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Overview of Talk

e Bosons and Fermions: Brief review of Jordan-Wigner transformation.

e Exact Ground State: Trio of analytical maps relating 1D nearest-neighbor
excluded and nearest-neighbor included periodic chains.

e Correlation Functions: Corresponding observables and the intervening-particle
expansion.

e Three Limiting Cases: Extended Hubbard ladder of spinless fermions, overview
of results, and zeroth-order ground-state phase diagram.

— Strong correlated hopping limit.
— Weak inter-leg hopping limit.
— Strong inter-leg hopping limit.

e Conclusions.
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The Jordan-Wigner Transformation

e P noninteracting spinless fermions on a 1D periodic chain of L sites,

e Ground state 1s a Fermi sea
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e Amplitude given by Slater determinant
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e Two-point function decays as power law, (‘{’Flc:fc iIYr) ~ i - it
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The Jordan-Wigner Transformation

e P hard-core bosons on a 1D periodic chain of L sites,

Hy=—tY (bibju1 + b, b )+U2n](1 ), U — co.

J

e Map to noninteracting spinless fermion using Jordan-Wigner transformation
[P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928)],

bi=]J-2npci=]]-DYe
Jj<i Jj<i

e Non-local operator | [._;(1 — 2n;) called Jordan-Wigner string.

J<i

e Hard-core boson ground state
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e Two-point function also decays as power law, (‘I’ijb ¥y ~ i — jI7Y* [K. B.
Efetov and A. I. Larkin, Sov. Phys. JETP 42, 390 (1976)].
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Nearest-Neighbor Inclusion & Exclusion

e |ID chain of hard-core bosons or spinless fermions with infinite nearest-
neighbor repulsion

HA:Ha-I—VZI’l]’I’l]q.l, V — oo,
J

where A = B (boson) or C (fermion), and a = b (boson) or ¢ (fermion).

e H, allows nearest-neighbor occupation: Hilbert space ¥, consists of nearest-
neighbor included configurations.

e H, forbids nearest-neighbor occupation: Hilbert space ¥, consists of nearest-
neighbor excluded configurations.
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Configuration-to-Configuration Map

e Right exclusion map: nearest-neighbor excluded configuration to nearest-
neighbor included configuration.

o) [eDXe[X] [eX[e[X L=11,P=4

|

) @@ (®@® L'=L-P=7,P=P=4

e Check that if |@) — |@’) and |B) — |B’), then (a|H4|B) = {(¢/|H,|B").
e Right exclusion map not one-to-one.

e Right inclusion map: nearest-neighbor included configuration to nearest-
neighbor excluded configuration,

ot At LAt
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Bloch-State-to-Bloch-State Map

e Adopt closed-shell boundary conditions: P-fermion configuration incurs no
sign change when translated across boundary. Treat bosons and fermions in
same way.

e Translational invariance: define the Bloch states

L

1 .
gy =—= ) e ' VTjlay,
i

where |@) 1s generating P-particle nearest-neighbor excluded configuration,
and 7'; 1s translation operator.

e Eigenstates of H4 have definite total linear momentum, and thus H4 block-
diagonal 1n basis of Bloch states. Each diagonal block H4(g) characterized
by total momentum wave vector q.

e Number of Bloch states = number of translationally inequivalent configura-
tions.
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Example: L =6, P =2
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Example: L' =4, P =2

@ q) B"; q)
') |@|® 5 |@| |e®
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T5|a) |@ ®
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e For each g, two nearest-neighbor excluded Bloch states |a; g) and |B; g).

See that |a) — |a’) and |8) — |B’) under right-exclusion map.
e For each ¢’, two nearest-neighbor included Bloch states |a’; ¢’) and |8; ¢’).

e Can we choose g and ¢’ such that («a; g|HA|B; q) = (&"; ¢'|H,|B"; q")?

Nanyang Technological University, 29 March 2006



Wave-Vector-To-Wave-Vector Map

e First note that nearest-neighbor excluded chain of length L maps to nearest-
neighbor included chain of length " = L — P.

Allowed total-momentum wave vectors are

2nn . 2nn’ ,
q:T, q: L’, n,nEZ
e Find that {(a; qlHAlB; q) = (a5 q'|H,|B’; ¢') for all |a) = |a) and |B) — |B) if
we have
2mtn ., 2nn
q:T|—>q = 7R nels.

e In case of P = 1, n simply the number of nodes in wave function.
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Corollary of Combined Map

e Hy(q) and H,(q") are identical as matrices. Same eigenvalues and eigenvec-
tors.

e All nearest-neighbor excluded chain eigenstates can be written in terms of
nearest-neighbor included chain eigenstates, and vice versa.

e In particular, if we know a nearest-neighbor included eigenstate with energy
eigenvalue E’ 1s

Wig)= Y WG e aldl ---al 10,
J1<<jp
then nearest-neighbor excluded eigenstate with the same energy eigenvalue
E=Fis

Wigy= D W(giji....jp AL AT AT L 10),

J1<-<jp

e Exact solution of nearest-neighbor excluded chain in terms of nearest-neighbor
included chain!
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Corresponding Observables

e Since |¥';¢’) and |¥;¢g) share the same amplitudes, want to cast problem
of calculating (O) = (Y¥;q|O|¥;q) in nearest-neighbor excluded chain as
problem of calculating (O’) = (¥’; ¢’|O’|Y’; ¢’) in nearest-neighbor included
chain.

e Corresponding observables O and O’ defined by their matrix elements be-
tween Bloch states,

V0ol {a; qlOB; ) = (I, 1, (a’; 41018 q')
where [, 1s period of |a) and [/, is period of |a’).

e Can check from right-exclusion map that [’/l = n’/n, where 7 is filling frac-
tion in nearest-neighbor excluded chain, and 7’ is filling fraction in nearest-
neighbor included chain.

e Expectation of corresponding observables related by

0y = 20y
n
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The Intervening-Particle Expansion

e Defining condition of corresponding observables stringent, satisfied by few
observables. For generic observables, need to use intervening-particle expan-
sion.

e Example: The intervening-particle expansion for (A:.fAl-H) 18

(AfAir) = (A]L = Niwt) -+ (1= NipD)Apr) +
(ATNip1 - (1= Nipo)Ajr) + -+ +
<A1'T(]1 — Nis1) - Nigr1Airr) +
<‘le'r]\"i+1Ni+2 v o (L= Nipp)DAjp) + - - +
(AT = Nit) - NipraNigyo1 A + - +
<A:'rNi+1Ni+2 o Nipr1Air) .

e Each term in expansion contains p = 0, 1, ..., r intervening particles at fixed
sites.

e Map each term (A:.fOpAH,,) to its corresponding expectation (a:.fO;a,-H/), and
then sum over (i2/n") (ajOl’DaiH/) to get (AinJr,,).

Nanyang Technological University, 29 March 2006 12



Rules for Corresponding Intervening-Particle Observables

e Nearest-neighbor exclusion: Drop terms (AZ.TOPAH,,) in expansion if

AIAT L AjAj, AN, N

Jjooj+e
appecar.

e Right-exclusion map: In the surviving terms, making the replacements

Al =Nj) - al, Al =Njp) - a;, Nid-Ni) o n,

e Re-indexing: Because right-exclusion map merges sites j and j + 1, sites to
right of j + 1 must be re-indexed. For example,

N1 —=Nj1)Njo > njnj,y.

In general, site j on nearest-neighbor excluded chain becomes site j — p on
nearest-neighbor included chain if there are p particles between sites i and j
(and including 7).

Nanyang Technological University, 29 March 2006 13



Where We Are Right Now ...

e Bosons and Fermions: Brief review of Jordan-Wigner transformation.

e Exact Ground State: Trio of analytical maps relating 1D nearest-neighbor
excluded and nearest-neighbor included periodic chains.

e Correlation Functions: Corresponding observables and the intervening-particle
expansion.

e Three Limiting Cases: Extended Hubbard ladder of spinless fermions, overview
of results, and zeroth-order ground-state phase diagram.

— Strong correlated hopping limit.
— Weak inter-leg hopping limit.
— Strong inter-leg hopping limit.

e Conclusions.
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Extended Hubbard Ladder of Spinless Fermions

TR T

Hf||fJ_f'V - _t|| (Ci Ci,j+1 + C +1Ci ]) Iy (C Cit1,j + C Cz ])
A
/ i i
—1 E E (Ci, vl j1Cij2 + € o oMiv j+1C, j)
A

’ § : E : T i
—1 (Ci+1’jni,j+lci+l,j+2 + Ci+1’j+2ni,j+lci+1,j)
P
+V E E ni N j+1 + V E E n; iNi+1,j V — .
i Lo

Nanyang Technological University, 29 March 2006 15



Overview of Three Limiting Cases

e Strong correlated-hopping limit, ¢ > 7, ¢, :

— universal SC power-law correlations dominate over non-universal hard-
core-boson CDW power-law correlations at large distances.

— FL correlations decay exponentially.
e Weak inter-leg hopping limit, #;, < 7, ¢’ = O:

— universal CDW power-law correlations dominate over universal SC power-
law correlations at large distances.

— FL correlations decay exponentially.
e Strong inter-leg hopping limit, 7, > £, = 0:

— True long-range CDW when 7, = %.
1
1
— For n, < %, universal SC power-law correlations dominate universal FLL

and CDW power-law correlations at large distances.

— Phase separation for 71, >
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Zeroth-Order Phase Diagram
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Strong Correlated Hopping Limit

e When ¢’ > 1,1,, ladder spinless fermions form well-defined pairs: 1D prob-
lem of interacting hard-core bosons.

e Two flavors of interacting hard-core bosons. Call them even and odd, or red
(R) and green (G). Flavor conserved as fermion pair correlated-hops.

Tt

A A
O|@® O[O

e Bound-pair-to-hard-core boson map:

P : . R S .
B — {cl,jcz,jﬂ, j even; B - {cl,jﬂcz,j, j even;
i X P T :

C1is1Capp J odd, C1iCoir1s J odd.
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Strong Correlated Hopping Limit

e Hard-core boson of each flavor can come within two sites of another hard-
core boson of the same flavor, but can only come within three sites of a hard-
core boson of different flavor. Hard-core bosons cannot exchange positions.

|8
@l
I I

e For 2P spinless fermions on ladder of length L, Hilbert space breaks up into

sectors of immutable flavor sequences. Example: For P = 4, the distinct
flavor sequences are RRRR, RRRG, RRGG, RGRG, RGGG, and GGGG.

Nanyang Technological University, 29 March 2006 19



Kinetic Energy Argument

e Each hard-core boson confined to hop within interval of chain between the
two hard-core bosons closest to it: particle-in-a-box problem!

NN
O @ O

fe—— Leﬁ‘_)|

e At given filling fraction 7,

— L larger if R particle bounded by R particles, and G particle bounded
by G particles.

— L. smaller if R particle bounded by G particles, or G particle bound by
R particles.

— kinetic energy of bound particle lowest if bound by particles of the same
flavor.

e Two-fold-degenerate ground state for 2P spinless fermions: P R bound pairs
or P G bound pairs. Ground-state wave functions of each can be mapped to
ground-state wave function of P noninteracting spinless fermions.

Nanyang Technological University, 29 March 2006 20



Ground-State Wave Functions

e Start with ground-state wave function of P noninteracting spinless fermions
on periodic chain of length L = L — P,

WEY =3 sy Wrlkts . kpi i jp) el el oo cl0),

where ki, ..., kp are the P occupied single-particle wave vectors.

e Use Jordan-Wigner map to get ground-state wave function of P nearest-
neighbor included hard-core bosons on periodic chain of length L = L — P,

Woy =3 cocjp Wrks o kps 1oy jp)|BE BY - BT 10),

e Use right-inclusion map to get ground-state wave function of P nearest-
neighbor excluded hard-core bosons on periodic chain of length L,

_ . .\ pt ot :
We) =2 ccjp [ VPkt, o kpy iy jRI B B L -+ Byp 1 10),

e Use bound-pair-to-hard-core-boson map to get ground-state wave function of
P (R or G) bound pairs on ladder of length L.

Nanyang Technological University, 29 March 2006 21



Correlation Functions

e Only simple to calculate correlation functions which can be written 1n terms
of B; and B;.

— SC correlations (BjB,-H).
— CDW-r correlations (BZ.TB,-B.T B;.,).

+r

e Correlation functions not readily expressible in terms of B; and B; difficult
to calculate.

— FL correlation <Cchi’, i+r), understood using semi-quantitative arguments.

: i i
— CDW-0 correlations (C,-,J-Ci, JCir i, Cij )
e Numerically, summing the intervening-particle expansion for correlation func-
tions involve summing over various minors of an r X r matrix. Without ac-
celeration schemes, only feasible up to separations of r =~ 20.

e Correlation exponents, wave vectors, amplitudes and phase shifts obtained
through nonlinear curve fitting.
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SC Correlations
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CDW-x Correlations
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FL Correlations

e Configurations containing unpaired spinless fermions cannot occur in ground
state.

e FL correlations (cjjci/, j+r) DONzero only when r even.

e For r = 2p, only compact p-bound-pair configurations with one end at j and
the other end at j + r contribute to (cjjc,v, -

T 1]
¥, é T l .l Tj+2p

o (cjjc,-,, j+r) proportional to probability of finding compact p-bound-pair clus-
ter in ground state.

e Compact p-bound-pair cluster — compact p-hard-core-boson cluster — com-
pact p-noninteracting-spinless-fermion cluster.
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FL Correlations

e From SAC and C. L. Henley, Phys. Rev. B 69, 075112 (2004), know that
probability of fully-occupied p-site cluster in 1D Fermi sea is

p p
1
detGe(p) = H/ll = He‘ﬁl +1°

=1 =1

where A; are eigenvalues of the cluster Green-function matrix G¢(p), and ¢;
are the single-particle pseudo-energies of the cluster density matrix pc.

e For p > 1, know that

1-n

det Ge(p) ~ exp (—p £, %) dx) ,

0

1.e. FL correlations decay exponentially for large r, with n-dependent corre-
lation length (72" 1s filling fraction of nearest-neighbor included chain).
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Summary of Correlation Exponents

limit  correlation function correlation exponent wave vector

t > 1,1, CDW-r 1+3(3-M) 2k
2 0
SC ) 0

11 24
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Weak Inter-Leg Hopping Limit

e When ¢, — 0 and ¢ = 0, the two legs of ladder coupled only by infinite
nearest-neighbor repulsion.

e Each spinless fermion carries permanent leg index i.

e Spinless fermion cannot move past each other, even if they are on different
legs (because of infinite nearest-neighbor repulsion).

e For P spinless fermions on ladder of length L, Hilbert space breaks up into

sectors of immutable leg indices. Example: For P = 4, the distinct leg-index
sequences are 1111, 1112, 1122, 1212, 1222, and 2222.

e Again use kinetic energy argument to determine structure of ground state:

— Compare locally the sequences {---111222---} and {---112122--.},
find that third and fourth particles in {--- 112122 - - - } have longer inter-
vals to hop around, compared to their counterparts in {--- 111222 - - }.
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Weak Inter-Leg Hopping Limit

| (Ls)

ST

(L3)
(- 111222---)

(L3)

1 1
O

ol lg T 114

Ly
(- 112122---)

—0
_cl)

o

—O0

— Kinetic energies of particles forming leg-index domain wall lower.

— Overall ground state must therefore have as many domain walls as pos-
sible, 1.e. sequence must be {---121212---}or {---212121---}.

— Two-fold-degenerate staggered ground state.
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Ground-State Wave Functions

e Again, start with ground-state wave function of P noninteracting spinless
fermions on periodic chain of length L" = L,

WEY =3 sy Prlkts . kpi i jp) el el ool 0)

where ki,...,kp are the P occupied single-particle wave vectors. Infinite
nearest-neighbor repulsion between different legs do not result in need to
exclude sites.

e Without loss of generality, assume P even. Then two-fold-degenerate stag-
gered ground-state wave functions are

Wi =2 ey YKty kP 1y oo jiP) X

1
T 1 1 ToF 1 1 )
\/5 (61,1162,12 Cl,JP—1CZ,JP - C2,J1cl,./z CZ,JP—1CLJP |O> )

¥, ) symmetric with respect to reflection about ladder axis, while [¥_) anti-
symmetric with respect to reflection about ladder axis.

e Note that ladder with filling fraction 71, maps onto chain of filling fraction
iy = 2is.
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Correlation Functions

e CDW+ correlations
(N1 N jar) + 0112, j4r) s

(Mo, N jor) + N2, N2 j4r)

both equal % (Wrlnn;.|¥Yr), the CDW correlation in 1D Fermi sea.

e SC+ correlations
(c] C1 iinC Y+ () ol
2]+1 1] Lj+re2, j+r+l 2]+1 C1,j

f i
<cl, 141€2, CLj+rC2,jare1) + <cl, 7412, jC2.j+rCLj4re1)

C2,]+rcl,]+r+1>

both equal (c c .Ci+rCj+r+1), the SC correlation in 1D Fermi sea.
e CDW- and SC- correlations need to calculate numerically.

e Staggered FL correlations (ci ic2. i =0= (c; ict, j+r) vanish identically.

e FL correlations <CL-C1, j+r? and (c;jcz, j+r) decay exponentially with r, under-
stood using semi-quantitative arguments.
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CDW- Correlations
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SC- Correlations
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FL Correlations

e To contribute to (cjjc,-, j+r?, there must be no spinless fermions (on either legs)
between rung j, where spinless fermion will be created, and rung j+r, where
spinless fermion will be annihilated.

e Configurations satisfying this condition are those in which rung j + r sits in
a gap of length s > r.

L S (|
jT 4 J+r
create annihilate
L S (|
jT Vj+T
create annihilate
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FL Correlations

e Can write FL correlation as

(] cijery =Y _P()D> W (sSu(s)).

/7 7
Si’Sf

where P(s) 1s probability of finding a gap of length s in ground state, and
W(s") 1s ‘amplitude’ of single spinless fermion at site s’ within gap.

o Zs;,s} (s’ (s’ is O(1) number, so <czjci, iy ~ 32 P(s).
e Gap of s rungs on ladder — gap of s sites on chain.

e From SAC and C. L. Henley, Phys. Rev. B 69, 075112 (2004), know that
probability of a gap of s sites in 1D Fermi sea is

P(s) = det(1 — Ge(s)),

where G¢(s) 1s cluster Green-function matrix.
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FL Correlations

e For s > 1, know that

P(s) =~ exp {—sfnl f(l—nyq,x) dx},
0

exp (—r i f(1 - iy, x) dx)
L—exp (= " f(1 =i, x)dx)

1.e. FL correlation decays exponentially with separation r.

and thus

(CZjCi,j+r> ~
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Summary of Correlation Exponents

limit correlation function correlation exponent wave vector
<y, =0 CDW+ 2 0
2 2kp
CDW- 3 2k
2 0
SC+ 2 0
2 2kp
SC-— 2 2k
4 0
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Strong Inter-leg Hopping Limit

e When ¢, > 1, ' = 0, spinless fermions very nearly localized onto rungs of
ladder, hopping to adjacent rungs only very rarely.

e Each spinless fermion very nearly in rung ground state
N i _
+,jy = 35 (el + ¢l )10y = Clo).

e (Call spinless fermion in rung ground state rung fermion.

e Essentially problem of 1D rung fermions with infinite nearest-neighbor re-
pulsion.

e Use trio of maps to write rung-fermion ground state

) = Sy Wkt ke 1 jp) CECT L CE L 1O)

J1 2+l

in terms of 1D Fermi sea.
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Long-Range Order and Phase Separation

o Aty = % = n = %, every other rung occupied. Spinless fermions can
continue to hop back and forth along rung, but cannot hop to adjacent rungs

(infinite nearest-neighbor repulsion). Dynamic solid phase with long-range

CDW order.

e For i, > %, a fraction of spinless fermions become immobile (inert solid
phase, n, = % = 1, = 1), while the rest remain in dynamic solid phase,
_ 1
n, = =

-

JRSRSRERINERER:

inert solid phase

e For given 71,, ground-state composition of dynamic and inert solid phases
determined by having as many spinless fermions in dynamic solid phase as
possible.
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FL Correlations
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CDW Correlations
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SC Correlations
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Summary of Correlation Exponents

limit correlation function correlation exponent wave vector
t,>t,t =0 FL 1 ki
1 kp
CDW 3 2k
2 0
2 2kp
SC y 0
1 2k
2 0
2 2kp
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Conclusions

e Exact solution via

(1) right-exclusion configuration-to-configuration map;
(11) Bloch-state-to-Bloch-state map; and

(111) wave-vector-to-wave-vector map

relating nearest-neighbor excluded chain and nearest-neighbor included chain.

e Corresponding observables and intervening-particle expansion allows some
correlation functions to be calculated, either analytically or numerically.

e Study three limiting cases of the extended Hubbard ladder of spinless fermions:
(1) strong correlated hopping;

(11) weak inter-leg hopping; and
(111) strong inter-leg hopping.
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Conclusions

e Wrote down exact ground states, calculated various correlation functions,
and perform nonlinear curve fitting to get correlation exponents.

e Many unexpected universal correlation exponents not found in existing liter-
ature on Luttinger liquids.

e Hard-core boson two-point function maps to nonlocal string observable in
ID Fermi sea. Correlation exponent 8 = % calculated by Efetov and Larkin
an example of string correlation exponent.

e Numerical results hints at rich physics of nonlocal string observables.
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