Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U

March 25, 2004

Support: NSF grants DMR-9981744, DMR-0079992

The Big Picture

- **GOAL** Ground state of infinite-sized interacting system;
- **LIMITATION** Numerically, can only solve finite-sized interacting system;
- Pure state (infinite system) ⇒ mixed state (finite subsystem) ⇒ natural description using density matrices; Review the use of density matrices in quantum mechanics;
- DOWN & UP Truncation & Renormalization: smaller subsystem in small system (Q1) → small subsystem in infinite system (Q2)?
 - Learning from noninteracting systems. Already know answer to Q2;
 - * Statistical mechanics analogy: density matrix eigenstates ↔ manybody energy eigenstates of noninteracting system;
 - * Operator-Based Density Matrix Truncation Scheme & results for 1D free spinless fermions;
 - Cluster density matrices on 2D square lattice: Compare noninteracting and strongly interacting systems. Attempt to answer Q1.

Density Matrix & Quantum Mechanics

• Quantum mechanics:

state	wave function $ \Psi\rangle$	density matrix (DM) ρ
pure	<	 Image: A set of the set of the
mixed	×	 Image: A set of the set of the

- If system $S = \text{subsystem } A (\{|a\rangle, |a'\rangle, ...\}) + \text{subsystem } B (|b\rangle, |b'\rangle, ...\}),$ state of system $\rho \rightarrow \text{state of subsystem } \rho_A$:
 - Partial trace over subsystem *B*, i.e. $\rho_A = \text{Tr}_B \rho$;
 - Expectation of referencing operators, i.e. $(\rho_A)_{aa'} = \langle K_{a'}^{\dagger} K_a \rangle_{\rho}$ [S.-A. Cheong and C. L. Henley, Phys. Rev. B **69**, 075111 (2004)].
- Applications of ρ_A :
 - DM-based renormalization group [S. R. White, PRL 69, 2863 (1992);
 R. J. Bursill, PRB 60, 1643 (1999)];
 - Diagnostic & extraction of important correlations [Vidal *et al*, PRL 90, 227902 (2003)].

DM of Free Spinless Fermions

- Free spinless fermions \rightarrow Fermi sea ground state $|\Psi_F\rangle$.
- For block of *B* sites identified as subsystem, DM found to have the structure [M.-C. Chung and I. Peschel, PRB **64**, 064412 (2001)]

$$\rho_B \propto \exp\left[-\sum_{l=1}^B \varphi_l f_l^{\dagger} f_l\right], \quad \{f_l, f_l^{\dagger}\} = 1.$$

Relation to correlation function G(i, j) = ⟨Ψ_F|c[†]_ic_j|Ψ_F⟩, i, j = 1,..., B, found to be [S.-A. Cheong and C. L. Henley, Phys. Rev. B 69, 075111 (2004); I. Peschel, J. Phys. A: Math. Gen 36, L205 (2003)]

$$\varphi_l = -\ln\left[\lambda_l(1-\lambda_l)^{-1}\right], \quad \mathbb{G}_B|\lambda_l\rangle = \lambda_l\left(f_l^{\dagger}|0\rangle\right), \quad (\mathbb{G}_B)_{ij} = G(i,j).$$

• A particular eigenstate of ρ_B described by a set of numbers $(n_1, \dots, n_l, \dots, n_B)$, $n_l = 0, 1$,

$$|w\rangle = f_{l_1}^{\dagger} f_{l_2}^{\dagger} \cdots f_{l_P}^{\dagger} |0\rangle, \quad n_l = \delta_{l,l_i},$$

and its weight is

$$w \propto \exp(-\Phi), \quad \Phi = \sum_{l=1}^{B} n_l \varphi_l.$$

Statistical Mechanics Analogy

• [S.-A. Cheong and C. L. Henley, Phys. Rev. B 69, 075112 (2004)]

free spinless	fermion	$ ho_B$		
Hamiltonian	$H = \sum_{k} \epsilon_{k} \tilde{c}_{k}^{\dagger} \tilde{c}_{k}$	$ ilde{H} = \sum_{l} \varphi_{l} f_{l}^{\dagger} f_{l}$	pseudo-Hamiltonian	
1-particle energy	ϵ_k	$arphi_l$	1-particle pseudo-energy	
1-particle operator	$ ilde{c}_k$	f_l	1-particle pseudo-operator	
occupation number	n_k	n_l	pseudo-occupation number	
total energy	$E = \sum_{l} n_k \epsilon_k$	$\Phi = \sum_l n_l \varphi_l$	total pseudo-energy	
Fermi level	ϵ_F	$arphi_F$	pseudo-Fermi level	

• Based on analogy, average pseudo-occupation is

$$\langle n_l \rangle = \frac{1}{\exp \varphi_l + 1}.$$

- Most probable eigenstate of ρ_B has structure of Fermi sea: $\varphi_l \leq \varphi_F$ occupied, $\varphi_l > \varphi_F$ empty.
- Other eigenstates look like 'excitations' about Fermi sea.

Operator-Based DM Truncation Scheme

- DM eigenstates with largest weights always have $\varphi_l \ll \varphi_F$ occupied and $\varphi_l \gg \varphi_F$ empty. These differ in n_l for $\varphi_l \approx \varphi_F$;
- Keep only f_l^{\dagger} with $\varphi_l \approx \varphi_F$:

- Compare with weight-ranked truncation:
 - eigenstates with largest weights all kept;
 - some eigenstates with intermediate weights not kept, but replaced with eigenstates with slightly smaller weights;
 - eigenstates with small weights not kept.

Cluster DM on 2D Square Lattice

• Definition of system:

- 5-site cluster, various system sizes $N = |\mathbf{R}_1 \times \mathbf{R}_2|$.
- Computation of cluster DM ρ_C :
 - obtain ground state $|\Psi\rangle$ (exact diagonalization or otherwise);

$$-\rho_0 = |\Psi\rangle \langle \Psi| \xrightarrow[\text{trace}]{\text{trace}} \rho_C \text{ (care with fermion sign!);}$$

- translational invariance;
- degeneracy and shape averaging.

2D Cluster DM — 1-Particle Weights

- nearest neighbor hopping (noninteracting) and nearest neighbor hopping + infinite nearest neighbor repulsion (strongly interacting);
- 0-particle weight not interesting monotonic decreasing with filling \bar{n} , very similar for noninteracting and strongly interacting systems;
- Look at 1-particle weights: 5 of these, characterized by "angular momentum" quantum numbers *s*₁, *p_x*, *p_y*, *d*, *s*₂.
- Infinite system limit for noninteracting system, ≈ 200 sites for a squarish finite system;
- Small finite systems (noninteracting & interacting) of ≈ 20 sites, strong influence from:
 - finite size effect;
 - shell effect (most severe for d state, least severe for s_1 state).

2D Cluster DM — 1-Particle Weights

2D Cluster DM — 1-Particle Weights

Conclusions

- Much learnt from noninteracting spinless fermions (Q2):
 - 1D
 - * structure of ρ_B ;
 - * Operator-Based DM Truncation Scheme;
 - 2D
 - * when infinite system limit reached;
 - * shell effect & its persistence;
- How much of this understanding can be applied to interacting fermions (Q1)?
 - finite size effect & shell effect entangled;
 - adaptation and extension of Operator-Based DM Truncation Scheme;
- Still far from eventual goal: ground state of infinite system of interacting fermions.