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The Millenium Prize Questions
� On 24 May 2000, the Clay Mathematics Institute announced a list of 7

important problems in mathematics, each prized at US$1,000,000:

– P versus NP;

– The Hodge Conjecture;

– The Poincaré Conjecture;

– The Riemann Hypothesis;

– Yang-Mills Existence and Mass Gap;

– Navier-Stokes Existence and Smoothness;

– The Birch and Swinnerton-Dyer Conjecture.
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The Sixth Problem : : :

� Navier-Stokes Equation of Fluid Dynamics: Prove the existence or non-
existence of smooth solutions.

� Why the bounty?

– Results on nonlinear PDEs notoriously difficult to obtain;

– Importance of Navier-Stokes Equation in engineering.

� Implications to physics?
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: : : and the Holy Grail of Physics
� Microscopic constituents of our world governed by Quantum Mechanics

— the Schrödinger Equation:24� NX
j

h̄2

2mj

r2
j + V(r1; : : : ; rN)35Ψ(r1; : : : ; rN; t) = ih̄

��t
Ψ(r1; : : : ; rN; t):

(1)

� Macroscopic objects with low velocities relative to each other governed by
Newton’s Laws. For liquids and gases — the Navier-Stokes Equation:��u�t

+ �u � ru = �rp + �r2u + F : (2)

� Feynman(?): Derive the Navier-Stokes Equation from the Schrödinger
Equation for �1023 molecules.
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A Classical Look at Liquids
� Quantum problem of liquid hard, so try to appreciate the problem from a

classical point of view first.

� Classically, liquid made up of a huge collection (�1023) of closely packed
molecules, which interacts strongly with each other.

� Short range correlations, but no long range order =) cannot treat as a
weakly interacting gas, but also cannot treat as a highly ordered solid.

� macroscopic vs microscopic — macroscopic properties like density, pres-
sure, temperature, : : : not well defined in this discrete microscopic picture.
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Caricature of a Classical Liquid

5



Defining Density
� Textbook definition is � = mass/volume. In a liquid want to define the

density as a function of position r = (x; y; z).
� But mass concentrated at molecules =) � high where the molecules

are, but zero where there is no molecule.

� Density as a function of position has large and random fluctuations. For
example, microscopic density function of 1-dimensional gas looks like

x(   )ρ

x

Difficult to handle such a density function.
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Smoothing With Moving Averages
� Do not have such microscopic spatial and temporal resolutions in typical

measurements of macroscopic quantities =) �(r; t) actually some sort
of averaged value over our limited resolution at r and t.

� Smooth the density function using moving average approach:

– choose sampling sphere of radius R;

– centre it at r = (x; y; z);
– determine the total mass m inside the sampling sphere;

– �(r; t) = m=V, V = volume of sampling sphere.
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Caricature of Moving Average
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A Smoother Density Function
� Equivalent to convolution of the original microscopic density function with

a spherical window function.

� �(r; t) now much smoother, although there are still bumps when r is varied.
This happens whenever our sampling sphere gains or lose one or more
molecules. Size of bump, or fluctuations, depend on the distribution of
positions of the molecules.

� For uniformly randomly distributed molecules,

size of fluctuations / R2; total mas enclosed / R3: (3)

i.e. size of fluctuations in �(r; t) / 1=R as R !1, i.e. fluctuations weighted
down.
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Remarks

� Spatial fluctuations decays as 1=R, which is very slow.

� At each given sampling radius R, temporal fluctuations of �(r; t) dies off
exponentially under thermal equilibrium conditions.

� If fluctuations decay exponentially with R, then beyond some radius R, the
amplitude of the fluctuations of �(r; t) will become practically negligible.

� Not the case here, i.e. spatial fluctuations are supressed but still physically
important.
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A Mean Field Description of Liquids

� Starting from classical picture of discrete molecules, arrive at the contin-
uum description of liquid by means of averaging.

� Fluctuations suppressed to give mean field description.

� Quantum fluctuations if starting from quantum mechanics. But some method
of averaging can be applied to yield mean field picture.

� In this sense, the Navier-Stokes Equation is the mean field description of
fluids.

12



Breakdown of Mean Field Description

� We appear to have some recipe for arriving at a macroscopic picture start-
ing from a disparate microscopic picture. So do we have our holy grail?

� We surmised that for a uniformly distributed fluid, the mean field density
function �(r; t) is well defined and physically meaningful.

� In such situations, the average gives a good description of what goes
on in the liquid. But such a mean field picture fails under the following
circumstances:
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Multi-Modal Distributions
� Example: A survey gives the average household size in US to be 2.5

persons.

� However, if pick US household at random, will find either a single person
living alone, or big families with many kids. In fact, very few US households
has 2 to 3 persons.

� If plot frequency distribution of household size, find that it looks like
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� We say that such a distribution is bimodal, i.e. there are two modes in the
distribution. In distributions with more than one mode, the mean is a very
bad description of the system.

� In fact, even for unimodal distributions which are heavily skewed, the mean
is already not representative.



Turbulence
� Mean field description for liquids also breaks down in turbulence.

� Reynolds number is defined as Re = �ud� : (4)

� At low Reynolds numbers, liquid flow is smooth and regular. If introduce
small marker particle, will find it carried along by the liquid flow along a
smooth curve.

� At high Reynolds numbers, smooth nature of liquid flow breaks down, and
flow is characterized by eddy currents, or vortices of various sizes. Marker
particle then found to follow very erratic path as liquid carries it along.
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Phase Transitions
� At the liquid-to-gas phase transition, mixture of liquid and gaseous phases.

� Origin of strong density fluctuations somewhat like that of multimodal dis-
tributions — liquid and gaseous phase have different densities.

� Moving average method will always produce some number that can be in-
terpreted as a density. But meaningless since the fluctuations is so large.

� In fact, at a phase transition, fluctuations of all scales equally important.
Although most macroscopic properties can be computed, no longer pro-
vide an adequate description of the liquid. For example, how to explain
macroscopically why there is a latent heat?
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Caricature of a Liquid At Its Boiling Point
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Scale Invariance and Renormalization

� Until now seen one of the major successes of statistical physics — that
under ordinary circumstances, most physical systems admit a mean field
description.

� However, seen when the mean field description fails to provide a repre-
sentative picture of the system of interest — when fluctuations become so
strong that its amplitude is greater than or comparable to the mean.

� In exploitation of wildest of fluctuations that statistical physics has its sec-
ond major success: that of scale invariance and renormalization.
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The Physics of Scale
� Imagine a superpowerful microscope which can see random molecular

motion in a liquid.

� At highest magnification, the most striking pattern is the lack of thereof, as
the molecules jiggle randomly around.

� Lower magnification, then start seeing a coordinated flow superimposed
on the random motion.

� Even lower magnification, start seeing convection currents, but can no
longer resolve the random molecular motion.

� No magnification, see the coordinated motion of convection currents in
Rayleigh-Benard flow.

19



� In this example, magnification sets the length scale. The scale determines
what kind of physics is dominant, and physics of the same system may
look different at different scale.



Scale Invariance
� At phase transition, wild fluctuations of macroscopic quantities at all scales=) no amount of fiddling with the shape and size of sampling sphere can

smooth them out.

� Fluctuations statistically similar at all scales — scale invariance.

� For example, if choose a sampling sphere of radius R, get �R(r; t). If then
choose sampling sphere of radius �R, get ��R(r; t). Fluctuations in �R and��R has same statistical properties.

� Such scale invariance more apparent in Ising systems, although generic
of phase transitions.

� How to exploit scale invariance?

20



Power Laws in Statistical Physics
� Let x be a physical quantity, and let p(x) be the distribution of x.

� If physics contained in x scale invariant, then if rescale x by �, distribution
for �x should look like distribution for x, i.e.

p(�x) = f (�)p(x): (5)

� Solution to this functional equation is

p(x) = Ax�: (6)

For physically meaningful distribution of x, � < 0. This kind of distribution
is called power law.

� � called scaling exponent or critical exponent.
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The Renormalization Group� Scaling exponents can be determined experimentally, but for some phys-
ical systems at their critical points, can be theoretically calculated using
techniques collectively known as the Renormalization Group (RG).� Idea behind RG simple:

– start from fundamental scale of system;

– calculate some probability distribution that is scale invariant at critical
point;

– Rescale system by � and calculate the probability distribution again.

� Since probability distribution scale invariant at the critical point, equate the
two distributions and obtain a RG Flow Equation as function of �, and read
off scaling exponent.
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Marching Through the Hierarchy of Physics
� Conquered both mean field description and fluctuations description? No,

only the wildest fluctuations with RG.

� RG handles scale-free (scale invariant) systems well, but how to handle
systems in which statistical fluctuations contain intrinsic length or time
scale?

� Can use same RG machinery, except that now cannot assume that prob-
ability distribution remains invariant under scaling.

� Then track probability distribution as function of the scale. A few things
can happen:
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Change of Scale

sets the size of
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the mean

sets the scale ofx
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Change in Amplitude of Fluctuations

sets the size of
fluctuations about
the mean

sets the scale ofx

p x(   )p x(   )
amplitude of
fluctuations
changed (expected)

x x
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Change in Form of Distribution

sets the size of
fluctuations about
the mean

sets the scale ofx

p x(   )p x(   )

distribution becomes
multimodal (unexpected,

for example, phase transition)

x x
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Mission Impossible : : : ?

� If we perform scaling and obtain a sequence of distributions fp�(x)g.

� At each scale �, can then obtain the mean field description and see how
the physics look like.

� But this is pure moot: we do not have a general prescription on how to do
this in general yet.
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Modeling, Mis-Modeling and Universal Results

� Problem of model mis-specification.

� Creative leap of imagination necessary from experimental observations to
theoretical model — uniqueness and fidelity.

� ‘Bad’ if p(x) and q(x) are two slightly different distributions, but under scal-
ing, give rise to vastly different sequence of physics!

� ‘Good’ if can make conclusions independent of details of model, i.e. want
universal results.
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Universality
� One of the most amazing discoveries in statistical physics — different

physical systems can have the same critical exponents.

� The classes of physical systems having same critical exponents called
universality classes. These share the same universal fluctuation statistics
at their respective critical points.

� At critical points, the detailed differences between the physical systems
are not important.

� Very important, since unlikely that we get all details correct.

� Universality is the most powerful statement we can make about physical
systems under critical conditions.
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Wanted: Universality
� Example: In social sciences, want to develop quantitative models.

� Common objections:

– mis-specification of parameter values;

– neglect of other parameters.

� Model produces qualitative agreement with observation. Convincing? Model
‘correct’?

� Universal conclusions: this universality class of models will produce this
collection of qualitative and quantitative features, and no other universality
class will.
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What We Want to Learn From Universality

Classes?

� Genericity — For example, say feature X produced by universality class
UX, and feature Y produced by universality class UY .

� UX contains a broad spectrum of models. UY contains a narrow spectrum
of models.

� Can argue that feature X is more generic than feature Y.
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Summary
� Mean field description good when statistical fluctuations can be suppressed

— but not a religion.

� Extreme fluctuations — scale invariance, power laws, scaling exponents
and RG.

� When fluctuations not scale-free, then should renormalize the governing
distribution of the model instead of mean field description. No clue how to
do this yet.

� Universality and universality classes — can make conclusions that are
independent of details of model.
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