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Overview of Chapter 1

e \Why numerical methods?

e \Why density matrices (DMs)?

— Finite subsystem of larger system;
— Correlations of products of local observables.

e Quantum renormalization group.
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Why Numerical Methods?

e Ground-state propertiesifergy, correlations = O phase diagrajjof N —
oo interacting QM degrees of freedorap(ns, bosons, fermiohgan be cal-
culated from the ground-state wave function.

e Exact analytical many-body wave functions rare.

Approximate analytical many-body wave functions

— Perturbativenot valid over all Hamiltonian parameter(s); or
— Variational:involve a priori assumptions on structure of wave function.

Numerical methods like

— Exact Diagonalization (EDQandor
— Quantum Monte Carlo (QMC)

to obtain numerical wave functions or correlationdioite systems. Extrap-
olations then needed fiN — .
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Why Density Matrices?

e Build up QM state of infinite system from QM states of finite systems.

copies of
finite system

numerically tractable
finite system

e Pure stat®n infinite system— mixed stateon finite subsystem.
(wave function?) (density matrixp)
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Why Density Matrices?

e Calculation of correlations of products of local obseresbl

o Expectation¥|c/cicsCal¥) = (CichcsCa) = Tr papCiChCaCa.
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Quantum Renormalization Group (QRG)

e Repeated cycles dfuncationandrenormalization [S. R. White, PRLG9,
2863 (1992); R. J. Bursill, PRBO, 1643 (1999)]

e Truncation naturally guided by density matrix (DM).

') P
STEP 1
trace down
-
truncate
build up .
1 STEP 3 L
'¥) p

e Understanding structure of DM may lead to algorithmic inyamments €.g9.
Transfer-Matrix Renormalization Group (TMR)zand better ways to build
symmetries of problem into RG.
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Overview of Chapters 2 & 3

e Model & system definitions.
e Exact formula for cluster DM:
— Exact formula;

— Cluster Green-function matrix;
— Derivation.

Many-body eigenstates and eigenvalues of cluster DM.

— Scaling behaviour of cluster DM eigenvalues and eigenfanst

Statistical mechanics analogy.

e Operator-based DM truncation scheme:

— Formulation;
— Dispersion relation calculation for 1D noninteractingrdgess fermions.
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Noninteracting Spinless Fermions in d Dimensions

H, = —t Z i, |Pe) = Fermi sea ground state
e’y

N-site system

(N — N¢)-site

. environment
Nc-site cluster
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Exact Formula for Cluster DM

e For cluster ofN¢ sites, DM found to have the structuid.-C. Chung and |.
Peschel, PRB4, 064412 (2001)]

N
oc exp[— ZI:C; Q) fIT f|] , {1, fIT} =1.
¢ and f; determined numerically.

e Exact formula for cluster DMSAC and C. L. Henley, PRE9, 075111
(2004); I. Peschel, J. Phys. A: Math. G&é L205 (2003)]

pc = det(l — Gc) exp{Z[log Ge(1 - Gc)_llijCiTCJ}
N

In terms of cluster Green-function matiG¢.
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Cluster Green-Function Matrix

e Organize two-point function&;; = <LP|:|CiTCj|\P|:> Into Green-function matrix
¢ andcluster Green-function matriéc:

Gc
GI]_ GIZ U GINC GIN(;+1 T GIN
G2, G2 e Gang | Gane+a T Gan x
¢ O
O
G = GN_Cl GN_CZ e GN_CNC GN_CNC+1 e GN_CN )
_ —_— .o _ _ “ e _ )
GN(;+11 GNc+12 GNc+1NC GNc+1Nc+l GNc+1N %
=
(9
2
—_— —_— e o o —_— —_— e o o —_— o
GNl GN2 GNNC GNNC+1 GNN J
block environment
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Derivation of Exact Formula

e Start from normalized grand-canonical DM of system
o =2 exp[-B(H — uF)] = exp[z [ jc c,] 271 exp[z fkkc”:ic”:k],
Kk

chemical potential:,, inverse temperaturg, fermion number operatdf =
Zi c'c :,,Zk él(”:k, grand-canonical partition functiof2, and coéficient ma-
tricesI” (I' in momentum space).

e Introduce fermionic coherent states
N—Nc

Nc
€m) =181 &Ny ML+ TIN-NG) = eXF(‘Zfi Z 7jC )|0>
i=1

& andn; are anticommuting Grassman variables.

e Matrix elements op are

€l
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Derivation of Exact Formula

e Codlicient matrices

]1+er:lBAr g] (]1+er)_1=[EDT E]

AandD squara\NcxNc symmetric matriced3 andE nonsquarécx(N—N¢)
matricesC andF square N — N¢c) X (N — Nc) symmetric matrices.

e Partial trace over environment, gaussian integration aattixnmblock inver-
sion gives matrix elements of cluster DM

(Elpclé’) = f ddn e (& —qlpolé’ 7)
= detD exp{f* [D‘1 - ]1] f’}.

e Momentum space matrix elements@fandr,

1
expBlec—p) + 1

G = (PEIE EPE) = T = —Blex — 1)
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Derivation of Exact Formula

e Matrix relations

d=91-9"' = d=901-9", 1+d=1-9)"

Cluster matrix relations

D=1-Ge, D'=(1-Go)t, D1 1-1=0G¢c(1-Ge)?

e Cluster DM matrix elements

<§|pC|§,> = det(ﬂ — GC) exp[f*GC(]l B GC)—1§/] .

Operator form from matrix elements, using the relation

(& exp' T’ o)g) = exp(f*er 'f’) : cT’'c=) Y cTjc;
j
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Many-Body Eigenstates and Eigenvalues of Cluster DM

e Eigenstates and eigenvalues of cluster Green-functiormat

Ay = 1710y,  Geld) = 4 1A).

e |4)) simultaneous 1-particle eigenstatepef

pcld) = detll — Ge)e ™ [4), ¢ =-—In [/h(l - /h)_l] :

o P-particle eigenstate @k described by a set of numbers (..., n, ..., Nng),
n=0,1,
_ gt i _
W) = 1:|1f|2 T flP |O> , N = 5I,Ii,

with eigenvalue (DM weight)

Nc
w = det(l — Gc) exp(-®), @ =) ng.
=1
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Scaling Behaviour of Eigenvalues & Eigenfunctions

Approximate scaling behaviour of 1-particle pseudo-eiesrg

o(l.Nc. ) ~ Nef (%), x=(~1p)/Ne, Ir =Ne + 2.

Properties of scaling function

f(Mm0)=0, f/(M0)>0, f(A—-x)=—f(l-n,x).

Approximate scaling behaviour of pseudo-Fermi eigenfionct

% 3[1 - (-1)]]
Nc(lOg Nc + K) JV Sir? Ty ,

e (j, No)IP » y=1(j-3)/Nc

at half-filling.

The scaling functiom(y) is very nearly simxy.
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Statistical Mechanics Analogy

e [SAC and C. L. Henley, PRB9, 075112 (2004)]

free spinless fermion 0c
Hamiltonian H = Y, &&.& | H = >, ¢ " fi | pseudo-Hamiltonian
1-particle energy €k "] 1-particle pseudo-energy
1-particle operator Ck fi 1-particle pseudo-operator
occupation number Nk N, pseudo-occupation number
total energy E=> e | ® =) ng |total pseudo-energy
Fermi level €F OF pseudo-Fermi level

e Based on analogy, average pseudo-occupation is

1

) =4 = expe + 1

e Most probable eigenstate o has structure of Fermi se@; < ¢ occupied,
@1 > pF eMpty.

e Other eigenstates look like ‘excitations’ about Fermi sea.
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Operator-Based DM Truncation Scheme

e DM eigenstates with largest weights always haye<x ¢ occupied and
¢ > @ empty. These dier inn, for ¢ ~ ¢F;

o Keep onlyf" with ¢ ~ f:

truncate
——————

A m=yNc
vF } f’s retained

‘(W) =1

e Compare with weight-ranked truncatiomsgd for e.g., in the DMR)5

PF np)

AS)

— eigenstates with largest weights all kept;

— some eigenstates with intermediate weights not kept, ipliced with
eigenstates with slightly smaller weights;

— eigenstates with small weights not kept.
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Results: 1D Noninteracting Spinless Fermions
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Overview of Chapter 4

e System, cluster and model definitions.

Computation of cluster DM.

Finite size &ects and twist boundary conditions averaging.

e Comparison of cluster DM spectra:

— Noninteracting 1-particle cluster DM weights after avengg
— Strongly-interacting 1-particle cluster DM weights aféeeraging.

B Examination, Cornell University, October 6, 2005

20



System, Cluster & Model

e VariousR; x R, systems, witlN = |R; X Ry sites.

e 5-site cross-shaped cluster with same point group symmstsguare lattice,
angular-momentum-like notation:

1-particle states : |s), |p),|d),...;
many-particle states : |S), |P),|D),....

e nearest-neighbor hopping (noninteracting) and neamghbor hopping+
Infinite nearest-neighbor repulsion (strongly-intenagji

Ht = —t Z Cjcrl, HtV — Ht + V Z nrnr’.
r,r’y r,r’y
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Computation of Cluster DM

e obtain ground statpF) = >°_ Ppn) = > > (=1 My, iy im), where
Iny = (=1)"™Lm 1y m), |1), |m) occupation number basis states of system,

cluster and environment respectively:

— noninteractingconstruct finite-system Fermi-sea ground state directly;
— strongly-interacting ED taking advantage of translational invariance.

tial _ L . .
o p=|P) (¥ ptaﬂ> oc (care with fermion sign<1)'®™m™1) gives
race

<||pc||l> — Z Z(_1)f(n;|,m)+f(n’;l”m’)\{ll’m\{lr”m/ 6m’m,.

m m’

e Show thatoc so defined givesV|AY) = (A) = Trc pcA for observableA
local to cluster.

e Averageoc over degenerate ground states, and orientations of systative
to cluster.
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Finite Size Effects & Twist Boundary Conditions Averaging

e For‘squarish’ finite noninteracting systems subject toqokc boundary con-
ditions (PBC), cluster DM spectra calculated approachaste-system limit
whenN ~ 200 sites.

e Small finite systems (noninteracting & strongly-interagli of N ~ 20 sites,
strong influence from finite sizdtects (most severe fal state, least severe
for s; state) = require twist boundary conditions (TBC) averaging.

e In bond gaugereplacec: — e'*’c,, ¢/ — €%7c/, in Hamiltonian, where
¢ = (¢x ¢y) is thetwist vectorassociated with TBC. Calculate bond-gauge
ground staté¥pond@)).

e Gauge transformation
Q! |n> N e_i >_r(@r)ne |n>

to getboundary-gaugground stat¢¥poundarf®)). Construct boundary-gauge
TBC cluster DMoc(¢).

e Averageoc(¢) over all¢ in FBZ. Best approximation to infinite-systesa.
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1-Particle Weights (Noninteracting)
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1-Particle Weights (Strongly-Interacting)
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Overview of Chapters 5,6, 7 & 8

e Formulation(Chapters 5 & 6)

— Definition of correlation DM, singular value decompositi@VD), and
order parameters.

— Operator SVD starting from operator basis of referencingrajors;
Frobenius orthonormalization.

e Model (Chapter 7)

— Extended Hubbard ladder of spinless fermions with coreeldiops;
Compargcontrast Luttinger-liquid physics of 1D interacting feons;

— Three limiting cases:
LR T
« t, <, t' =0;
# t, >, =0.

e Numerics(Chapter 8)
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Correlation DM and SVD

e Entanglement entrop$ = — Tr pc logpoc as gross diagnostic of correlations.
[Vidal et al, PRL90, 227902 (2003)]

e Systematic extraction of order parameters from cluster DM.:

— Disconnected clustessatr andb atr’;
— Cluster DMsp? andp®, supercluster DM?;
— Define correlation DMp® = p® — p2 ® pP;

e Correlation DM containsll correlations betweeamandb — want to attribute
these correlations to various order parameters. Write SVD

P =) TuaXa Y],

whereX, Y, andXﬁYﬁgr represent independent quantum fluctuations on clusters
aandb, i.e. X, andY,, are the desired order parameters.
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Mechanics of SVD

e Start from operator basis of referencing operators
Kn = H [nici +(1- ni)cic;f], Knn") = 8nr |0),
i
for system basis states. Similarly defined for cluster anir@mment basis
states.

e Product of referencing operatoXs: = KITKV, Ymm = K%Km/ orthonormal
with respect to Frobenius norm

Tr X||/X|//|/// = 5||/,|//|///, Tr Ymm/Ym//m/// = 6mm/’m,,m,,,;
o Write
Pt = > [(0) ORI iy — R (mipPim') | KKK Ko

n,n’

e Numerical singular value decompose the faoent matrixK of p¢, whose
matrix elements are

Kap = Kirmme = (=1) OO n163007y — (110317 (mip°im’) .
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Extended Hubbard Ladder of Spinless Fermions

PRI

|

—t Z (Cijnz,j+1C1,j+2 + Clj+2n2,j+1cl,j)
j

—t'> (¢} M js1Cajaz + Cp oM j+1C2 )

]
+ VZZ ni,jni,j+1 + VZ nl,jnl,j
i j j

V — o0, N0 nearest-neighbor occupation, smaller Hilbert spacg&f

_ foac o NP
Hyeev = =43 > (GG + G jaGi) =t Y (0 + G5 01)
)
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Luttinger-Liquid Physics

e Tunable parameters in model:

— Filling fraction n: fermion fluid forn> 0, hole fluid forn's 2;
— Nearest-neighbor hopping anisotrapyt;;
— Correlated hop'/t;. Larget’/t, favors pairing and hence SC.

e Three limiting cases:

— t' > t,t,, SC dominate, FL exponential decay;
— t, < t, ' = 0, FL dominant, power-law decay;
—t, > t,t" =0, true long-range CDW order at quarter-filling.

e Compare and contrast basic physics of spinless Luttingerdi Insulator at
half-filling. Away from half-filling,

— Power-law decay of CDW and SC correlations;

— CDW dominate at long distancesKf, < 1, SC dominate at long dis-
tances ifK, > 1, FL if K, = 1;
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Correlated Hops Only

In limit t’/t,t'/t, — oo, ground state oP = 2p patrticles that ofp strongly-
Interacting bound pairs.

Exact infinite-ladder ground state obtained from

bound pair €,;C2,j+1) — extended hard-core bosoB;{ —
hard-core bosor{) — noninteracting spinless fermion;§

sequence of maps.

SC correlations decay as power laws,

] 1 .
(AlAjr) = (BB ~ 1Y Aj= —(-1)) (crjCaje1 £ C2jC1js1).

V2
e FL correlations decay exponentially,

1-m
<0?jci,j+r>~e><p(—r-%f f (M, X)dX),
’ 0

wheref(n, X) is universal scaling function found in Chapter 3.
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Weak Inter-Leg Hopping

Inlimit t;, < t,t" =0, intra-leg hopping of particle on leg= 1 restricted by
the two particles on leg= 2 closest to it, and vice versa. Hence particle on
legi will never be directly by other particles on the same leg.

Exact infinite-ladder ground states obtained from 1D Feeaiground state
by the staggered maps

T AT AT T T T AT T
il CigpeaCize ™ CLiiC2 Crjpp i C22p

f et s A SO i
i Cigpeibizg 7 G200 C2jpp i Cr2p

— C

e Dominant FL correlations

t -1 _ 1
(CLiCejer) ~ 177, Cuj=5(C0j £ C2)).

e Subdominant CDW and SC correlations
(MiNjer) ~ 172 (ATA) ~ 172,

for variousn; constructed out OtiTjCi,j, and variousA; constructed out of
C1,jC2,j+1 aNdCy jCy j+1.
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Strong Inter-Leg Hopping

e Inlimit t, > t, " = O, each particle very nearly in rung eigenstat@e&
tively 1D gas of interacting rung-fermions with extendedeza.e. infinite
nearest-neighbor repulsion.

e Can be mapped to chain of noninteracting spinless fermions,
CINj;1=0, C/(1-Nj1)—c,
CJT creates extended core rung-fermions, andreates spinless fermions.

e Think of leg index as ‘spin projection’, then intra-leg hapgt, introduces
only very weak exchange between rung-fermions. Essentiaicorrelated
‘Spin projections’.

e Slow power-law decay of CDW correlations which becomes liong-range
order at quarter-filling.

e Exponential decay of FL and SC correlations, both vanist@ahgjuarter-
filling.

e Phase separation above quarter-filling.
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Results From SVD of Correlation DM

10
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©10
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©10
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B — CDW+ (max) B — CDWH+ (max)_
— CDW- (max) — CDW- (max)
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t/t =10 | |SG' t'/t = oo | |
2 3 4 2 3 4
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Conclusions

e Learning from noninteracting spinless fermions:

— Exact formula for cluster DM,;

— Scaling behaviour of eigenvalues and eigenfunctions;
— Statistical mechanics analogy;

— Operator-based DM truncation scheme,;

— When 2D infinite-system limit reached numerically;

— Effectiveness of averaging aparatus.

e Applying to strongly-interacting spinless fermions:
— Adaptation and extension of operator-based DM truncathese.
e SVD of correlation DM

— Systematic extraction of order parameters;
— Approximate zero-temperature phase diagram.
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