 4, v = +1 Traveling Wave Phase in 1-D

config VL + IL VL + IR VR + IL VR + IR

0 0 0 1 1 0 0

0 0 1 1 1 1 1

0 1 0 0 0 1 1

0 1 1 1 1 1 1

1 0 0 0 0 0 0

1 0 1 0 1 0 1

1 1 0 0 0 0 0

1 1 1 1 0 1 0

rule 139 43 142 46
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Does It Work?

• Rules 43 and 142 by themselves most readily generate the desired pattern for
initial densityρ = 1

2. Not good away from half-filling.

• Rules 46 and 139 less readily generate desired pattern.

• Compounding 46+ 139 or 43+ 142 does not make desired pattern any more
stable.

• Reason: competing fixed points. Back to square one — need to find fixed
points or limit cycles of given ECA.
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Conclusions for Part II

• Standard approach to pattern formation: given model, what patterns?

• Inverse approach to pattern formation: given pattern, whatmodels? Studied
in the context of ECAs.

• Requiring that pattern be fixed point of dynamics and stable with respect to
point defects completely specify 1D ECA. Notion of genericity for pattern
under ‘perturbations’ to 1D ECA.

• For patterns in higher-dimensional ECAs, multiple defect analysis necessary.

• Generic problem of transition rule conflict, leading to reduced stability of
pattern.

• Compound CAs, more transition rules for pattern matching toavoid con-
flicts. More transition rules=⇒ more fixed points and limit cycles=⇒
competition between fixed points.

• Try compound CAs with transition rules designed to make all but desired
fixed point unstable.
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