Many-Body Fermion Density Matrices and Pattern-Forming Cellular Automata

SIEW-ANN CHEONG Department of Physics, Cornell University

School of Physical and Mathematical Sciences Nanyang Technological University July 19, 2005

Acknowledgements

My thesis work under Prof. Christopher L. Henley is supported by NSF grant DMR-9981744, and part of the computational work is done using the computing facilities of the Cornell Center for Materials Research, supported by NSF grant DMR-0079992.

I have benefitted from discussions with Prof. James P. Sethna, Prof. Eberhard Bodenschatz, Prof. N. David Mermin, as well as Mr. Lim Lek Heng and Mr. Lim Hway Kiong.

Part I

Many-Body Fermion Density Matrices

Why Numerical Methods?

- Ground-state properties (energy, correlations, *T* = 0 phase diagram) of *N* → ∞ interacting QM degrees of freedom (spins, bosons, fermions) can be calculated from the ground-state wave function.
- Exact analytical many-body wave functions rare.
- Approximate analytical many-body wave functions
 - Perbutative: not valid over all Hamiltonian parameter(s); or
 - Variational: involve a priori assumptions on structure of wave function.
- Numerical methods like
 - Exact Diagonalization (ED); and/or
 - Quantum Monte Carlo (QMC)

to obtain numerical wave functions or correlations of finite systems. Extrapolations then needed for $N \rightarrow \infty$.

Why Density Matrices?

• Build up QM state of infinite system from QM states of finite subsystems.

• Pure state on infinite system \implies mixed state on finite subsystem. (wave function Ψ) (density matrix ρ)

Why Density Matrices?

• Calculation of correlations of products of local observables.

• Expectation: $\langle \Psi | c_1^{\dagger} c_2^{\dagger} c_3 c_4 | \Psi \rangle = \langle c_1^{\dagger} c_2^{\dagger} c_3 c_4 \rangle = \operatorname{Tr} \rho_{AB} c_1^{\dagger} c_2^{\dagger} c_3 c_4.$

Quantum Renormalization Group (QRG)

- Repeated cycles of truncation and renormalization. [S. R. White, PRL **69**, 2863 (1992); R. J. Bursill, PRB **60**, 1643 (1999)]
- Truncation naturally guided by density matrix (DM).

• Understanding structure of DM may lead to algorithmic improvements (e.g. Transfer-Matrix Renormalization Group (TMRG)) and better ways to build symmetries of problem into RG.

Noninteracting Spinless Fermions in *d* **Dimensions**

Nanyang Technological University, 19 July 2005

Exact Formula for Cluster DM

• For cluster of *N_C* sites, DM found to have the structure [M.-C. Chung and I. Peschel, PRB **64**, 064412 (2001)]

$$\rho_C \propto \exp\left[-\sum_{l=1}^{N_C} \varphi_l f_l^{\dagger} f_l\right], \quad \{f_l, f_l^{\dagger}\} = 1.$$

• Start from normalized grand-canonical DM of system

$$\rho_0 = \mathscr{Q}^{-1} \exp\left[-\beta(H-\mu F)\right] = \mathscr{Q}^{-1} \exp\left[\sum_{i,j} \Gamma_{i,j} c_i^{\dagger} c_j\right] = \mathscr{Q}^{-1} \exp\left[\sum_k \tilde{\Gamma}_{kk} \tilde{c}_k^{\dagger} \tilde{c}_k\right]$$

chemical potential μ , inverse temperature β , fermion number operator $F = \sum_i c_i^{\dagger} c_i = \sum_k \tilde{c}_k^{\dagger} \tilde{c}_k$, grand-canonical partition function \mathcal{Q} , and coefficient matrices Γ ($\tilde{\Gamma}$ in momentum space).

• Introduce fermionic coherent states

$$|\boldsymbol{\xi}\boldsymbol{\eta}\rangle = |\boldsymbol{\xi}_1 \cdots \boldsymbol{\xi}_{N_C}; \boldsymbol{\eta}_1 \cdots \boldsymbol{\eta}_{N-N_C}\rangle = \exp\left(-\sum_{i=1}^{N_C} \boldsymbol{\xi}_i c_i^{\dagger} - \sum_{j=1}^{N-N_C} \boldsymbol{\eta}_j c_j^{\dagger}\right)|0\rangle.$$

 ξ_i and η_j are anticommuting Grassman variables.

Exact Formula for Cluster DM

• Matrix elements of ρ_0 are

$$\langle \boldsymbol{\xi} \boldsymbol{\eta} | \rho_0 | \boldsymbol{\xi}' \boldsymbol{\eta}' \rangle = \mathscr{Q}^{-1} \exp\left[\left(\boldsymbol{\xi}^* \ \boldsymbol{\eta}^* \right) e^{\Gamma} \begin{pmatrix} \boldsymbol{\xi}' \\ \boldsymbol{\eta}' \end{pmatrix} \right].$$

• Coefficient matrices

$$\mathbb{1} + e^{\Gamma} = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}, \quad \left(\mathbb{1} + e^{\Gamma}\right)^{-1} = \begin{bmatrix} D & E \\ E^T & F \end{bmatrix},$$

A and D square $N_C \times N_C$ symmetric matrices, B and E nonsquare $N_C \times (N-N_C)$ matrices, C and F square $(N - N_C) \times (N - N_C)$ symmetric matrices.

• Partial trace over environment, gaussian integration and matrix block inversion gives matrix elements of cluster DM

$$\begin{aligned} \langle \boldsymbol{\xi} | \rho_C | \boldsymbol{\xi}' \rangle &= \int d\boldsymbol{\eta}^* d\boldsymbol{\eta} \, e^{-\boldsymbol{\eta}^* \mathbb{1} \boldsymbol{\eta}} \, \langle \boldsymbol{\xi} - \boldsymbol{\eta} | \rho_0 | \boldsymbol{\xi}' \, \boldsymbol{\eta} \rangle \\ &= \det D \, \exp \left\{ \boldsymbol{\xi}^* \left[D^{-1} - \mathbb{1} \right] \boldsymbol{\xi}' \right\}. \end{aligned}$$

Exact Formula for Cluster DM

• Organize two-point functions $G_{\bar{i}j} = \langle \Psi_F | c_i^{\dagger} c_j | \Psi_F \rangle$ into Green-function matrix \mathscr{G} and cluster Green-function matrix G_C :

• Momentum space matrix elements of $\tilde{\mathscr{G}}$ and $\tilde{\Gamma}$,

$$\tilde{\mathscr{G}}_{kk} = \langle \Psi_F | \tilde{c}_k^{\dagger} \tilde{c}_k | \Psi_F \rangle = \frac{1}{\exp \beta(\epsilon_k - \mu) + 1}, \quad \tilde{\Gamma}_{kk} = -\beta(\epsilon_k - \mu)$$

• Matrix relations

$$e^{\tilde{\Gamma}} = \tilde{\mathscr{G}}(\mathbb{1} - \tilde{\mathscr{G}})^{-1} \implies e^{\Gamma} = \mathscr{G}(\mathbb{1} - \mathscr{G})^{-1}, \quad \mathbb{1} + e^{\Gamma} = (\mathbb{1} - \mathscr{G})^{-1}.$$

• Cluster matrix relations

$$D = \mathbb{1} - G_C, \quad D^{-1} = (\mathbb{1} - G_C)^{-1}, \quad D^{-1} - \mathbb{1} = G_C(\mathbb{1} - G_C)^{-1}.$$

• Cluster DM matrix elements

$$\langle \boldsymbol{\xi} | \rho_C | \boldsymbol{\xi}' \rangle = \det(\mathbb{1} - G_C) \exp\left[\boldsymbol{\xi}^* G_C (\mathbb{1} - G_C)^{-1} \boldsymbol{\xi}' \right]$$

Exact formula for operator form of cluster DM [SAC and C. L. Henley, PRB 69, 075111 (2004); I. Peschel, J. Phys. A: Math. Gen 36, L205 (2003)]

$$\rho_C = \det(\mathbb{1} - G_C) \exp\left\{\sum_{i,j} \left[\log G_C (\mathbb{1} - G_C)^{-1}\right]_{ij} c_i^{\dagger} c_j\right\}$$

Many-Body Eigenstates and Eigenvalues of Cluster DM

• Eigenstates and eigenvalues of cluster Green-function matrix

$$|\lambda_l\rangle = f_l^{\dagger} |0\rangle, \quad G_C |\lambda_l\rangle = \lambda_l |\lambda_l\rangle.$$

• $|\lambda_l\rangle$ simultaneous 1-particle eigenstates of ρ_C ,

$$\rho_C |\lambda_l\rangle = \det(\mathbb{1} - G_C) e^{-\varphi_l} |\lambda_l\rangle, \quad \varphi_l = -\ln\left[\lambda_l (1 - \lambda_l)^{-1}\right].$$

• *P*-particle eigenstate of ρ_C described by a set of numbers $(n_1, \ldots, n_l, \ldots, n_{N_C})$, $n_l = 0, 1$,

$$|w\rangle = f_{l_1}^{\dagger} f_{l_2}^{\dagger} \cdots f_{l_P}^{\dagger} |0\rangle, \quad n_l = \delta_{l,l_i},$$

with eigenvalue (DM weight)

$$w = \det(\mathbb{1} - G_C) \exp(-\Phi), \quad \Phi = \sum_{l=1}^{N_C} n_l \varphi_l.$$

• [SAC and C. L. Henley, PRB **69**, 075112 (2004)]

free spinless fermion		ρ_{C}		
Hamiltonian	$H = \sum_{k} \epsilon_k \tilde{c}_k^{\dagger} \tilde{c}_k$	$ ilde{H} = \sum_{l} \varphi_{l} f_{l}^{\dagger} f_{l}$	pseudo-Hamiltonian	
1-particle energy	ϵ_k	$arphi_l$	1-particle pseudo-energy	
1-particle operator	${ ilde c}_k$	f_l	1-particle pseudo-operator	
occupation number	n_k	n_l	pseudo-occupation number	
total energy	$E = \sum_{l} n_k \epsilon_k$	$\Phi = \sum_{l} n_{l} \varphi_{l}$	total pseudo-energy	
Fermi level	ϵ_F	$arphi_F$	pseudo-Fermi level	

• Based on analogy, average pseudo-occupation is

$$\langle n_l \rangle = \lambda_l = \frac{1}{\exp \varphi_l + 1}.$$

- Most probable eigenstate of ρ_C has structure of Fermi sea: $\varphi_l \leq \varphi_F$ occupied, $\varphi_l > \varphi_F$ empty.
- Other eigenstates look like 'excitations' about Fermi sea.

Operator-Based DM Truncation Scheme

- DM eigenstates with largest weights always have $\varphi_l \ll \varphi_F$ occupied and $\varphi_l \gg \varphi_F$ empty. These differ in n_l for $\varphi_l \approx \varphi_F$;
- Keep only f_l^{\dagger} with $\varphi_l \approx \varphi_F$:

- Compare with weight-ranked truncation (used for e.g., in the DMRG):
 - eigenstates with largest weights all kept;
 - some eigenstates with intermediate weights not kept, but replaced with eigenstates with slightly smaller weights;
 - eigenstates with small weights not kept.

Results: 1D Noninteracting Spinless Fermions

Nanyang Technological University, 19 July 2005

• Definition of system:

- 5-site cluster, various system sizes $N = |\mathbf{R}_1 \times \mathbf{R}_2|$.
- Computation of cluster DM ρ_C :
 - obtain ground state $|\Psi\rangle$ (exact diagonalization or otherwise);

$$-\rho_0 = |\Psi\rangle \langle \Psi| \xrightarrow[\text{trace}]{\text{trace}} \rho_C \text{ (care with fermion sign!);}$$

- translational invariance;
- degeneracy, orientation and twist boundary conditions averaging.

2D Cluster DM Weights

- nearest neighbor hopping (noninteracting) and nearest neighbor hopping + infinite nearest neighbor repulsion (strongly interacting);
- 0-particle weight not interesting monotonic decreasing with filling \bar{n} , very similar for noninteracting and strongly interacting systems;
- 5 1-particle weights, characterized by "angular momentum" quantum numbers s₁, p_x, p_y, d, s₂.
- Infinite system limit for noninteracting system, ~200 sites for a squarish finite system without twist boundary conditions averaging;
- Small finite systems (noninteracting & interacting) of ~20 sites, strong influence from finite size effects (most severe for *d* state, least severe for *s*₁ state) ⇒ require twist boundary conditions averaging.

1-Particle Weights (Noninteracting)

Nanyang Technological University, 19 July 2005

1-Particle Weights (Strongly Interacting)

Nanyang Technological University, 19 July 2005

Correlation DM

- Entanglement entropy $S = -\operatorname{Tr} \rho_C \log \rho_C$ as gross diagnostic of correlations. [Vidal *et al*, PRL **90**, 227902 (2003)].
- Systematic extraction of order parameters from cluster DM:
 - Disconnected clusters A at **r** and B at **r'**;
 - Cluster DMs ρ_A and ρ_B , supercluster DM ρ_{AB} ;
 - Define correlation DM, $\rho^c = \rho_{AB} \rho_A \otimes \rho_B$;
- Correlation DM contains *all* correlations between A and B want to attribute these correlations to various order parameters.

Singular Value Decomposition of Correlation DM

• Start from operator basis of referencing operators

$$K_{\mathbf{n}} = \prod_{i} \left[n_{i}c_{i} + (1 - n_{i})c_{i}c_{i}^{\dagger} \right], \quad K_{\mathbf{n}} |\mathbf{n}'\rangle = \delta_{\mathbf{nn}'} |0\rangle.$$

- Write $\rho^c = \sum_{\mathbf{n},\mathbf{n}'} \left[(-1)^{f_{\mathbf{n}\mathbf{n}'}} \langle \mathbf{n} | \rho_{AB} | \mathbf{n}' \rangle \langle \mathbf{l} | \rho_A | \mathbf{l}' \rangle \langle \mathbf{m} | \rho_B | \mathbf{m}' \rangle \right] K_{\mathbf{l}'}^{\dagger} K_{\mathbf{l}'} K_{\mathbf{m}'}^{\dagger} K_{\mathbf{m}'}$, where $|\mathbf{n}\rangle = |\mathbf{l}\rangle |\mathbf{m}\rangle$, and $K_{\mathbf{n}} = K_{\mathbf{l}} K_{\mathbf{m}}$.
- Product of referencing operators orthonormal with respect to Frobenius norm

$$\operatorname{Tr} X_{\mathbf{l}\mathbf{l}'}X_{\mathbf{l}''\mathbf{l}'''} = \delta_{\mathbf{l}\mathbf{l}',\mathbf{l}''\mathbf{l}'''}, \quad \operatorname{Tr} Y_{\mathbf{m}\mathbf{m}'}Y_{\mathbf{m}''\mathbf{m}'''} = \delta_{\mathbf{m}\mathbf{m}',\mathbf{m}''\mathbf{m}'''};$$

• Numerical singular value decomposition (SVD) of coefficient matrix of ρ^c gives

$$\rho^c = \sum_{\alpha} \sigma_{\alpha} X_{\alpha} Y_{\alpha}^{\dagger};$$

• $X_{\alpha}Y_{\alpha}^{\dagger}$ and $X_{\beta}Y_{\beta}^{\dagger}$ represent independent quantum fluctuations on clusters *A* and *B*, i.e. can treat X_{α} and Y_{α} as order parameters.

Extended Hubbard Ladder of Spinless Fermions

$$\begin{split} H &= -t \sum_{a} \sum_{j} \left(c_{j,a}^{\dagger} c_{j+1,a} + c_{j+1,a}^{\dagger} c_{j,a} \right) - t \sum_{j} \left(c_{j,1}^{\dagger} c_{j,2} + c_{j,2}^{\dagger} c_{j,1} \right) \\ &- t' \sum_{j} \left(c_{j,1}^{\dagger} n_{j+1,2} c_{j+2,1} + c_{j+2,1}^{\dagger} n_{j+1,2} c_{j,1} \right) \\ &- t' \sum_{j} \left(c_{j,2}^{\dagger} n_{j+1,1} c_{j+2,2} + c_{j+2,2}^{\dagger} n_{j+1,1} c_{j,2} \right) \\ &+ V \sum_{a} \sum_{j} n_{j,a} n_{j+1,a} + V \sum_{j} n_{j,1} n_{j,2} \end{split}$$

Expected Order Parameters

- $V \rightarrow \infty$, no nearest-neighbor occupation, smaller Hilbert space for exact diagonalization.
- Basic physics that of spinless Luttinger liquid:
 - Power-law decay of charge density wave (CDW) and superconducting (SC) correlations;
 - CDW dominate at long distances if $K_{\rho} < 1$, SC dominate at long distances if $K_{\rho} > 1$, Fermi liquid (FL) if $K_{\rho} = 1$;
 - Insulator at half-filling.
- Tunable parameters in model:
 - Filling fraction \bar{n} : fermion fluid for $\bar{n} \ge 0$, hole fluid for $\bar{n} \le \frac{1}{2}$;
 - Correlated hop *t*′ favors pairing and hence SC correlations.

Results From SVD of Correlation DM

Nanyang Technological University, 19 July 2005

- Learning from noninteracting spinless fermions:
 - Exact formula for cluster DM;
 - Statistical mechanics analogy;
 - Operator-Based DM Truncation Scheme;
 - When 2D infinite-system limit reached numerically;
 - Effectiveness of averaging aparatus.
- Applying to strongly interacting spinless fermions:
 - Adaptation and extension of Operator-Based DM Truncation Scheme;
 - Signatures of quantum phase transitions.
- SVD of correlation DM
 - Systematic extraction of order parameters;
 - Signatures of quantum phase transitions.

Part II

Pattern-Forming Cellular Automata

Cellular Automata

- A collection of finite state machines. The state of the *i*th machine at time *t* given by $s_i(t) \in \mathcal{A}$, where \mathcal{A} is a finite set, also called the *alphabet*;
- A collection of neighborhoods. The neighborhood of the i^{th} machine is denoted by \mathcal{N}_i ;
- A dynamical rule $\varphi : \mathcal{N}_i \to \mathcal{A}$, such that $s_i(t+1) = \varphi(s_j(t) \mid j \in \mathcal{N}_i)$.

Classification of CAs

- Elementary and compound CAs. Examples are Game of Life (GOL) and the Nagel-Schreckenberg model of traffic flow respectively.
- Wolfram classified all 256 1D elementary CAs (ECAs) by their dynamical properties. Types I, II and III.
- Wolfram naming convention: if the ECA is

111 110 101 100 011 010 001 000 $\downarrow \quad \downarrow \quad \downarrow$ $\alpha_7 \quad \alpha_6 \quad \alpha_5 \quad \alpha_4 \quad \alpha_3 \quad \alpha_2 \quad \alpha_1 \quad \alpha_0$

then Wolfram rule number is $\sum_{j=0}^{7} \alpha_j 2^j$.

• No known attempts at classifying ECAs of higher dimensions.

From Pattern to ECA

- In P681 Pattern Formation and Spatio-Temporal Chaos/Prof Eberhard Bodenschatz, given PDE model, find what patterns form spontaneously. Can do the same for CA models.
- Ask the inverse question instead: given a pattern, what are all the possible CAs that spontaneously generate it?
- Two parts to this question:
 - what CA rules will have given pattern as fixed point; and
 - under which CA rules is the pattern stable?

• Consider striped phase in 1D:

• Fixed point requirement implies the transition rules

 $\bigcirc \bigcirc \bigcirc \rightarrow \times \bigcirc \times$ and $\bigcirc \bigcirc \bigcirc \bigcirc \rightarrow \times \bigcirc \times .$

• Does not uniquely determine ECA rule, 6 more transition rules to specify.

Defects in Striped Phase

- To analyze stability of striped phase, need to investigate behaviour of departures from pattern, i.e. defects, under various ECA rules.
- Point defects:

• Domain walls:

Strips Stable in Presence of Point Defects

- Since ECA not completely specified, can choose remaining transition rules to stabilize striped phase in presence of point defects.
- Demand that isolated vacancy 'heals': implies transition rules

$$OOO \rightarrow X \oplus X, \ \oplus OO \rightarrow X O X, \ OO \oplus \rightarrow X O X.$$

• Demand that isolated interstitial 'heals': implies transition rules

$$\bigcirc \bigcirc \bigcirc \rightarrow \mathsf{X} \bigcirc \mathsf{X}, \ \bigcirc \bigcirc \bigcirc \bigcirc \rightarrow \mathsf{X} \oslash \mathsf{X}, \ \bigcirc \bigcirc \bigcirc \bigcirc \rightarrow \mathsf{X} \oslash \mathsf{X}.$$

• ECA completely specified by requirements that: (a) striped phase is fixed point; (b) isolated vacancies 'heal'; and (c) isolated interstitials 'heal'.

Completed ECA Rule

$s_{j-1}(t)$	$s_j(t)$	$s_{j+1}(t)$	$s_{j}(t + 1)$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

ECA is Rule 77 in Wolfram's classification scheme:

Further Considerations

- **Domain Wall Dynamics.** Both ±1 domain walls stationary under Rule 77, i.e. if start from random initial configuration, all domain walls initially present will be 'frozen in'.
- **Robustness of Striped Phase.** By modifying some transition rules in Rule 77, can test genericity of striped pattern. Found that:
 - Striped phase *most* stable under Rule 77, but also stable under 6 other ECA rules derived from Rule 77, in which a single transition rule is modified.
 - Striped phase *marginally* stable under 4 ECA rules derived from Rule 77, in which one or two transition rules are modified.
 - Striped phase unstable once more than two transition rules are modified from Rule 77. Oscillatory phase nucleates.

2D ECAs

- In 1D, neighborhood simple, unless one wants to go to next nearest neighbor.
- In 2D, greater variety of neighborhoods. Simplest neighborhood for 2D CA is von Neumann (VN) neighborhood:

• With VN neighborhood, total of $2^5 = 32$ possible local configurations \implies total of $2^{32} = 4,294,967,296$ 2D ECAs.

$\lambda = 4, v = +1$ Traveling Wave Phase

• A traveling wave phase with $\lambda = 4$ and v = +1 looks like

• The traveling wave transition rules are

Multiple Defect Analysis & Transition Rule Conflict

- Unlike in 1D, point defect analysis alone cannot fully specify ECA. Need to do multiple defect analysis.
- Four types of point defect:

- In this chosen pattern, transition rules implied by V_L conflicts with that implied by V_R , and transition rules implied by I_L conflicts with that implied by I_R .
- Generic problem.

Protocol for Conflict Resolution

- When transition rule implied by two configurations in conflict, give precedence to configuration with lower number of defects.
- When transition rule implied by leading edge configuration conflicts with that implied by trailing edge configuration, give precedence to trailing edge configuration.
- Can show that some multi-defect configurations whose implied transition rules are forfeited will still be 'healed'.
- Compromise necessary because traveling wave breaks left-right symmetry.
- Completed CA rule is Rule 2,383,284,874.

Compound CAs

- Some patterns cannot be achieved using ECAs because conflict resolution protocol used cannot ensure stability of desired pattern.
- What to do?
 - Use larger neighborhoods equivalent to a restricted class of compound ECAs.
 - Use larger state space, say $s_i(t) = 0, \frac{1}{2}, 1$.
- The main idea is to increase the number of transition rules available for pattern matching.
- Another way is to compound together ECAs.
 - Enumerate all defect configurations that can be 'healed' in a few time steps.
 - For each defect configuration, find the ECA that 'heals', while acting as identity map on other configurations, other than the desired patterned configurations.

$\lambda = 4, \nu = +1$ Traveling Wave Phase in 1-D

config		$V_L + I_L$	$V_L + I_R$	$V_R + I_L$	$V_R + I_R$	
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	1
1	1	0	0	0	0	0
1	1	1	1	0	1	0
	rule		139	43	142	46

Does It Work?

- Rules 43 and 142 by themselves most readily generate the desired pattern for initial density $\rho = \frac{1}{2}$. Not good away from half-filling.
- Rules 46 and 139 less readily generate desired pattern.
- Compounding 46 + 139 or 43 + 142 does not make desired pattern any more stable.
- Reason: competing fixed points. Back to square one need to find fixed points or limit cycles of given ECA.

Conclusions for Part II

- Standard approach to pattern formation: given model, what patterns?
- Inverse approach to pattern formation: given pattern, what models? Studied in the context of ECAs.
- Requiring that pattern be fixed point of dynamics and stable with respect to point defects completely specify 1D ECA. Notion of genericity for pattern under 'perturbations' to 1D ECA.
- For patterns in higher-dimensional ECAs, multiple defect analysis necessary.
- Generic problem of transition rule conflict, leading to reduced stability of pattern.
- Compound CAs, more transition rules for pattern matching to avoid conflicts. More transition rules \implies more fixed points and limit cycles \implies competition between fixed points.
- Try compound CAs with transition rules designed to make all but desired fixed point unstable.