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Part |

Many-Body Fermion Density Matrices



Why Numerical Methods?

e Ground-state propertiesi(ergy, correlations = O phase diagrajjof N —
oo interacting QM degrees of freedorap(ns, bosons, fermiohgan be cal-
culated from the ground-state wave function.

e Exact analytical many-body wave functions rare.

Approximate analytical many-body wave functions

— Perbutativenot valid over all Hamiltonian parameter(s); or
— Variational:involve a priori assumptions on structure of wave function.

Numerical methods like

— Exact Diagonalization (EQandor
— Quantum Monte Carlo (QMC)

to obtain numerical wave functions or correlationdioite systems. Extrap-
olations then needed fiN — .
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Why Density Matrices?

e Build up QM state of infinite system from QM states of finite syftems.

copies of
finite system

numerically tractable
finite system

e Pure stat®n infinite system—=— mixed stateon finite subsystem.
(wave function?) (density matrixp)
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Why Density Matrices?

e Calculation of correlations of products of local obsereabl

o Expectation¥|c]cicsCal¥) = (cicicsCa) = Tr papCiChCaCa.
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Quantum Renormalization Group (QRG)

e Repeated cycles dfuncationandrenormalization [S. R. White, PRLG9,
2863 (1992); R. J. Bursill, PRB0O, 1643 (1999)]

e Truncation naturally guided by density matrix (DM).

') P
STEP 1
trace down
. A
truncate
build up .
| STEP 3 L
'¥) p

e Understanding structure of DM may lead to algorithmic inyamments €.9.
Transfer-Matrix Renormalization Group (TMR)zand better ways to build
symmetries of problem into RG.
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Noninteracting Spinless Fermions in  d Dimensions

H=-t) |c¢j+cic|.  [¥e) = Fermisea ground state
ri,rjp

N-site system

(N — N¢)-site

. environment
Nc-site cluster
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Exact Formula for Cluster DM

e For cluster ofN¢ sites, DM found to have the structuid.-C. Chung and |.
Peschel, PRB4, 064412 (2001)]

N
oC o« exp[— lecl 0| fIT f|] , AT, fIT} =1

e Start from normalized grand-canonical DM of system
00 = 2 texp[-B(H - uF)] = exp[z I JCTCJ] exp[z fkkélc”:k],
Kk

chemical potential:,, inverse temperaturg, fermion number operatdf =

> ciTci =D Elék, grand-canonical partition functiof2, and codicient ma-
tricesI” (I' iIn momentum space).

e Introduce fermionic coherent states

N—Nc

Em) =161 ENGi L " TIN-NG) = ex;( quCT Z UJCT)|O>

j=1
& andn; are anticommuting Grassman variables.
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Exact Formula for Cluster DM

e Matrix elements opg are

€l

(Enlpolé'n’y = 271 exp

e Codficient matrices

A B -1 D E
]1+eF:lBT C]’ (]l+er) :[ET F]’

A andD squara\NcxNc symmetric matriced3 andE nonsquaréc x(N—N¢)
matricesC andF square N — Nc) X (N — Nc) symmetric matrices.

e Partial trace over environment, gaussian integration aaulixblock inver-
sion gives matrix elements of cluster DM

(Elpelé’) = f diy"dy €7 (& ~qlpolé” )
= detD exp{f* [D‘1 - ]1] §’}.
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Exact Formula for Cluster DM

e Organize two-point function&;; = <‘“P|:|C;er|\P|:> Into Green-function matrix
¢ andcluster Green-function matriGc:

Gc
GI]_ GIZ Tt GINC GIN(;+1 T GIN
G31 G2 T Gang | Ganet T Gay x
¢ O
O
G = GN_Cl GN_CZ e GN_CNC GN_CNC+1 e GN_CN )
— — e — — - —— |
GN(;+11 GNc+12 GNc+1NC GNc+1Nc+1 GNc+1N %
=
(9
2
—_— —_— e o o s s e o o —_— o
GNl GN2 GNNC GNNC+1 GNN J
block environment
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Exact Formula for Cluster DM

e Momentum space matrix elements@fandr,
1

DB T 1 Fe = —Blec— p)

G = (PrICTIPE) =
e Matrix relations
d=d(1-9)"' = =91-9)", 1+d=1-9"

Cluster matrix relations
D=1-Ge, D1=(1-Go)?!, D1-1=Gc(1-Go)™t

e Cluster DM matrix elements
(lpcl€’) = detll — Ge) exp|€'Ge(1 - Go) ¢ ].

Exact formula for operator form of cluster DMAC and C. L. Henley, PRB
69, 075111 (2004); I. Peschel, J. Phys. A: Math. GénL205 (2003)]

pe = dett ~Go) exp{3_[logGe(1 - Go) | cle
]
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Many-Body Eigenstates and Eigenvalues of Cluster DM

e Eigenstates and eigenvalues of cluster Green-functiormat
[y = £710y,  Gelhiy = A1)
e |4)) simultaneous 1-particle eigenstatepef
pcld) = det@ - Ge) e 1), @ =-In[a(1-2)".
o P-particle eigenstate @i described by a set of numbers(...,n;,...,Nng),

N = 0,1,
_ Tt T —
W) = 1:|1f|2 Tt f'P 0), n= 5|,|i7

with eigenvalue (DM weight)

Nc
w = det@l — Gc) exp(-®), @ =) ngi.
=1
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Statistical Mechanics Analogy

e [SAC and C. L. Henley, PRB9, 075112 (2004)]

er

free spinless fermion 0c
Hamiltonian H = Y, &&.& | H = >, ¢ " fi | pseudo-Hamiltonian
1-particle energy €k "] 1-particle pseudo-energy
1-particle operator Ck fi 1-particle pseudo-operatq
occupation number Nk N, pseudo-occupation numb
total energy E=> ne | ® =) ng |total pseudo-energy
Fermi level €F OF pseudo-Fermi level
e Based on analogy, average pseudo-occupation is
1
ny =4 = :
S ! expy + 1

e Most probable eigenstate of has structure of Fermi se@; < ¢ occupied,
@1 > pF eMpty.

e Other eigenstates look like ‘excitations’ about Fermi sea.
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Operator-Based DM Truncation Scheme

e DM eigenstates with largest weights always haye<x ¢ occupied and
¢ > @ empty. These dier inn, for ¢ =~ ¢F;

o Keep onlyf" with ¢ ~ r:

truncate
—————

A m=yNc
vF } f’s retained

‘(W) =1

e Compare with weight-ranked truncatiomsgd for e.g., in the DMR)5

PF np)

AS)

— eigenstates with largest weights all kept;

— some eigenstates with intermediate weights not kept, ipliced with
eigenstates with slightly smaller weights;

— eigenstates with small weights not kept.
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Results: 1D Noninteracting Spinless Fermions
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Cluster DM on 2D Square Lattice

e Definition of system:

o
%
e
e

X K

e 5-site cluster, various system sidds= |R; X Ry|.

e Computation of cluster D\bc:

— obtain ground stat@¥) (exact diagonalization or otherwise);

tial _ . .
— po = |¥) (Y| ptaﬁ> oc (care with fermion sign!);
race

— translational invariance:

— degeneracy, orientation and twist boundary conditionsaaeg.
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2D Cluster DM Weights

e nearest neighbor hopping (noninteracting) and neareghher hopping+
Infinite nearest neighbor repulsion (strongly interacking

e O-particle weight not interesting — monotonic decreasiitty ¥illing n, very
similar for noninteracting and strongly interacting sysse

e 5 1-particle weights, characterized by “angular momentgoeEintum num-
berss;, px, Py, d, S.

e Infinite system limit for noninteracting system200 sites for a squarish finite
system without twist boundary conditions averaging;

e Small finite systems (noninteracting & interacting~#0 sites, strong influ-
ence from finite sizeféects (most severe fal state, least severe fgy state)
—> require twist boundary conditions averaging.
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1-Particle Weights (Noninteracting)
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1-Particle Weights (Strongly Interacting)
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Correlation DM

e Entanglement entrop$ = — Tr pc logpoc as gross diagnostic of correlations.
[Vidal et al, PRL90, 227902 (2003)]

e Systematic extraction of order parameters from cluster DM.:
— Disconnected clustes atr andB atr’;

— Cluster DMspp andpg, supercluster DM ag;
— Define correlation DMp® = pag — pa ® pg;

e Correlation DM containgll correlations betweeA and B — want to at-
tribute these correlations to various order parameters.
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Singular Value Decomposition of Correlation DM

e Start from operator basis of referencing operators

Kn =[] [mci+ (@ -n)ac/|.  Kaln) = 6 [0).

o Writep® =) [(—1)f””' (Njoasin’y = (lloall”) (mlpslm'>] K| Ky K Kn, where
Ny = |1y Im), andK;, = K|Kp,.

e Product of referencing operators orthonormal with resfmeEtobenius norm

Tr X||/X|//|/// — 6”/,|//|///, Tr Ymm/Ym//m/// - 6mm/,m//m///;

e Numerical singular value decomposition (SVD) of fla@ent matrix ofp°
gives

P =) TaXe Y

o X,Y! andXﬁYg represent independent quantum fluctuations on clustarsl
B, i.e. can treaX, andY, as order parameters.
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Extended Hubbard Ladder of Spinless Fermions

\S IR SRSwE

= —t Z Z( Ci+1a+ cHlacJ a) - tZ( 1Cj2 + CJT,ij,l)

j

T
~t Z (cj,ln +12Cj+2.1 + )5 1Nj+1.2Cj1)
|

~t Z (C},zn j+1.1Cj+22 + C]-r+2,2n j+1,1Cj,2)

J
+V Z Z NjaNj+1,a + V Z Nj1N;j.2
a ] J
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Expected Order Parameters

e V — o0, N0 nearest-neighbor occupation, smaller Hilbert spacefact
diagonalization.

e Basic physics that of spinless Luttinger liquid:

— Power-law decay of charge density wave (CDW) and superaziimgu
(SC) correlations;

— CDW dominate at long distancesH, < 1, SC dominate at long dis-
tances ifK, > 1, Fermi liquid (FL) ifK, = 1;

— Insulator at half-filling.
e Tunable parameters in model:

— Filling fraction n: fermion fluid forn > 0, hole fluid forn's 3;

— Correlated hoy favors pairing and hence SC correlations.
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Results From SVD of Correlation DM
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Conclusions for Part |

e Learning from noninteracting spinless fermions:

— Exact formula for cluster DM,;

— Statistical mechanics analogy;

— Operator-Based DM Truncation Scheme;

— When 2D infinite-system limit reached numerically;
— Effectiveness of averaging aparatus.

e Applying to strongly interacting spinless fermions:

— Adaptation and extension of Operator-Based DM Truncaticimeshe;
— Signatures of quantum phase transitions.

e SVD of correlation DM

— Systematic extraction of order parameters;
— Signatures of quantum phase transitions.
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Part |l

Pattern-Forming Cellular Automata
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Cellular Automata

e A collection of finite state machines. The state of tHanachine at time
given bys(t) € A, whereA is a finite set, also called tra¢phabet;

e A collection of neighborhoods. The neighborhood of thenachine is de-
noted byN;;

o Adynamical rulep : Ni — A, such thas(t + 1) = ¢(si(t) | ] € M).
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Classification of CAs

e Elementary and compound CAs. Examples are Game of Life (GDH)the
Nagel-Schreckenberg model offtia flow respectively.

e Wolfram classified all 256 1D elementary CAs (ECAS) by theginamical
properties. Types I, Il and llI.

e \Wolfram naming convention: if the ECA is

111 110 101 100 011 010 001 00O
R N A

a7y e A5 A4 @3 A2 @1 Qo

then Wolfram rule number igjlo ;2.

e No known attempts at classifying ECAs of higher dimensions.

Nanyang Technological University, 19 July 2005 28



From Pattern to ECA

e In P681 Pattern Formation and Spatio-Temporal Chro$ Eberhard Bo-
denschatz, given PDE model, find what patterns form spoatetg Can do
the same for CA models.

e Ask the inverse question instead: given a pattern, what latbeapossible
CAs that spontaneously generate it?

e Two parts to this question:

— what CA rules will have given pattern as fixed point; and
— under which CA rules is the pattern stable?
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Striped Phase in 1D

e Consider striped phase in 1D:

0C00000000000000

e Fixed point requirement implies the transition rules

Q00 <XOX and O@0O - X@X.

e Does not uniquely determine ECA rule, 6 more transitiongutespecify.
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Defects in Striped Phase

e To analyze stability of striped phase, need to investigatebiour of depar-
tures from pattern, i.e. defects, under various ECA rules.

e Point defects:

OOOCO?OOOOO OQOOOQ?OOOO
vacancy interstitial

e Domain walls:

00000000008 0800088080

—1 domain wall +1 domain wall
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Strips Stable in Presence of Point Defects

e Since ECA not completely specified, can choose remainingsitian rules
to stabilize striped phase in presence of point defects.

e Demand that isolated vacancy ‘heals’: implies transitides
OO00-X@X, @00-XOX, OO®@—-XOX.

e Demand that isolated interstitial ‘heals’: implies trdims rules

000 XOX 000 X0X, 000 - X0OX

e ECA completely specified by requirements that: (a) stripkdse is fixed
point; (b) isolated vacancies ‘heal’; and (c) isolatednstigals ‘heal’.
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Completed ECA Rule

ECA Is Rule 77 in Wolfram’s classification scheme:

Si—1(t)  si(t)  sjea(t)  si(t+1)

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Nanyang Technological University, 19 July 2005



Further Considerations

e Domain Wall Dynamics. Both +1 domain walls stationary under Rule 77,
l.e. If start from random initial configuration, all domairalis initially present
will be ‘frozen in’.

e Robustness of Striped PhaseBy modifying some transition rules in Rule
77, can test genericity of striped pattern. Found that:

— Striped phasenost stable under Rule 77, but also stable under 6 other
ECA rules derived from Rule 77, in which a single transitiareris
modified.

— Striped phasenarginally stable under 4 ECA rules derived from Rule
77, In which one or two transition rules are modified.

— Striped phase unstable once more than two transition reéasiadified
from Rule 77. Oscillatory phase nucleates.
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2D ECAs

e In 1D, neighborhood simple, unless one wants to go to nexeseaeighbor.

e In 2D, greater variety of neighborhoods. Simplest neighbod for 2D CA
Is von Neumann (VN) neighborhood:

o With VN neighborhood, total of 2= 32 possible local configurations=
total of 222 = 4,294967,296 2D ECAs.
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A =4,v = +1 Traveling Wave Phase

e A traveling wave phase with = 4 andv = +1 looks like

e The traveling wave transition rules are

X X X X
‘:I R x§x, %:I_) x§x, E? R xI;Ix, E’ R x|;|x.
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Multiple Defect Analysis & Transition Rule Conflict

Unlike in 1D, point defect analysis alone cannot fully spe&CA. Need to
do multiple defect analysis.

Four types of point defect:

VL VR IL IR

In this chosen pattern, transition rules implied\jyconflicts with that im-
plied by Vg, and transition rules implied bly conflicts with that implied by

IR.

Generic problem.
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Protocol for Conflict Resolution

e When transition rule implied by two configurations in cortfligive prece-
dence to configuration with lower number of defects.

When transition rule implied by leading edge configuratiomfécts with
that implied by trailing edge configuration, give precedetxtrailing edge
configuration.

Can show that some multi-defect configurations whose irdpitansition
rules are forfeited will still be ‘healed'.

e Compromise necessary because traveling wave breaksgeftsymmetry.

Completed CA rule is Rule 2,383,284,874.
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Simulating Rule 2,383,284,874
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Compound CAs

Some patterns cannot be achieved using ECAs because coefiadtition
protocol used cannot ensure stability of desired pattern.

e What to do?

— Use larger neighborhoods — equivalent to a restricted @asom-
pound ECAs.

— Use larger state space, ssft) = 0, % 1.

e The main idea is to increase the number of transition rulagahe for pat-
tern matching.

Another way is to compound together ECAs.

— Enumerate all defect configurations that can be ‘healed’ fewatime
steps.

— For each defect configuration, find the ECA that ‘heals’, elatting
as identity map on other configurations, other than the eéeqatterned
configurations.
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A =4,v = +1Traveling Wave Phase in 1-D

config | Vo +I | VL+Igr | VR+ 1L | VrR+ IR

0O 0 O 1 1 0 0
0O 0 1 1 1 1 1
0O 1 O 0 0 1 1
0O 1 1 1 1 1 1
1 0 O 0 0 0 0
1 0 1 0 1 0 1
1 1 0 0 0 0 0
1 1 1 1 0 1 0

rule 139 43 142 46
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Does It Work?

e Rules 43 and 142 by themselves most readily generate thedesittern for
Initial densityp = % Not good away from half-filling.

e Rules 46 and 139 less readily generate desired pattern.

e Compounding 46 139 or 43+ 142 does not make desired pattern any more
stable.

e Reason: competing fixed points. Back to square one — needddified
points or limit cycles of given ECA.
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Conclusions for Part Il

e Standard approach to pattern formation: given model, watiems?

e Inverse approach to pattern formation: given pattern, wiadels? Studied
In the context of ECASs.

e Requiring that pattern be fixed point of dynamics and stallle kespect to
point defects completely specify 1D ECA. Notion of genaydor pattern
under ‘perturbations’ to 1D ECA.

e For patterns in higher-dimensional ECAs, multiple defeclgsis necessary.

e Generic problem of transition rule conflict, leading to reeld stability of
pattern.

e Compound CAs, more transition rules for pattern matchinguoid con-
flicts. More transition rules=— more fixed points and limit cycles=
competition between fixed points.

e Try compound CAs with transition rules designed to make atl desired
fixed point unstable.
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