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Mosaic Nature of Biological Sequences
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Mosaic Nature of Biological Sequences
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The Jensen-Shannon Divergence

e Given lengthN sequencex = XXo---Xn, X = A C G, T, assume com-
posed ofM > 1 statistically distinct Bernoulli segments with domainliwa

atiq,...,Im-1. DetermineM-segment sequence likelihood
L o fm
PM(X;|1,---,|M—1;p1,---,pM):ll ll (pa) s ; ﬁrsnzzsfm.
m=1s=ACG,T s 'y

e Jensen-Shannon divergencé, IEEE Trans. Infor. Theor37, 145 (1991)]

P ~ A
Ay = IogF'\iI = —Z fslogpS+ZZ fg'log pg’
S m S

IS symmetric relative entropy providing quantitative maasof ‘goodness-
of-fit of M-segment model over 1-segment model.

e Straightforward to generaliz&y, to Markov chains of ordeK > 0. Markov
chains model dinucleotide frequencies and codon biasesalrgenomic se-
guences better than Bernoulli chains with extended alghabe
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Recursive Jensen-Shannon Segmentation

e STEP 1 (Segmentation):

— Glven sequenc& = XiXo--- Xy, COmpute 2-segment Jensen-Shannon
divergenceh,(i) as function of cursor position

— Findi* such thatA,(i*) = max Ax(i). The best 2-segment model fors
X = X XR, Wherex, = X --- X+ andXg = X1 - - - XN.

e STEP 2 (RecursionRepealSTEP 1for x, andxg.

e STEP 3 (Termination)i-segment model selected over 2-segment model if:

— Hypothesis Testingprobability of obtaining divergence beyond than
observedA, greater than prescribed tolerange[Bernaola-Galan et
al, Phys. Rev. (53,5181 (1996); Roman-Roldnet al, Phys. Rev. Lett.
80, 1344 (1998).]

— Model Selection:information criterion €.g. AIC, BIQ for 2-segment
model greater than that for 1-segment model, Phys. Rev. Lett.86,
5815 (2001).]
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Mean-Field Analysis of Recursive Segmentation

e Distribute sequence statistics uniformly along lengtmol® intra-sequence
variations in statistics, i.enean-field picture

discrete sequence positions, integer counts

offc cARAA el <§A cAcccclilcANARE - AAl -H-HA A
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continuous sequence positions, real counts

e Analyze recursive segmentation scheme entirely withinn¥fesd picture:

— Peaks in mean-field divergence spectrum appagrat domain walls;

— Domain walls also appear &sks, or even haveranishing divergence
In mean-field divergence spectrum.

— Recursive segmentation eventually discowwdrslomain walls.
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Pitfalls of Recursive Segmentation

0.04

3 Context Sensitivity:

_ — domain wall strengths change as recursion proceeds -
— domain walls not discovered according to true ordel
— incomplete segmentation pick up weak domain walls,
0.03— but miss stronger ones —
— especially severe for repetitive sequences

Need tomoveor removeexisting cuts for better segmentatipn
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Segmentation Optimization

e Two procedures to optimize domain wajt

Im-2 Im-1 Im Im+1 Ime2

— First-order updateComputeATl(i) for supersegmeni-1,i,im+1), and
choose, = 1", such that\,(I*) = max_ Ax(1), to be new position
of domain wall.

_1<i<im+1

— Second-order updat@omputeA"Z”‘l(i) for supersegment{ o, im-1,1)
andA"Z“”(i) for supersegment,(im.1, im+2), and choose, = i*, such that
ATFL(I*)ATH(*) = max ATFY(i)AT* (i), to be new position of
domain wall.

m-1<i<imt1

e Domain Walls{i.f,n}ﬁn":1 updated serially, or in parallel.

e Optimized recursive segmentatidrRight afterSTEP 1 (Segmentatiojpti-
mize segmentation using first- or second-order update iggor
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Conclusions and Further Work

e To conclude, we have:

— Refined recursive segmentation scheme by generalizingdesisannon
divergence to Markov chains of order> 0.

— Undertaken mean-field analysis of recursive Jensen-Shaegmenta-
tion, and identified possible pitfalls.

— Developed algorithm for segmentation optimization.

e Further work, completed or in progress:

— Developed new termination criterion that requires no pkioowledge
how many segments to partition sequence into.

— Derived better understanding of segment Markov-chainrosdkection
problem, within the framework of recursive segmentation.

— Incomplete segmentation misleading, cluster terminainszgs instead
to obtain coarser scale description of genofe.. to distinguish lineage-
specific regions arising from HGT and the genetic backbone.

— Multiple sequence clustering for comparative, phylogenstidies.
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Jensen-Shannon Divergence of Markov Chains

e For orderK stationary Markov chain, 1-segment sequence likelihood is

P0G P) = [ | BOsixax 2 %) = [ [ [ (B,
t S

wheret = t_it_,---t_g, ands ty = A,C,G, T, and 2-segment sequence like-
lihood is n "
P P PR = | ]| | (BR) = (RF) ™.
t S
e Generalized 2-segment Jensen-Shannon divergence

P
Ak =log 5 = Z‘ > |-fislog pis + fislog pf + 3 log pf .
S

e Bernoulli sequences are ordét-E& 0) stationary Markov chains.
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