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Equilibrium Entropy: A Static PictureIn dimensionless form, with kB = 1,Microcanonical: S = log 
 (1)Canonical: S = � logZ � � hEi = hlog pii =Pi pi log pi (2)where � = T�1, Z is the canonical partition function and hEi theexpectation value of the internal energy E.In study of equilibrium at t!1, dynamical details deliberatelydiscarded. How to incorporate dynamical details into a \dynamicalentropy"? 2



Notes on Ensemble Picture1. No equilibrium for each member of Gibbs ensemble, forexample, ideal gas in cube of edge L.2. Microscopic and macroscopic properties of each member
uctuates from time to time.3. Macroscopic measurements = \coarse-graining" in time, i.e.time averaging.4. Gibbs ensemble \equates" time average to phase space average,provided system ergodic.5. Collisionless gas in a cube not ergodic. Need binary orhigher-order collisions. 3



Motivating Dynamical EntropyKEY: Entropy = Information LossConsider time evolution of (micro)state from t = 0 to t = T ,fxi; vigt = 0 fxf ; vfgt = T (3)If dynamics time-reversal invariant, then fxf ; vfg ! fxi; vigpossible if ALL information known about �nal state.What if we don't? If mistake made in determining �nal state, howclose can we get back to initial state?4



The Home-Coming : : :Attach �-ball to fxi; vig, evolve it forward in time by �t = T , makea small mistake �0, reverse time and evolve back:
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overlap overlap% � overlap=�D (4)where D is dimension of phase space, ignoring factors of O(1).5



Entropy & InformationIntuitively expect that overlap% # as T ". Thus should seekmeaningful quantity in the limitlim�;�!0 limT!1 overlap%T = rate of information loss (5)Truly dynamical because time evolution taken into account.Also, 0 � overlap% � 1 interpret as some sort of probability pi, anddeduced the dynamical entropy asH = �Xi pi log pi � S (6)i.e. condition of equilibrium is condition of maximization of H orstate of maximum loss of information about system.6



Road To Classical Dynamical EntropyIn totality, must consider entire phase space.But fphase space(t = 0)g � fphase space(t = T )g, must �nd way ofintroducing dynamics =) concept of a partition.
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partition � = fcountable # of subsets C� of X j [�C� =X;C� \C� = ; if � 6= �g up to sets of measure zero with respect tosome measure �, e.g. phase space volume.7



Dynamical Refinement of a PartitionCan de�ne H =X� �(C�) log �(C�) (7)but not dynamical. Need concept of re�nement of a partition.
t = 0

t = TThis re�nement can be brought about by a (measure-preserving)dynamical map: 'T : X(t = 0)! X(t = T ), and denote by �'T thedynamically re�ned partition of �.8



The Kolmogorov-Sinai Metric EntropyAn important proposition:h�('; �) = limT!1 H(�'T )T = limT!1X� �(C�) log �(C�)T ; C� 2 �'T(8)exists for all measurable partition.The Kolmogorov-Sinai metric entropy of ' with respect to � ish�(') = sup fh�('; �) j all � such that H(�) <1g (9)which is a topological quantity.Can be recasted as an algebraic entropy (A. Connes and E.St�rmer, Acta Math. 134, 289{306 (1975); A. Connes, H.Narnho�er and W. Thirring, Commun. Math. Phys. 112, 691(1987)), important when we consider quantum mechanics.9



Quantum Static EntropyShannon-R�enyi Entropy: H( ) =Xi ��hi j j ii��2 log��hi j j ii��2von Neumann Entropy: S(%) = � tr % log %Quantum Relative Entropy: S( ;�) = tr % (log % � log %�)E�ective State Entropy: S(%) = �Z dE tr e%E log e%EProblems: von Neumann entropy zero for pure states, in�nite formixed states, and the conditional von Neumann entropy negativefor entangled states (N.J. Cerf and C. Adami, in NewDevelopments on Fundamental Problems in Quantum Physicsedited by M. Ferrero and A. van der Merwe, Kluwer, 1997).10



Quantum Dynamical Entropy1. Connes-St�rmer-Narnho�er-Thirring entropy2. Alicki-Fannes entropy3. Coherent State entropy
11



Connes-Størmer-Narnhoffer-Thirring
Algebraic Entropy: The Essentials1. C�-algebra L1(M) of in�nitely integrable complex-valuedfunctions on compact phase space M with Borel probabilitymeasure �, equipped with faithful normal trace� (f) = ZM f d� <1; f 2 L1(M) (10)take the place of minimal �-algebra on M .2. Finite-dimensional subalgebras N generated by complete set ofminimal projection operators fpig such that pi � pj = �ij takesthe place of partition �. 12



3. De�ne H(N ) =Xi � (pi log pi) = H(�) (11)4. �-preserving dynamical map ' on M induces � -preservingdynamical map � on L1(M). Use � to generate dynamicalre�nement.5. De�ne Connes-St�rmer-Narnho�er-Thirring entropy ash(N ) = sup� h(N ;�)= sup� limn!1n�1H(N _ �(N ) _ � � � _ �n�1(N )) (12)6. C�-algebra L1(M) commutative, can be shown to equalKolmogorov-Sinai metric entropy.13



Connes-Størmer-Narnhoffer-Thirring
Quantum Dynamical Entropyvon Neumann algebra of projection operators used in quantummechanics is C�-algebra, i.e. basic recipe same as classicalmechanics.In de�ning procedure of Connes-St�rmer-Narnho�er-Thirringentropy, as in Kolmogorov-Sinai entropy, partition must remain�nite. However, quantum algebra not commutative =) dynamicalre�nement of N problematic. Quantum dynamically re�nedpartition in�nite (R. Alicki and M. Fannes, Lett. Math. Phys. 32,75 (1994)).Trick: Perform abelianized re�nement of N , i.e. redundant physicalinformation of incompatible observables removed.14



Coherent State EntropyFollows same cookbook recipe as Kolmogorov-Sinai andConnes-St�rmer-Narnho�er-Thirring entropies, butmeasure-theoretic rather than algebraic.De�ne measures on quantum-mechanical phase space whose densityfunctions are Husimi functions, de�ned as�(q; p; t) = 1�~ Z dQdP e�� (q�Q)2~w2 +w2 (p�P )2~ �	(Q;P; t) (13)where	(q; p; t) = 1(2�~)N Z dQ (q �Q; t) �(q +Q; t)e�2ipQ=~ (14)are the Wigner functions. 15



Coherent States and MeasurementCoherent states are a posteriori states associated withmeasurement, i.e. states we want to see.Second Postulate of QM { after exact measurement, state collapsesto one of eigenspaces of observable, but in experiment withuncertainty w, state collapses to group of eigenspaces centeredaround dominant eigenspace =) wavepackets of width w.Gaussians are instantaneously minimum uncertainty wavepackets,i.e. what an experimenter want to see.Only such states projected out of quantum state  (q; t) toincorporate into Husimi functions.16


