Theoretical Studies of Condensed Matter and Complex Systems

CHEONG Siew Ann

Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University

Research Directions

• Data driven, fundamental theory either

- Too cumbersome for understanding experiments
- Not available at all
- Effective modeling
 - Progressive refinement of simple models
 - Extraction of effective variables.

Ultrafast Dynamics

Quantum dots

- Discrete "atomic" energy levels
- Photoluminescence or electroluminescence
- Organic light emitters
 - Discrete molecular energy levels
 - Photoluminescence
- HTSC materials
 - Energy band structure
 - Electron-electron and electron-phonon interactions
 - Pump-probe experiments to understand relaxation dynamics

Models and Equations

$$\begin{split} \frac{dT_{el}}{d\tau} &= -\frac{3\lambda\Omega_0^3}{\hbar\pi k_B^2} \frac{n_{el} - n_{ph}}{T_{el}} + \frac{P}{C_{el}}, \\ \frac{dT_{ph}}{d\tau} &= \frac{C_{el}}{C_{ph}} \frac{3\lambda\Omega_0^3}{\hbar\pi k_B^2} \frac{n_{el} - n_{ph}}{T_{el}} - \frac{T_{ph} - T_{latt}}{\tau_{\beta}}, \\ \frac{dT}{d\tau} &= \frac{C_{ph}}{C_{latt}} \frac{T_{ph} - T_{latt}}{\tau_{\beta}}; \\ n_{el} &= \frac{1}{e^{\Omega/k_B T_{el}} - 1}, n_{ph} = \frac{1}{e^{\Omega/k_B T_{ph}} - 1}. \end{split}$$

(Taken from Perfetti et al, PRL **99**, 197001 (2007))

Dynamical Mean Field Theory for Spin Systems

• Dynamical mean field theory (DMFT)

- powerful numerical method for study of strongly correlated materials
- Single out a single electron, and approximate the influence of other electrons by time-dependent potential
- Solve effective Schrödinger equation selfconsistently
- DMFT for spin systems?

Complex System Dynamics

- Biological, economical, financial, and sociological systems.
- Macroscopic Phases
 - Statistical segmentation and clustering of index time series
 - Causal link analyses
- Effective Variables
 - Whole-market correlational analysis
 - Understand nature of market crashes

• • Causal Link Analysis

• Working Hypothesis

- Closer causal relationship
 - Shorter delays between onsets of shocks
 - Similar patterns of shocks
- Leading sector
 - More shocks
 - Stronger shocks
 - Shocks last longer

Recovery from Previous Financial Crisis

Onset of Current Financial Crisis

• Sequence:

- (NC, UT) \rightarrow (HC,IN,TL) \rightarrow FN \rightarrow TC \rightarrow BM \rightarrow CY
- Interest rate cuts
 - First 2-3 effective
 - Next 2-3 counter-effective
 - Subsequent ones ineffective

Financial Atoms and Molecules

- Whole-market correlational analysis
 - Daily price movements for 2006 & 2007
 - NYSE, LSE, TSE, HKSE & SGX
- Hierarchical organization of effective variables
 - Financial atoms
 - Financial molecules
- One financial molecule each in HKSE & SGX
 - Half local stocks, half Chinese stocks
 - No apparent reason apart from Chinese Correction

Understanding the Feb 2007 Chinese Correction

Understanding the Feb 2007 Chinese Correction

Collaborations

Ultrafast phenomena

- Interplay between experimentation and modeling
- Complex system dynamics
 - Extract effective variables from
 - Protein dynamics simulations
 - Earthquake time series
 - Large-scale high-throughput transcriptome experiments