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Mosaic Nature of Biological Sequences
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The Jensen-Shannon Divergence

• Given length-N sequencex = x1x2 · · · xN, xi = A,C,G, T , assume com-
posed ofM ≥ 1 statistically distinct Bernoulli segments with domain walls
at i1, . . . , iM−1. DetermineM-segment sequence likelihood

PM(x; i1, . . . , iM−1; p̂1, . . . , p̂M) =
M
∏

m=1

∏

s=A,C,G,T

(

p̂m
s
) f m

s ; p̂m
s =

f m
s

∑

s′ f m
s′
.

• Jensen-Shannon divergence[Lin, IEEE Trans. Infor. Theor.37, 145 (1991)]

∆M = log
PM

P1
= −
∑

s

fs log p̂s +

∑

m

∑

s

f m
s log p̂m

s

is symmetric relative entropy providing quantitative measure of ‘goodness-
of-fit’ of M-segment model over 1-segment model.

• Straightforward to generalize∆M to Markov chains of orderK > 0. Markov
chains model dinucleotide frequencies and codon biases in real genomic se-
quences better than Bernoulli chains with extended alphabets.
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Recursive Jensen-Shannon Segmentation

• STEP 1 (Segmentation):

– Given sequencex = x1x2 · · · xN, compute 2-segment Jensen-Shannon
divergence∆2(i) as function of cursor positioni.

– Find i∗ such that∆2(i∗) = maxi∆2(i). The best 2-segment model forx is
x = xLxR, wherexL = x1 · · · xi∗ andxR = xi∗+1 · · · xN.

• STEP 2 (Recursion):RepeatSTEP 1for xL andxR.

• STEP 3 (Termination):1-segment model selected over 2-segment model if:

– Hypothesis Testing:probability of obtaining divergence beyond than
observed∆2 greater than prescribed toleranceǫ; [Bernaola-Galv́an et
al, Phys. Rev. E53, 5181 (1996); Roḿan-Rold́anet al, Phys. Rev. Lett.
80, 1344 (1998).]

– Model Selection:information criterion (e.g. AIC, BIC) for 2-segment
model greater than that for 1-segment model.[Li, Phys. Rev. Lett.86,
5815 (2001).]
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Mean-Field Analysis of Recursive Segmentation

• Distribute sequence statistics uniformly along length. Ignore intra-sequence
variations in statistics, i.e.mean-field picture.

discrete sequence positions, integer counts

G T GGA T A A C T G T C T A C A G C C C T T GA T A T T C A A T G T G T A C A

continuous sequence positions, real counts

• Analyze recursive segmentation scheme entirely within mean-field picture:

– Peaks in mean-field divergence spectrum appearonly at domain walls;

– Domain walls also appear askinks, or even havevanishing divergence
in mean-field divergence spectrum.

– Recursive segmentation eventually discoversall domain walls.
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Pitfalls of Recursive Segmentation
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Context Sensitivity:

− domain wall strengths change as recursion proceeds
− domain walls not discovered according to true order
− incomplete segmentation pick up weak domain walls,

− especially severe for repetitive sequences

Need to move or remove existing cuts for better segmentation

but miss stronger ones
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Segmentation Optimization

• Two procedures to optimize domain wallim:

im−2 im−1 im im+1 im+2

– First-order update:Compute∆m
2 (i) for supersegment (im−1, i, im+1), and

chooseim = i∗, such that∆2(i∗) = maxim−1<i<im+1∆2(i), to be new position
of domain wall.

– Second-order update:Compute∆m−1
2 (i) for supersegment (im−2, im−1, i)

and∆m+1
2 (i) for supersegment (i, im+1, im+2), and chooseim = i∗, such that

∆
m−1
2 (i∗)∆m+1

2 (i∗) = maxim−1<i<im+1∆
m−1
2 (i)∆m+1

2 (i), to be new position of
domain wall.

• Domain walls{im}Mm=1 updated serially, or in parallel.

• Optimized recursive segmentation:Right afterSTEP 1 (Segmentation), opti-
mize segmentation using first- or second-order update algorithm.

APS March Meeting, March 4–9, 2007, Denver, Colorado 7



Conclusions and Further Work

• To conclude, we have:

– Refined recursive segmentation scheme by generalizing Jensen-Shannon
divergence to Markov chains of orderK > 0.

– Undertaken mean-field analysis of recursive Jensen-Shannon segmenta-
tion, and identified possible pitfalls.

– Developed algorithm for segmentation optimization.

• Further work, completed or in progress:

– Developed new termination criterion that requires no priorknowledge
how many segments to partition sequence into.

– Derived better understanding of segment Markov-chain order selection
problem, within the framework of recursive segmentation.

– Incomplete segmentation misleading, cluster terminal segments instead
to obtain coarser scale description of genome.E.g. to distinguish lineage-
specific regions arising from HGT and the genetic backbone.

– Multiple sequence clustering for comparative, phylogenetic studies.
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Jensen-Shannon Divergence of Markov Chains

• For order-K stationary Markov chain, 1-segment sequence likelihood is

P1(x; ˆP) =
∏

i

p̂(xi|xi−1xi−2 · · · xi−K) =
∏

t

∏

s

(p̂ts)
fts ,

wheret = t−1t−2 · · · t−K, ands, tk = A,C,G, T , and 2-segment sequence like-
lihood is

P2(x; ˆPL
, ˆPR) =

∏

t

∏

s

(

p̂L
ts

) f L
ts
(

p̂R
ts

) f R
ts
.

• Generalized 2-segment Jensen-Shannon divergence

∆K = log
P2

P1
=

∑

t

∑

s

[

− fts log pts + f L
ts log pL

ts + f R
ts log pR

ts

]

.

• Bernoulli sequences are order-(K = 0) stationary Markov chains.
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