Mean-Field Analysis of Recursive Entropic Segmentation of Biological Sequences

SIEW-ANN CHEONG¹, PAUL STODGHILL², DAVID SCHNEIDER², CHRISTOPHER MYERS¹

¹Cornell Theory Center, Cornell University ²USDA/ARS, Ithaca

> APS March Meeting, March 8, 2007 Denver, Colorado Research funded by USDA/ARS

Mosaic Nature of Biological Sequences

Reproduced from Ghai, Hain and Chakraborty, BMC Bioinformatics 5, 198 (2004).

Mosaic Nature of Biological Sequences

Reproduced from Ghai, Hain and Chakraborty, BMC Bioinformatics 5, 198 (2004).

APS March Meeting, March 4–9, 2007, Denver, Colorado

The Jensen-Shannon Divergence

• Given length-*N* sequence $\mathbf{x} = x_1 x_2 \cdots x_N$, $x_i = A, C, G, T$, assume composed of $M \ge 1$ statistically distinct Bernoulli segments with domain walls at i_1, \ldots, i_{M-1} . Determine *M*-segment sequence likelihood

$$P_M(\mathbf{x}; i_1, \dots, i_{M-1}; \hat{\mathbf{p}}_1, \dots, \hat{\mathbf{p}}_M) = \prod_{m=1}^M \prod_{s=A,C,G,T} (\hat{p}_s^m)^{f_s^m}; \quad \hat{p}_s^m = \frac{f_s^m}{\sum_{s'} f_{s'}^m}.$$

• Jensen-Shannon divergence [Lin, IEEE Trans. Infor. Theor. 37, 145 (1991)]

$$\Delta_M = \log \frac{P_M}{P_1} = -\sum_s f_s \log \hat{p}_s + \sum_m \sum_s f_s^m \log \hat{p}_s^m$$

is symmetric relative entropy providing quantitative measure of 'goodnessof-fit' of *M*-segment model over 1-segment model.

• Straightforward to generalize Δ_M to Markov chains of order K > 0. Markov chains model dinucleotide frequencies and codon biases in real genomic sequences better than Bernoulli chains with extended alphabets.

- STEP 1 (Segmentation):
 - Given sequence $\mathbf{x} = x_1 x_2 \cdots x_N$, compute 2-segment Jensen-Shannon divergence $\Delta_2(i)$ as function of cursor position *i*.
 - Find i^* such that $\Delta_2(i^*) = \max_i \Delta_2(i)$. The best 2-segment model for **x** is $\mathbf{x} = \mathbf{x}_L \mathbf{x}_R$, where $\mathbf{x}_L = x_1 \cdots x_{i^*}$ and $\mathbf{x}_R = x_{i^*+1} \cdots x_N$.
- STEP 2 (Recursion): Repeat STEP 1 for \mathbf{x}_L and \mathbf{x}_R .
- **STEP 3 (Termination):** 1-segment model selected over 2-segment model if:
 - Hypothesis Testing: probability of obtaining divergence beyond than observed Δ₂ greater than prescribed tolerance ε; [Bernaola-Galván *et al*, Phys. Rev. E 53, 5181 (1996); Román-Roldán *et al*, Phys. Rev. Lett. 80, 1344 (1998).]
 - Model Selection: information criterion (e.g. AIC, BIC) for 2-segment model greater than that for 1-segment model. [Li, Phys. Rev. Lett. 86, 5815 (2001).]

Mean-Field Analysis of Recursive Segmentation

• Distribute sequence statistics uniformly along length. Ignore intra-sequence variations in statistics, i.e. mean-field picture.

discrete sequence positions, integer counts

continuous sequence positions, real counts

- Analyze recursive segmentation scheme entirely within mean-field picture:
 - Peaks in mean-field divergence spectrum appear only at domain walls;
 - Domain walls also appear as kinks, or even have vanishing divergence in mean-field divergence spectrum.
 - Recursive segmentation eventually discovers all domain walls.

Pitfalls of Recursive Segmentation

• Two procedures to optimize domain wall i_m :

- First-order update: Compute $\Delta_2^m(i)$ for supersegment (i_{m-1}, i, i_{m+1}) , and choose $i_m = i^*$, such that $\Delta_2(i^*) = \max_{i_{m-1} < i < i_{m+1}} \Delta_2(i)$, to be new position of domain wall.
- Second-order update: Compute $\Delta_2^{m-1}(i)$ for supersegment (i_{m-2}, i_{m-1}, i) and $\Delta_2^{m+1}(i)$ for supersegment (i, i_{m+1}, i_{m+2}) , and choose $i_m = i^*$, such that $\Delta_2^{m-1}(i^*)\Delta_2^{m+1}(i^*) = \max_{i_{m-1} \le i \le i_{m+1}} \Delta_2^{m-1}(i)\Delta_2^{m+1}(i)$, to be new position of domain wall.
- Domain walls $\{i_m\}_{m=1}^M$ updated serially, or in parallel.
- Optimized recursive segmentation: Right after STEP 1 (Segmentation), optimize segmentation using first- or second-order update algorithm.

Conclusions and Further Work

- To conclude, we have:
 - Refined recursive segmentation scheme by generalizing Jensen-Shannon divergence to Markov chains of order K > 0.
 - Undertaken mean-field analysis of recursive Jensen-Shannon segmentation, and identified possible pitfalls.
 - Developed algorithm for segmentation optimization.
- Further work, completed or in progress:
 - Developed new termination criterion that requires no prior knowledge how many segments to partition sequence into.
 - Derived better understanding of segment Markov-chain order selection problem, within the framework of recursive segmentation.
 - Incomplete segmentation misleading, cluster terminal segments instead to obtain coarser scale description of genome. E.g. to distinguish lineagespecific regions arising from HGT and the genetic backbone.
 - Multiple sequence clustering for comparative, phylogenetic studies.

Jensen-Shannon Divergence of Markov Chains

• For order-*K* stationary Markov chain, 1-segment sequence likelihood is

$$P_1(\mathbf{x};\hat{\mathbb{P}}) = \prod_i \hat{p}(x_i | x_{i-1} x_{i-2} \cdots x_{i-K}) = \prod_{\mathbf{t}} \prod_s (\hat{p}_{\mathbf{t}s})^{f_{\mathbf{t}s}},$$

where $\mathbf{t} = t_{-1}t_{-2}\cdots t_{-K}$, and $s, t_k = A, C, G, T$, and 2-segment sequence likelihood is

$$P_2(\mathbf{x}; \hat{\mathbb{P}}^L, \hat{\mathbb{P}}^R) = \prod_{\mathbf{t}} \prod_{s} \left(\hat{p}_{\mathbf{t}s}^L \right)^{f_{\mathbf{t}s}^L} \left(\hat{p}_{\mathbf{t}s}^R \right)^{f_{\mathbf{t}s}^R}.$$

• Generalized 2-segment Jensen-Shannon divergence

$$\Delta_K = \log \frac{P_2}{P_1} = \sum_{\mathbf{t}} \sum_{s} \left[-f_{\mathbf{t}s} \log p_{\mathbf{t}s} + f_{\mathbf{t}s}^L \log p_{\mathbf{t}s}^L + f_{\mathbf{t}s}^R \log p_{\mathbf{t}s}^R \right].$$

• Bernoulli sequences are order-(K = 0) stationary Markov chains.