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Overview of Talk

• Bosons and Fermions: Brief review of Jordan-Wigner transformation.

• Exact Ground State: Trio of analytical maps relating 1D nearest-neighbor
excluded and nearest-neighbor included periodic chains.

• Correlation Functions: Corresponding observables and the intervening-particle
expansion.

• Three Limiting Cases: Extended Hubbard ladder of spinless fermions, overview
of results, and zeroth-order ground-state phase diagram.

– Strong correlated hopping limit.

– Weak inter-leg hopping limit.

– Strong inter-leg hopping limit.

• Conclusions.
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The Jordan-Wigner Transformation

• P noninteracting spinless fermions on a 1D periodic chain of L sites,

Hc = −t
L∑

j=1

(

c†jc j+1 + c†j+1c j

)

.

• Ground state is a Fermi sea

|ΨF〉 =
∏

|k|<kF

c̃†k |0〉 =
∑

j1<···< jP

ΨF(k1, . . . , kP; j1, . . . , jP) c†j1c
†
j2
· · · c†jP |0〉 ,

• Amplitude given by Slater determinant

ΨF(k1, . . . , kP; j1, . . . , jP) =
1

LP/2
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e− i k1 j1 e− i k1 j2 · · · e− i k1 jP

e− i k2 j1 e− i k2 j2 · · · e− i k2 jP

... ... . . . ...

e− i kP j1 e− i kP j2 · · · e− i kP jP
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.

• Two-point function decays as power law, 〈ΨF |c†i c j|ΨF〉 ∼ |i − j|−1.
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The Jordan-Wigner Transformation

• P hard-core bosons on a 1D periodic chain of L sites,

Hb = −t
∑

j

(

b†jb j+1 + b†j+1b j

)

+ U
∑

j

n j(1 − n j), U → ∞.

• Map to noninteracting spinless fermion using Jordan-Wigner transformation
[P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928)],

bi =
∏

j<i

(1 − 2n j) ci =
∏

j<i

(−1)n j ci.

• Non-local operator
∏

j<i(1 − 2n j) called Jordan-Wigner string.

• Hard-core boson ground state

|Ψ〉 =
∑

j1

· · ·
∑

jP

|ΨF(k1, . . . , kP; j1, . . . , jP)| b†j1b
†
j2
· · · b†jP |0〉 .

• Two-point function also decays as power law, 〈Ψ|b†i b j|Ψ〉 ∼ |i − j|−1/2 [K. B.
Efetov and A. I. Larkin, Sov. Phys. JETP 42, 390 (1976)].
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Nearest-Neighbor Inclusion & Exclusion

• 1D chain of hard-core bosons or spinless fermions with infinite nearest-
neighbor repulsion

HA = Ha + V
∑

j

n jn j+1, V → ∞,

where A = B (boson) or C (fermion), and a = b (boson) or c (fermion).

• Ha allows nearest-neighbor occupation: Hilbert space Va consists of nearest-
neighbor included configurations.

• HA forbids nearest-neighbor occupation: Hilbert space VA consists of nearest-
neighbor excluded configurations.
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Configuration-to-Configuration Map

• Right exclusion map: nearest-neighbor excluded configuration to nearest-
neighbor included configuration.

|α〉 L = 11, P = 4

|α′〉 L′ = L − P = 7, P′ = P = 4

• Check that if |α〉 7→ |α′〉 and |β〉 7→ |β′〉, then 〈α|HA|β〉 = 〈α′|Ha|β′〉.

• Right exclusion map not one-to-one.

• Right inclusion map: nearest-neighbor included configuration to nearest-
neighbor excluded configuration,

a†j1a
†
j2
· · · a†jP |0〉 7→ A†j1A†j2+1 · · · A

†
jP+P−1 |0〉 .

Nanyang Technological University, 29 March 2006 5



Bloch-State-to-Bloch-State Map

• Adopt closed-shell boundary conditions: P-fermion configuration incurs no
sign change when translated across boundary. Treat bosons and fermions in
same way.

• Translational invariance: define the Bloch states

|α; q〉 = 1
√

L

L∑

j=1

e− i q j T j |α〉 ,

where |α〉 is generating P-particle nearest-neighbor excluded configuration,
and T j is translation operator.

• Eigenstates of HA have definite total linear momentum, and thus HA block-
diagonal in basis of Bloch states. Each diagonal block HA(q) characterized
by total momentum wave vector q.

• Number of Bloch states = number of translationally inequivalent configura-
tions.
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Example: L = 6, P = 2

|α; q〉 |β; q〉

|α〉

T1 |α〉

T2 |α〉

T3 |α〉

T4 |α〉

T5 |α〉

period-6

|β〉

T1 |β〉

T2 |β〉

period-3
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Example: L′ = 4, P = 2

|α′; q〉 |β′; q〉

|α′〉

T1 |α′〉

T2 |α′〉

T3 |α′〉

period-4

|β′〉

T1 |β′〉

period-2

• For each q, two nearest-neighbor excluded Bloch states |α; q〉 and |β; q〉.

• See that |α〉 7→ |α′〉 and |β〉 7→ |β′〉 under right-exclusion map.

• For each q′, two nearest-neighbor included Bloch states |α′; q′〉 and |β′; q′〉.

• Can we choose q and q′ such that 〈α; q|HA|β; q〉 = 〈α′; q′|Ha|β′; q′〉?
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Wave-Vector-To-Wave-Vector Map

• First note that nearest-neighbor excluded chain of length L maps to nearest-
neighbor included chain of length L′ = L − P.

• Allowed total-momentum wave vectors are

q =
2πn
L
, q′ =

2πn′

L′
, n, n′ ∈ � .

• Find that 〈α; q|HA|β; q〉 = 〈α′; q′|Ha|β′; q′〉 for all |α〉 7→ |α〉 and |β〉 7→ |β′〉 if
we have

q =
2πn
L
7→ q′ =

2πn
L′
, n ∈ � .

• In case of P = 1, n simply the number of nodes in wave function.
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Corollary of Combined Map

• HA(q) and Ha(q′) are identical as matrices. Same eigenvalues and eigenvec-
tors.

• All nearest-neighbor excluded chain eigenstates can be written in terms of
nearest-neighbor included chain eigenstates, and vice versa.

• In particular, if we know a nearest-neighbor included eigenstate with energy
eigenvalue E′ is

|Ψ′; q′〉 =
∑

j1<···< jP

Ψ
′(q′; j1, . . . , jP) a†j1a

†
j2
· · · a†jP |0〉 ,

then nearest-neighbor excluded eigenstate with the same energy eigenvalue
E = E′ is

|Ψ; q〉 =
∑

j1<···< jP

Ψ
′(q′; j1, . . . , jP) A†j1A†j2+1 · · · A

†
jP+P−1 |0〉 ,

• Exact solution of nearest-neighbor excluded chain in terms of nearest-neighbor
included chain!
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Corresponding Observables

• Since |Ψ′; q′〉 and |Ψ; q〉 share the same amplitudes, want to cast problem
of calculating 〈O〉 = 〈Ψ; q|O|Ψ; q〉 in nearest-neighbor excluded chain as
problem of calculating 〈O′〉 = 〈Ψ′; q′|O′|Ψ′; q′〉 in nearest-neighbor included
chain.

• Corresponding observables O and O′ defined by their matrix elements be-
tween Bloch states,

√

lαlβ 〈α; q|O|β; q〉 =
√

l′
α′l
′
β′ 〈α

′; q′|O′|β′; q′〉 ,

where lα is period of |α〉 and l′
α′ is period of |α′〉.

• Can check from right-exclusion map that l′/l = n̄′/n̄, where n̄ is filling frac-
tion in nearest-neighbor excluded chain, and n̄′ is filling fraction in nearest-
neighbor included chain.

• Expectation of corresponding observables related by

〈O〉 = n̄
n̄′
〈O′〉 .
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The Intervening-Particle Expansion

• Defining condition of corresponding observables stringent, satisfied by few
observables. For generic observables, need to use intervening-particle expan-
sion.

• Example: The intervening-particle expansion for 〈A†i Ai+r〉 is

〈A†i Ai+r〉 = 〈A†i ( � − Ni+1) · · · ( � − Ni+r−1)Ai+r〉 +
〈A†i Ni+1 · · · ( � − Ni+r−1)Ai+r〉 + · · · +
〈A†i ( � − Ni+1) · · ·Ni+r−1Ai+r〉 +
〈A†i Ni+1Ni+2 · · · ( � − Ni+r−1)Ai+r〉 + · · · +
〈A†i ( � − Ni+1) · · ·Ni+r−2Ni+r−1Ai+r〉 + · · · +
〈A†i Ni+1Ni+2 · · ·Ni+r−1Ai+r〉 .

• Each term in expansion contains p = 0, 1, . . . , r intervening particles at fixed
sites.

• Map each term 〈A†i OpAi+r〉 to its corresponding expectation 〈a†i O′pai+r′〉, and
then sum over (n̄/n̄′) 〈a†i O′pai+r′〉 to get 〈A†i Ai+r〉.
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Rules for Corresponding Intervening-Particle Observables

• Nearest-neighbor exclusion: Drop terms 〈A†i OpAi+r〉 in expansion if

A†jA
†
j+1, A jA j+1, A†jN j+1, N jA j+1

appear.

• Right-exclusion map: In the surviving terms, making the replacements

A†j( � − N j+1) 7→ a†j , A j( � − N j+1) 7→ a j, N j( � − N j+1) 7→ n j.

• Re-indexing: Because right-exclusion map merges sites j and j + 1, sites to
right of j + 1 must be re-indexed. For example,

N j( � − N j+1)N j+2 7→ n jn j+1.

In general, site j on nearest-neighbor excluded chain becomes site j − p on
nearest-neighbor included chain if there are p particles between sites i and j
(and including i).
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Where We Are Right Now . . .

• Bosons and Fermions: Brief review of Jordan-Wigner transformation.

• Exact Ground State: Trio of analytical maps relating 1D nearest-neighbor
excluded and nearest-neighbor included periodic chains.

• Correlation Functions: Corresponding observables and the intervening-particle
expansion.

• Three Limiting Cases: Extended Hubbard ladder of spinless fermions, overview
of results, and zeroth-order ground-state phase diagram.

– Strong correlated hopping limit.

– Weak inter-leg hopping limit.

– Strong inter-leg hopping limit.

• Conclusions.
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Extended Hubbard Ladder of Spinless Fermions

i = 1

i = 2
−t⊥

−t‖ −t′

︸︷︷︸

Vj − 1 j j + 1

Ht‖t⊥t′V = −t‖
∑

i

∑

j

(

c†i, jci, j+1 + c†i, j+1ci, j

)

− t⊥
∑

i

∑

j

(

c†i, jci+1, j + c†i+1, jci, j

)

− t′
∑

i

∑

j

(

c†i, jni+1, j+1ci, j+2 + c†i, j+2ni+1, j+1ci, j

)

− t′
∑

i

∑

j

(

c†i+1, jni, j+1ci+1, j+2 + c†i+1, j+2ni, j+1ci+1, j

)

+ V
∑

i

∑

j

ni, jni, j+1 + V
∑

i

∑

j

ni, jni+1, j, V → ∞.
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Overview of Three Limiting Cases

• Strong correlated-hopping limit, t′ � t‖, t⊥:

– universal SC power-law correlations dominate over non-universal hard-
core-boson CDW power-law correlations at large distances.

– FL correlations decay exponentially.

• Weak inter-leg hopping limit, t⊥ � t‖, t′ = 0:

– universal CDW power-law correlations dominate over universal SC power-
law correlations at large distances.

– FL correlations decay exponentially.

• Strong inter-leg hopping limit, t⊥ � t‖, t′ = 0:

– True long-range CDW when n̄2 =
1
4.

– Phase separation for n̄2 >
1
4.

– For n̄2 <
1
4, universal SC power-law correlations dominate universal FL

and CDW power-law correlations at large distances.
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Zeroth-Order Phase Diagram

0

∞

0 ∞t′/t‖

t⊥/t‖

SC
PL-CDW

LR-CDW

strong
correlated
hopping
limit

weak inter-leg
hopping limit

strong inter-leg
hopping limit
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Strong Correlated Hopping Limit

• When t′ � t‖, t⊥, ladder spinless fermions form well-defined pairs: 1D prob-
lem of interacting hard-core bosons.

• Two flavors of interacting hard-core bosons. Call them even and odd, or red
(R) and green (G). Flavor conserved as fermion pair correlated-hops.

• Bound-pair-to-hard-core boson map:

B†j =






c†1, jc
†
2, j+1, j even;

c†1, j+1c†2, j, j odd,
B†j =






c†1, j+1c†2, j, j even;
c†1, jc

†
2, j+1, j odd.
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Strong Correlated Hopping Limit

• Hard-core boson of each flavor can come within two sites of another hard-
core boson of the same flavor, but can only come within three sites of a hard-
core boson of different flavor. Hard-core bosons cannot exchange positions.

• For 2P spinless fermions on ladder of length L, Hilbert space breaks up into
sectors of immutable flavor sequences. Example: For P = 4, the distinct
flavor sequences are RRRR, RRRG, RRGG, RGRG, RGGG, and GGGG.
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Kinetic Energy Argument

• Each hard-core boson confined to hop within interval of chain between the
two hard-core bosons closest to it: particle-in-a-box problem!

Leff

• At given filling fraction n̄,

– Leff larger if R particle bounded by R particles, and G particle bounded
by G particles.

– Leff smaller if R particle bounded by G particles, or G particle bound by
R particles.

– kinetic energy of bound particle lowest if bound by particles of the same
flavor.

• Two-fold-degenerate ground state for 2P spinless fermions: P R bound pairs
or P G bound pairs. Ground-state wave functions of each can be mapped to
ground-state wave function of P noninteracting spinless fermions.
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Ground-State Wave Functions

• Start with ground-state wave function of P noninteracting spinless fermions
on periodic chain of length L′ = L − P,

|ΨF〉 =
∑

j1<···< jPΨF(k1, . . . , kP; j1, . . . , jP) c†j1c
†
j2
· · · c†jP |0〉 ,

where k1, . . . , kP are the P occupied single-particle wave vectors.

• Use Jordan-Wigner map to get ground-state wave function of P nearest-
neighbor included hard-core bosons on periodic chain of length L′ = L − P,

|Ψb〉 =
∑

j1<···< jP |ΨF(k1, . . . , kP; j1, . . . , jP)| b†j1b
†
j2
· · · b†jP |0〉 ,

• Use right-inclusion map to get ground-state wave function of P nearest-
neighbor excluded hard-core bosons on periodic chain of length L,

|ΨB〉 =
∑

j1<···< jP |ΨF(k1, . . . , kP; j1, . . . , jP)| B†j1B†j2+1 · · · B
†
jP+P−1 |0〉 ,

• Use bound-pair-to-hard-core-boson map to get ground-state wave function of
P (R or G) bound pairs on ladder of length L.
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Correlation Functions

• Only simple to calculate correlation functions which can be written in terms
of B j and B†j.

– SC correlations 〈B†i Bi+r〉.
– CDW-π correlations 〈B†i BiB

†
i+rBi+r〉.

• Correlation functions not readily expressible in terms of B j and B†j difficult
to calculate.

– FL correlation 〈c†i, jci′, j+r〉, understood using semi-quantitative arguments.

– CDW-σ correlations 〈c†i, jci, jc
†
i′, j+rci′, j+r〉.

• Numerically, summing the intervening-particle expansion for correlation func-
tions involve summing over various minors of an r × r matrix. Without ac-
celeration schemes, only feasible up to separations of r ≈ 20.

• Correlation exponents, wave vectors, amplitudes and phase shifts obtained
through nonlinear curve fitting.
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SC Correlations

0 2 4 6 8 10 12 14 16
r

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
r1/

2 〈∆
j+ ∆ j+

r 
〉

N1 = 0.20

N1 = 0.25

N1 = 0.30
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CDW-π Correlations

0 2 4 6 8 10 12 14 16
r

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
〈N

j N
j+

r 
〉 −

 〈N
j 〉〈

N
j+

r 
〉

N1 = 0.20

N1 = 0.25

N1 = 0.30
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FL Correlations

• Configurations containing unpaired spinless fermions cannot occur in ground
state.

• FL correlations 〈c†i, jci′, j+r〉 nonzero only when r even.

• For r = 2p, only compact p-bound-pair configurations with one end at j and
the other end at j + r contribute to 〈c†i, jci′, j+r〉.

j · · · j + 2p

c†1, jc1, j+2p

j · · · j + 2p

Ψi

Ψ f

• 〈c†i, jci′, j+r〉 proportional to probability of finding compact p-bound-pair clus-
ter in ground state.

• Compact p-bound-pair cluster 7→ compact p-hard-core-boson cluster 7→ com-
pact p-noninteracting-spinless-fermion cluster.
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FL Correlations

• From SAC and C. L. Henley, Phys. Rev. B 69, 075112 (2004), know that
probability of fully-occupied p-site cluster in 1D Fermi sea is

det GC(p) =
p∏

l=1

λl =

p∏

l=1

1
eϕl + 1

,

where λl are eigenvalues of the cluster Green-function matrix GC(p), and ϕl

are the single-particle pseudo-energies of the cluster density matrix ρC.

• For p � 1, know that

det GC(p) ≈ exp


−p
∫ 1−n̄′

0
f (n̄′, x) dx



 ,

i.e. FL correlations decay exponentially for large r, with n̄-dependent corre-
lation length (n̄′ is filling fraction of nearest-neighbor included chain).
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Summary of Correlation Exponents

limit correlation function correlation exponent wave vector

t′ � t‖, t⊥ CDW-π 1
2 +

5
2

(
1
2 − N̄1

)

2kF

2 0

SC 1
2 0

3
2 →

1
2 2kF
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Weak Inter-Leg Hopping Limit

• When t⊥ → 0 and t′ = 0, the two legs of ladder coupled only by infinite
nearest-neighbor repulsion.

• Each spinless fermion carries permanent leg index i.

• Spinless fermion cannot move past each other, even if they are on different
legs (because of infinite nearest-neighbor repulsion).

• For P spinless fermions on ladder of length L, Hilbert space breaks up into
sectors of immutable leg indices. Example: For P = 4, the distinct leg-index
sequences are 1111, 1112, 1122, 1212, 1222, and 2222.

• Again use kinetic energy argument to determine structure of ground state:

– Compare locally the sequences {· · · 111222 · · · } and {· · · 112122 · · · },
find that third and fourth particles in {· · · 112122 · · · } have longer inter-
vals to hop around, compared to their counterparts in {· · · 111222 · · · }.
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Weak Inter-Leg Hopping Limit

〈L3〉

〈L4〉
{· · · 112122 · · · }

〈L3〉

〈L4〉

{· · · 111222 · · · }

– Kinetic energies of particles forming leg-index domain wall lower.

– Overall ground state must therefore have as many domain walls as pos-
sible, i.e. sequence must be {· · · 121212 · · · } or {· · · 212121 · · · }.

– Two-fold-degenerate staggered ground state.
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Ground-State Wave Functions

• Again, start with ground-state wave function of P noninteracting spinless
fermions on periodic chain of length L′ = L,

|ΨF〉 =
∑

j1<···< jPΨF(k1, . . . , kP; j1, . . . , jP) c†j1c
†
j2
· · · c†jP |0〉 ,

where k1, . . . , kP are the P occupied single-particle wave vectors. Infinite
nearest-neighbor repulsion between different legs do not result in need to
exclude sites.

• Without loss of generality, assume P even. Then two-fold-degenerate stag-
gered ground-state wave functions are

|Ψ±〉 =
∑

j1<···< jPΨF(k1, . . . , kP; j1, . . . , jP) ×
1
√

2

(

c†1, j1c
†
2, j2
· · · c†1, jP−1

c†2, jP ± c†2, j1c
†
1, j2
· · · c†2, jP−1

c†1, jP
)

|0〉 .

|Ψ+〉 symmetric with respect to reflection about ladder axis, while |Ψ−〉 anti-
symmetric with respect to reflection about ladder axis.

• Note that ladder with filling fraction n̄2 maps onto chain of filling fraction
n̄1 = 2n̄2.
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Correlation Functions

• CDW+ correlations
〈n1, jn1, j+r〉 + 〈n1, jn2, j+r〉 ,
〈n2, jn1, j+r〉 + 〈n2, jn2, j+r〉

both equal 1
2 〈ΨF |n jn j+r|ΨF〉, the CDW correlation in 1D Fermi sea.

• SC+ correlations

〈c†2, j+1c†1, jc1, j+rc2, j+r+1〉 + 〈c†2, j+1c†1, jc2, j+rc1, j+r+1〉 ,
〈c†1, j+1c†2, jc1, j+rc2, j+r+1〉 + 〈c†1, j+1c†2, jc2, j+rc1, j+r+1〉

both equal 1
2 〈c
†
j+1c†jc j+rc j+r+1〉, the SC correlation in 1D Fermi sea.

• CDW− and SC− correlations need to calculate numerically.

• Staggered FL correlations 〈c†1, jc2, j+r〉 = 0 = 〈c†2, jc1, j+r〉 vanish identically.

• FL correlations 〈c†1, jc1, j+r〉 and 〈c†2, jc2, j+r〉 decay exponentially with r, under-
stood using semi-quantitative arguments.
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CDW− Correlations
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SC− Correlations
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FL Correlations

• To contribute to 〈c†i, jci, j+r〉, there must be no spinless fermions (on either legs)
between rung j, where spinless fermion will be created, and rung j+r, where
spinless fermion will be annihilated.

• Configurations satisfying this condition are those in which rung j + r sits in
a gap of length s ≥ r.

create
j

annihilate
j + r

s

create
j

annihilate
j + r

s
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FL Correlations

• Can write FL correlation as

〈c†i, jci, j+r〉 =
∑

s

P(s)
∑

s′i ,s
′
f

ψ∗(s′f )ψ(s′i),

where P(s) is probability of finding a gap of length s in ground state, and
ψ(s′) is ‘amplitude’ of single spinless fermion at site s′ within gap.

•
∑

s′i ,s
′
f
ψ∗(s′f )ψ(s′f ) is O(1) number, so 〈c†i, jci, j+r〉 ∼

∑
s P(s).

• Gap of s rungs on ladder 7→ gap of s sites on chain.

• From SAC and C. L. Henley, Phys. Rev. B 69, 075112 (2004), know that
probability of a gap of s sites in 1D Fermi sea is

P(s) = det( � −GC(s)),

where GC(s) is cluster Green-function matrix.
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FL Correlations

• For s� 1, know that

P(s) ≈ exp
{

−s
∫ n̄1

0
f (1 − n̄1, x) dx

}

,

and thus

〈c†i, jci, j+r〉 ∼
exp
(

−r
∫ n̄1

0 f (1 − n̄1, x) dx
)

1 − exp
(

−
∫ n̄1

0 f (1 − n̄1, x) dx
),

i.e. FL correlation decays exponentially with separation r.
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Summary of Correlation Exponents

limit correlation function correlation exponent wave vector

t⊥ � t‖, t′ = 0 CDW+ 2 0

2 2kF

CDW− 1
2 2kF

2 0

SC+ 2 0

2 2kF

SC− 5
2 2kF

4 0
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Strong Inter-leg Hopping Limit

• When t⊥ � t‖, t′ = 0, spinless fermions very nearly localized onto rungs of
ladder, hopping to adjacent rungs only very rarely.

• Each spinless fermion very nearly in rung ground state

|+, j〉 = 1√
2

(

c†1, j + c†2, j
)

|0〉 = C†j |0〉 .

• Call spinless fermion in rung ground state rung fermion.

• Essentially problem of 1D rung fermions with infinite nearest-neighbor re-
pulsion.

• Use trio of maps to write rung-fermion ground state

|Ψ〉 =
∑

j1<···< jPΨF(k1, . . . , kP; j1, . . . , jP) C†j1C
†
j2+1 · · ·C

†
jP+P−1 |0〉

in terms of 1D Fermi sea.
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Long-Range Order and Phase Separation

• At n̄2 =
1
4 ≡ n̄1 =

1
2, every other rung occupied. Spinless fermions can

continue to hop back and forth along rung, but cannot hop to adjacent rungs
(infinite nearest-neighbor repulsion). Dynamic solid phase with long-range
CDW order.

• For n̄2 > 1
4, a fraction of spinless fermions become immobile (inert solid

phase, n̄2 =
1
2 ≡ n̄1 = 1), while the rest remain in dynamic solid phase,

n̄2 =
1
4.

inert solid phase dynamic solid phase

• For given n̄2, ground-state composition of dynamic and inert solid phases
determined by having as many spinless fermions in dynamic solid phase as
possible.
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FL Correlations
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CDW Correlations
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SC Correlations
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Summary of Correlation Exponents

limit correlation function correlation exponent wave vector

t⊥ � t‖, t′ = 0 FL 1
4 kF

1 kF

CDW 1
2 2kF

2 0

2 2kF

SC 1
8 0

1
4 2kF

2 0

2 2kF
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Conclusions

• Exact solution via

(i) right-exclusion configuration-to-configuration map;

(ii) Bloch-state-to-Bloch-state map; and

(iii) wave-vector-to-wave-vector map

relating nearest-neighbor excluded chain and nearest-neighbor included chain.

• Corresponding observables and intervening-particle expansion allows some
correlation functions to be calculated, either analytically or numerically.

• Study three limiting cases of the extended Hubbard ladder of spinless fermions:

(i) strong correlated hopping;

(ii) weak inter-leg hopping; and

(iii) strong inter-leg hopping.
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Conclusions

• Wrote down exact ground states, calculated various correlation functions,
and perform nonlinear curve fitting to get correlation exponents.

• Many unexpected universal correlation exponents not found in existing liter-
ature on Luttinger liquids.

• Hard-core boson two-point function maps to nonlocal string observable in
1D Fermi sea. Correlation exponent β = 1

2 calculated by Efetov and Larkin
an example of string correlation exponent.

• Numerical results hints at rich physics of nonlocal string observables.
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