Statistical Segmentation of Biological Sequences

CHEONG Siew Ann

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University

> 2008 BIRC Workshop on Advances in Bioinformatics 16 February 2008

Acknowledgments

• Postdoctoral work in collaboration with:

Christopher R. Myers
Center for Advanced Computing,
Cornell University

Paul Stodghill USDA ARS Ithaca

Samuel Cartinhour
Department of Plant Pathology,
Cornell University

David J. Schneider USDA ARS Ithaca

• Research funded by the US Department of Agriculture.

The Biological Sequence Segmentation Problem

- Two motivating problems:
 - HT segments (genomic islands) and lineage-specific segments (backbone) in bacterial DNA.
 - * HT segments have different statistics from backbone.
 - * Pathogenic genes frequently found near HT segment boundaries.
 - * Gene-finding algorithms do not perform well in regions where statistics differ significantly from backbone.
 - * Scoring problem even more severe for computational search of short regulatory elements.
 - Mesoscopic description of genome: 'Local' statistics vary along DNA sequence. Break long sequence into intermediate length segments, based on 'discernible' changes in statistics. Coarse-grained description.
- DNA polymerization along $5' \rightarrow 3'$ direction builds directionality into sequence. Biases in dinucleotide and codon frequencies. Model as Markov chains rather than Bernoulli chains with extended alphabets.

Markov chains

- State x_i of Markov chain at sequence position i can take on values in alphabet S of size S. Example. For DNA sequences, $S = \{A, T, C, G\}$, and S = 4.
- Markov chains generated probabilistically. Existing subsequence extended

by attaching x_0 to end of subsequence with transition probability

$$p(x_0|x_{-1}x_{-2}\cdots x_{-K}).$$

- Markov chain of order K if $p(x_0|x_{-1}x_{-2}\cdots x_{-K'}) = p(x_0|x_{-1}x_{-2}\cdots x_{-K})$ for all $K' \ge K$.
- Transition probabilities can be organized into transition matrix

$$\mathbb{P} = [p_{\mathbf{t}s}], \quad s = 1, \dots, S, \quad \mathbf{t} = t_1 \cdots t_K \in S^K.$$

• Equilibrium distribution $\pi = (P_1, \dots, P_k, \dots, P_{SK})$ such that $\pi \mathbb{P} = \pi$, $P_k = \text{probability of finding } k\text{th } K\text{-mer in stationary Markov chain.}$

Classification of Segmentation Schemes

• Matrix of segmentation schemes in literature:

	single–pass	recursive	local	global
sliding window average				
DNA walk				
dynamic programming				
hidden Markov model				

- All schemes rely on entropic measure of statistical dissimilarity, whether:
 - computed directly; or
 - in the form of inner product between quantized vectors of probabilities.

The Jensen-Shannon Divergence

• Given length-N sequence $\mathbf{x} = x_1 x_2 \cdots x_N$, $x_i = A, C, G, T$, assume composed of $M \ge 1$ Markov chains with boundaries at i_1, \dots, i_{M-1} . M-segment sequence likelihood given by

$$P_{M}(\mathbf{x}; i_{1}, \dots, i_{M-1}; \hat{\mathbb{P}}_{1}, \dots, \hat{\mathbb{P}}_{M}) = \prod_{m=1}^{M} \prod_{\mathbf{t} \in S^{K}} \prod_{s=1}^{S} (\hat{p}_{\mathbf{t}s}^{m})^{f_{\mathbf{t}s}^{m}}; \quad \hat{p}_{\mathbf{t}s}^{m} = \frac{f_{\mathbf{t}s}^{m}}{\sum_{s'} f_{\mathbf{t}s'}^{m}}.$$

• Jensen-Shannon divergence

$$\Delta_{M} = \log \frac{P_{M}}{P_{1}} = -\sum_{\mathbf{t} \in S^{K}} \sum_{s=1}^{S} f_{\mathbf{t}s} \log \hat{p}_{\mathbf{t}s} + \sum_{m=1}^{M} \sum_{\mathbf{t} \in S^{K}} \sum_{s=1}^{S} f_{\mathbf{t}s}^{m} \log \hat{p}_{\mathbf{t}s}^{m};$$

$$f_{\mathbf{t}s} = \sum_{m=1}^{M} f_{\mathbf{t}s}^{m}, \quad \hat{p}_{\mathbf{t}s} = \frac{f_{\mathbf{t}s}}{\sum_{s'=1}^{S} f_{\mathbf{t}s'}}$$

is symmetric relative entropy providing quantitative measure of 'goodness-of-fit' of *M*-segment model over 1-segment model.

Segmentation with a Pair of Sliding Windows

- For a single sliding window of length n, spatial resolution decreases with n while statistical significance increases with n.
- Solution: To not compromise spatial resolution, use an adjoining pair of sliding windows, each of length n.
- Compute $\Delta_2(i)$ using $\hat{\mathbb{P}}_L$ in left window and $\hat{\mathbb{P}}_L$ in right window as function of sequence position i of centre of pair of windows.
- Segment boundaries appear as peaks in $\Delta_2(i)$. Strength of peak measure of statistical difference between the segments it separates.

Segmentation with a Pair of Sliding Windows

The interval (0, 40000) in the *E. coli* K-12 MG1655 genome (N = 4639675), showing the K = 0 Jensen-Shannon divergence spectrum for n = 1000. Annotated genes on the positive (red) and negative (green) strands are shown below the graph.

Recursive Jensen-Shannon Segmentation

• STEP 1 (Segmentation):

- Given sequence $\mathbf{x} = x_1 x_2 \cdots x_N$, compute 2-segment Jensen-Shannon divergence $\Delta_2(i)$ as function of cursor position i.
- Find i^* such that $\Delta_2(i^*) = \max_i \Delta_2(i)$. The best 2-segment model for \mathbf{x} is $\mathbf{x} = \mathbf{x}_L \mathbf{x}_R$, where $\mathbf{x}_L = x_1 \cdots x_{i^*}$ and $\mathbf{x}_R = x_{i^*+1} \cdots x_N$.
- STEP 2 (Recursion): Repeat STEP 1 for \mathbf{x}_L and \mathbf{x}_R .
- STEP 3 (Termination): 1-segment model selected over 2-segment model if:
 - Hypothesis Testing: probability of obtaining divergence beyond observed Δ_2 greater than prescribed tolerance ϵ ; or
 - Model Selection: information criterion (e.g. AIC, BIC) for 2-segment model greater than that for 1-segment model.

Recursive Jensen-Shannon Segmentation

Jensen-Shannon divergence spectrum of order K = 3 over the entire genome of E. coli K-12 MG1655 (N = 4639675 bp). The first segment boundary to be obtained in this first stage of recursive segmentation is shown by the red arrow.

Segmentation Optimization

• Two procedures to optimize segment boundary i_m if we are allowed to move only one segment boundary at a time:

- First-order update: Compute $\Delta_2^m(i)$ for supersegment (i_{m-1}, i, i_{m+1}) , and choose $i_m = i^*$, such that $\Delta_2(i^*) = \max_{i_{m-1} < i < i_{m+1}} \Delta_2(i)$, to be new position of segment boundary.
- Second-order update: Compute $\Delta_2^{m-1}(i)$ for supersegment (i_{m-2}, i_{m-1}, i) and $\Delta_2^{m+1}(i)$ for supersegment (i, i_{m+1}, i_{m+2}) , and choose $i_m = i^*$, such that

$$\Delta_2^{m-1}(i^*) + \Delta_2^{m+1}(i^*) = \max_{i_{m-1} < i < i_{m+1}} \left[\Delta_2^{m-1}(i) + \Delta_2^{m+1}(i) \right],$$

to be new position of segment boundary.

- Segment boundaries $\{i_m\}_{m=1}^M$ updated serially, or in parallel.
- Optimized recursive segmentation: Right after STEP 1 (Segmentation), optimize segmentation using first- or second-order update algorithm.

optimized Recursive Jensen-Shannon Segmentation

Optimized Recursive Jensen-Shannon Segmentation

Conclusions & Further Works

- In conclusion, we have:
 - Developed segmentation scheme using a pair of sliding windows;
 - Developed optimization algorithms for recursive Jensen-Shannon segmentation scheme; and

• Further works:

- Mean-field analysis of sliding window segmentation scheme: mean-field lineshape and match filtering;
- Mean-field analysis of recursive segmentation scheme: identified problem of context sensitivity;
- Developed new termination criterion based on intrinsic statistical fluctuations.
- Incomplete segmentation misleading, cluster terminal segments instead to obtain coarser scale description of genome. E.g. to distinguish lineage-specific regions arising from HGT and the genetic backbone.
- Multiple sequence clustering for comparative, phylogenetic studies.