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Equilibrium Entropy: A Static Picture

In dimensionless form, with kg = 1,

Microcanonical: S = log (2 (1)
Canonical: S=—logZ — B(E) = (logp;) =, pilogp; (2)

where 3 = T~1, Z is the canonical partition function and (E) the

expectation value of the internal energy F.

In study of equilibrium at ¢ — oo, dynamical details deliberately
discarded. How to incorporate dynamical details into a “dynamical

entropy”?



Notes on Ensemble Picture

. No equilibrium for each member of Gibbs ensemble, for

example, ideal gas in cube of edge L.

. Microscopic and macroscopic properties of each member

fluctuates from time to time.

. Macroscopic measurements = “coarse-graining” in time, i.e.

time averaging.

. Gibbs ensemble “equates” time average to phase space average,

provided system ergodic.

. Collisionless gas in a cube not ergodic. Need binary or
higher-order collisions.



Motivating Dynamical Entropy

KEY: Entropy = Information Loss

Consider time evolution of (micro)state from t =0to t =T,

N
{4, v} " {zp,vr} (3)

If dynamics time-reversal invariant, then {x;, vy} — {z;,v;}
possible if ALL information known about final state.

What if we don’t? If mistake made in determining final state, how

close can we get back to initial state?



The Home-Coming

Attach e-ball to {x;,v;}, evolve it forward in time by At = T, make
a small mistake €, reverse time and evolve back:

+T n

overlap

overlap% ~ overlap/e” (4)

where D is dimension of phase space, ignoring factors of O(1).



Entropy & Information

Intuitively expect that overlap% | as T' 1. Thus should seek

meaningful quantity in the limit

overlap%

lim lim = rate of information loss (5)

€,Mm—0 T —o0 T

Truly dynamical because time evolution taken into account.

Also, 0 < overlap% < 1 interpret as some sort of probability p;, and
deduced the dynamical entropy as

HZ—ZPilogPi <S5 (6)

i.e. condition of equilibrium is condition of maximization of H or

state of maximum loss of information about system.



Road To Classical Dynamical Entropy

In totality, must consider entire phase space.

But {phase space(t = 0)} = {phase space(t = T')}, must find way of
introducing dynamics = concept of a partition.

partition & = {countable # of subsets C, of X | U,Cy, =
X,CaonCpg=0if o # B} up to sets of measure zero with respect to

some measure i, e.g. phase space volume.
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Dynamical Refinement of a Partition

Can define
H = Zu )log 1(Ca) (7)

but not dynamical. Need concept of refinement of a partition.

t=20

This refinement can be brought about by a (measure-preserving)
dynamical map: ¢! : X(t =0) — X (¢t = T), and denote by £97 the
dynamically refined partition of £.



The Kolmogorov-Sinal Metric Entropy

An important proposition:

) «) log u(C,
halin€) = fim SO = i 3 HCRIC, 0, e g
®)

exists for all measurable partition.

The Kolmogorov-Sinar metric entropy of ¢ with respect to p is

hu(p) = sup {hu(p,§) | all £ such that H({) < oo} (9)
which is a topological quantity.

Can be recasted as an algebraic entropy (A. Connes and E.
Stgrmer, Acta Math. 134, 289-306 (1975); A. Connes, H.
Narnhoffer and W. Thirring, Commun. Math. Phys. 112, 691

(1987)), important when we consider quantum mechanics.
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Quantum Static Entropy

Shannon-Rényi Entropy: H(p) =Y |(i ] )| log|(i [¢] 3)]”
von Neumann Entropy: S(p) = —trologp
Quantum Relative Entropy: S(v,x) = tr 0y (log 0y — log oy )

Effective State Entropy: S(p) = — / dE troglog og

Problems: von Neumann entropy zero for pure states, infinite for
mixed states, and the conditional von Neumann entropy negative
for entangled states (N.J. Cerf and C. Adami, in New
Developments on Fundamental Problems in Quantum Physics
edited by M. Ferrero and A. van der Merwe, Kluwer, 1997).
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Quantum Dynamical Entropy

1. Connes-Stgrmer-Narnhoffer-Thirring entropy i

2. Alicki-Fannes entropy

3. Coherent State entropy f
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Connes-Stgrmer-Narnhoffer-Thirring
Algebraic Entropy: The Essentials

1. Cx-algebra L°°(M) of infinitely integrable complex-valued
functions on compact phase space M with Borel probability

measure i, equipped with faithful normal trace

r(f) = /M Fdu<oo,  feL®(M) (10)

take the place of minimal o-algebra on M.

2. Finite-dimensional subalgebras N generated by complete set of
minimal projection operators {p;} such that p; - p; = 0;; takes

the place of partition &.
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. Define

H(N) = ZT@@' log p;) = H(§) (11)

. p-preserving dynamical map ¢ on M induces T-preserving
dynamical map ® on L>°(M). Use ® to generate dynamical

refinement.

. Define Connes-Stgrmer-Narnhoffer-Thirring entropy as

h(N) = sup h(N, @)
=sup lim n PHN VOWN)V---v e 1(N)) (12)

1)) n—00

. Cx-algebra L°°(M) commutative, can be shown to equal

Kolmogorov-Sinai metric entropy.
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Connes-Stgrmer-Narnhoffer-Thirring
Quantum Dynamical Entropy

von Neumann algebra of projection operators used in quantum
mechanics is Cx-algebra, i.e. basic recipe same as classical

mechanics.

In defining procedure of Connes-Stgrmer-Narnhofter-Thirring
entropy, as in Kolmogorov-Sinai entropy, partition must remain
finite. However, quantum algebra not commutative —> dynamical

refinement of N problematic. Quantum dynamically refined
partition infinite (R. Alicki and M. Fannes, Lett. Math. Phys. 32,
75 (1994)).

Trick: Perform abelianized refinement of A, i.e. redundant physical

information of incompatible observables removed.
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Coherent State Entropy

Follows same cookbook recipe as Kolmogorov-Sinai and
Connes-Stgrmer-Narnhoffer-Thirring entropies, but
measure-theoretic rather than algebraic.

Define measures on quantum-mechanical phase space whose density

functions are Husimi functions, defined as

q)( B i _((qh—w%)2 +w? (p—hP)2>\Ij b
Q7p7t> _ 7Th dQ dP€ <Q7 7t> <13>

where

U(q,p,t) = (27T2>N /dQ (g — Q. 1)Y* (g + Q,t)e 2P/ (14)

are the Wigner functions.
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Coherent States and Measurement

Coherent states are a posterior: states associated with

measurement, i.e. states we want to see.

Second Postulate of QM — after exact measurement, state collapses
to one of eigenspaces of observable, but in experiment with
uncertainty w, state collapses to group of eigenspaces centered
around dominant eigenspace — wavepackets of width w.

(Gaussians are instantaneously minimum uncertainty wavepackets,
i.e. what an experimenter want to see.

Only such states projected out of quantum state 1 (q,t) to

incorporate into Husimi functions.
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