Computational Scenario Testing of Infectious Diseases

Siew Ann CHEONG

NANYANG TECHNOLOGICAL UNIVERSITY

Acknowledgments

- Competitive breeding between Aedes and Culex
 - Hui Rong Amanda TEO (NTU)
 - Choon Siang TANG (NEA)
- o Human-vector interaction
 - Whei Yeap SUEN (NTU)
- Viral integration into Aedes genome
 - Michael Kia Liang THAN (NTU)
- Evolutionary model of dengue epidemics
 - Dr Khoa TD THAI (Amsterdam Medical Center)
 - David HALIM (NTU)

Density	2%	3%	5%
Benchmark	0.0%	5.0%	9.0%
Straight line	33.3%	47.5%	80.0%
Three branch	23.3%	43.3%	60.0%
Closed loop	23.3%	33.3%	43.3%
Four branch	13.3%	26.7%	36.7%

Density	2%	3%	5%
Benchmark	0.0%	5.0%	9.0%
Straight line	33.3%	47.5%	80.0%
Three branch	23.3%	43.3%	60.0%
Closed loop	23.3%	33.3%	43.3%
Four branch	13.3%	26.7%	36.7%

Density	2%	3%	5%
Benchmark	0.0%	5.0%	9.0%
Straight line	33.3%	47.5%	80.0%
Three branch	23.3%	43.3%	60.0%
Closed loop	23.3%	33.3%	43.3%
Four branch	13.3%	26.7%	36.7%

- 10 × 10 km² town = 1024 × 1024 grid
- 100 humans + 5000 mosquitoes
- Slower mosquito, 0 < q < 1
- Same cross-infection probability ip
- Epidemiological models
 - Susceptible-Infected (SI)
 - Susceptible-Infected-Recovered (SIR)
 - Susceptible-Subclinical-Infected-Recovered (SsIR)

• Partially completed

- Structured human mobility
 - infection rate increases 10–100 times
- To start soon
 - 80% subclinical, 20% clinical
 - Quarantine
 - Social distancing

• Facts

- DENV
 - Endemic strain
- DENV vectors
 - Aedes aegypti & Aedes albopictus
 - Habitat segregation
- Low rate of vertical transmission
- Puzzle
 - Long inter-epidemic periods
 - Dengue should be extinct!

• Facts

- Viral integration into host genome
- Crochu et al, 2004. J. Gen. Virol. 85, 1971.
- Roiz et al, 2009. Virol. J. 6, 93.
- Scenario
 - DENV integrated into Aedes albopictus genome
 - Temperature-driven release (*El Nino*?)
 - Aedes albopictus seeds epidemic
 - Aedes aegypti spreads epidemic

Coupled SIR Model

• Future plans

- Periodic driving
 - Aedes albopictus population
 - Aedes albopictus infectivity
- Spatial extension
 - Urban Aedes aegypti
 - Rural Aedes albopictus

DENV Evolution & Epidemiology

 Exciting interface between evolution and epidemiology

- Advances in phylogenetic techniques
- Growing interest in past decade
- DENV evolution
 - Accelerated during epidemic
 - Ecological competition between strains

DENV Evolution & Epidemiology

DENV Evolution & Epidemiology

• Simulate *N* = 10,000 sequences

- SIR dynamics for each sequence
- Fitness driven substitution
- Point mutations
- Each sequence consists of
 - E subsequence
 - Different infectivity
 - NS1 subsequence
 - Different reproductive rate

The Next Step…

Complete present studies

- Compare with empirical data
- Collaborations with regional partners
 - Modeling + simulation to understand clinical data
 - Test experimentally inaccessible scenarios

Contact Information

Siew Ann CHEONG Assistant Professor Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link, Singapore 637371 Tel: +65-6513-8084 Fax: +65-6795-7981 Email: cheongsa@ntu.edu.sg

increasing fogging interval

