Closed-Form Formulae for Many-Body Density Matrix. I. Explicit Calculations for Spinless Fermions in d=1

SIEW-ANN CHEONG and C.L. HENLEY, LASSP, Cornell U

March 20, 2002

This research is supported by NSF grant number DMR-9981744.

Motivation

- Density Matrix Renormalization Group (DMRG):
 - construct and diagonalize density matrix;
 - truncate Hilbert space.
- Analytical study of density matrix
 - algorithmic improvement (e.g. TMRG);
 - how to build symmetries of problem into the DMRG.

Density Matrices — General Definitions

• Equivalent description of QM at T = 0:

$$|\psi\rangle \leftrightarrow \hat{\rho} = |\psi\rangle\langle\psi|; \qquad \langle\psi|\hat{A}|\psi\rangle = \langle\hat{A}\rangle = \text{Tr}\,\hat{\rho}\hat{A}, \qquad (1)$$

for pure states $|\psi\rangle$.

- In general, if universe is in pure state $|\Psi\rangle$, state of system is a mixed state most conveniently described by $\hat{\rho}$.
- $\hat{\rho}$ obtained from density matrix of universe $\hat{\mathscr{P}} = |\Psi\rangle\langle\Psi|$ as follows:

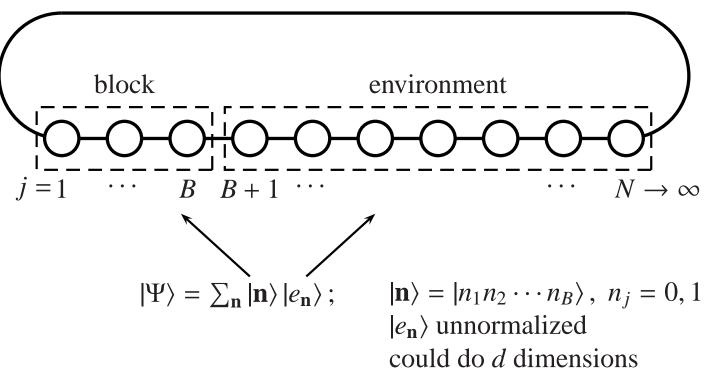
$$\langle \hat{A} \rangle = \operatorname{Tr} \hat{\mathscr{P}} \hat{A} = \operatorname{Tr}_{S,E} \hat{\mathscr{P}} \hat{A} = \operatorname{Tr}_{S} \left(\operatorname{Tr}_{E} \hat{\mathscr{P}} \right) \hat{A}$$
 (2)

if \hat{A} acts only on system S. See that $\hat{\rho} = \operatorname{Tr}_E \hat{\mathscr{P}}$.

• Easy to generalize to T > 0.

Density Matrices — Matrix Elements

periodic boundary condition



$$\langle \hat{A} \rangle = \sum_{\mathbf{n}, \mathbf{n}'} \langle e_{\mathbf{n}} | e_{\mathbf{n}'} \rangle \langle \mathbf{n} | \hat{A} | \mathbf{n}' \rangle = \sum_{\mathbf{n}, \mathbf{n}'} \langle e_{\mathbf{n}} | e_{\mathbf{n}'} \rangle A_{\mathbf{n}\mathbf{n}'} = \operatorname{Tr} \hat{\rho} \hat{A}$$
if $\rho_{\mathbf{n}'\mathbf{n}} = \langle e_{\mathbf{n}} | e_{\mathbf{n}'} \rangle$

Structure of $\hat{\rho}$

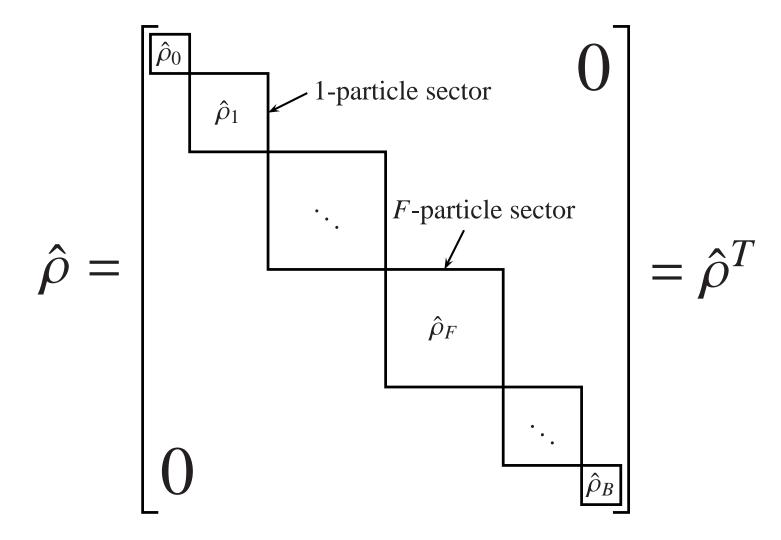
- Need to project $|\mathbf{n}\rangle$ and $|\mathbf{n}'\rangle$ to reference state $|\mathbf{0}\rangle$ to find $\langle e_{\mathbf{n}}|e_{\mathbf{n}'}\rangle$.
- Define referencing operators $K_{\mathbf{n}}$ such that $K_{\mathbf{n}} | \mathbf{n}' \rangle = \delta_{\mathbf{n}\mathbf{n}'} | \mathbf{0} \rangle$. E.g.

$$K_{101} = c_1 c_2 c_2^{\dagger} c_3 \tag{3}$$

• Can check that $K_{\mathbf{n}} | \Psi \rangle = | \mathbf{0} \rangle | e_{\mathbf{n}} \rangle$, $K_{\mathbf{n}'} | \Psi \rangle = | \mathbf{0} \rangle | e_{\mathbf{n}'} \rangle$. Thus

$$\rho_{\mathbf{n}\mathbf{n}'} = \langle \Psi | K_{\mathbf{n}'}^{\dagger} K_{\mathbf{n}} | \Psi \rangle. \tag{4}$$

• $\hat{\rho}$ real and symmetric, non-zero matrix elements of $\hat{\rho}$ in diagonal blocks corresponding to different *F*-particle sectors — denote by $\hat{\rho}_F$.



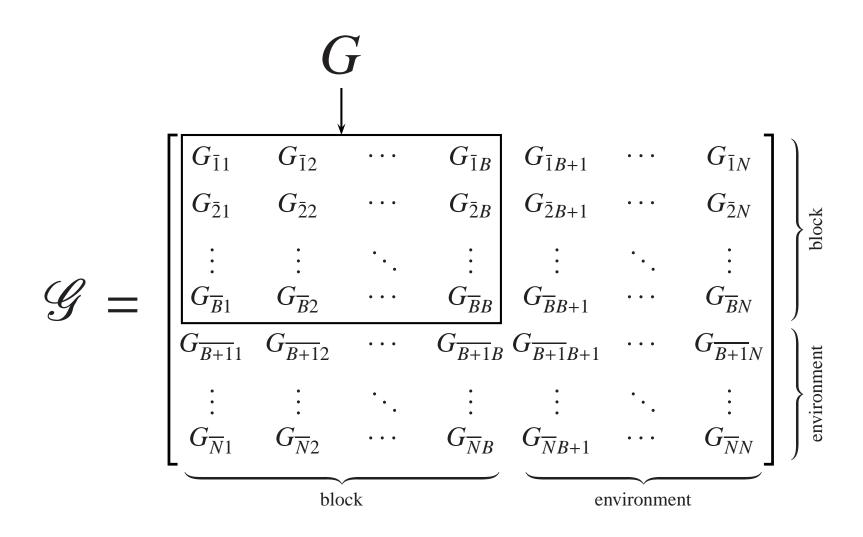
Closed-Form Expression for $\hat{ ho}_1$

- $\langle K_{\mathbf{n}'}^{\dagger} K_{\mathbf{n}} \rangle$ can be expressed as sum of 2n-point functions $G_{\bar{i}_1 \cdots \bar{i}_n j_1 \cdots j_n}$.
- 2*n*-point functions Wick factorize into sums of products of 2-point functions $G_{\bar{i}j} = \langle c_i^{\dagger} c_j \rangle = \sin(\pi \bar{n}|i-j|)/\pi |i-j|$ for non-interacting fermions. For example,

$$G_{\bar{1}\bar{2}\bar{3}135} = \langle c_1^{\dagger} c_2^{\dagger} c_3^{\dagger} c_1 c_3 c_5 \rangle = (-1)^{\frac{3(3-1)}{2}} \begin{vmatrix} G_{\bar{1}1} & G_{\bar{1}3} & G_{\bar{1}5} \\ G_{\bar{2}1} & G_{\bar{2}3} & G_{\bar{2}5} \\ G_{\bar{3}1} & G_{\bar{3}3} & G_{\bar{3}5} \end{vmatrix}$$
(5)

where \bar{n} is filling fraction.

• 2-point functions can be organized as a *Green function matrix* \mathcal{G} .



• Inspection of index structure for matrix elements of 1-particle sector $\hat{\rho}_1$ show that for system sizes $B \leq 5$,

$$\hat{\rho}_{1} = G + G^{2} - G \operatorname{Tr} G + G^{3} - G^{2} \operatorname{Tr} G - \frac{1}{2} \left[\operatorname{Tr} G^{2} - (\operatorname{Tr} G)^{2} \right] G + G^{4} - G^{3} \operatorname{Tr} G - \frac{1}{2} \left[\operatorname{Tr} G^{2} - (\operatorname{Tr} G)^{2} \right] G^{2} - \left[\frac{1}{2} \operatorname{Tr} G^{3} - \frac{1}{2} \operatorname{Tr} G \operatorname{Tr} G^{2} + \frac{1}{6} (\operatorname{Tr} G)^{3} \right] G + \cdots$$
(6)

• If we conjecture that regularity persists for B > 5, then series can be written as

$$\hat{\rho}_1 = G(\mathbb{1} + G + G^2 + \cdots) \exp\left[-\text{Tr}(G + \frac{1}{2}G^2 + \frac{1}{3}G^3 + \cdots)\right]$$
 (7)

which can be summed to

$$\hat{\rho}_1 = G(1 - G)^{-1} \det(1 - G). \tag{8}$$

• Proved by another method — next talk by C.L. HENLEY.

Numerical Checks

• Eigenvalues $w_{1,l}$ of $\hat{\rho}_1$ and λ_l of G related by

$$w_{1,l} = e^{-\varphi_l} \det(\mathbb{1} - G); \qquad e^{-\varphi_l} = \lambda_l (1 - \lambda_l)^{-1}$$
 (9)

• Half-filling $\bar{n} = \frac{1}{2}$, particle-hole symmetry in $|\Psi\rangle$ — checked that the correspondences

$$\lambda_{l} \leftrightarrow 1 - \lambda_{l},$$

$$\varphi_{l} \leftrightarrow -\varphi_{l},$$

$$\log \frac{w_{1,l}}{\det(1 - G)} \leftrightarrow \log \frac{\det(1 - G)}{w_{1,l}}$$
(10)

reflect particle-hole symmetry.

Discussions

- Next talk by C.L. HENLEY $\hat{\rho}$ completely determined by $\hat{\rho}_1$. Computational requirements greatly reduced from $O(e^B)$ to $O(B^2)$?
- Implications for truncation all the art in truncating the 1-particle Hilbert space?
- Consistency amongst the truncated *F*-particle Hilbert spaces?