Many-Body Fermion Density Matrices

SIEW-ANN CHEONG

Department of Physics, Cornell University

B Examination Cornell University October 6, 2005

Acknowledgements

My thesis work under Prof. Christopher L. Henley is supported first by NSF grant DMR-9981744, and subsequently by NSF grant DMR-0240953. Part of the computational work is done using the computing facilities of the Cornell Center for Materials Research, supported by NSF grant DMR-0079992.

I have benefitted from discussions with Prof. James P. Sethna, Prof. N. David Mermin, both from the Physics Department, and Prof. Garnet Chan, from the Chemistry Department. I would like to also thank Mr. Lim Lek Heng and Mr. Lim Hway Kiong.

Organization

- Motivation for thesis work:
 - Chapter 1.
- Reduced DMs of noninteracting spinless fermions:
 - Chapters 2 & 3.
- Reduced DMs of interacting spinless fermions:
 - Chapter 4.
- Correlation DM and operator singular value decomposition:
 - Chapters 5, 6, 7, & 8.
- Conclusions:
 - Chapter 9.

Overview of Chapter 1

- Why numerical methods?
- Why density matrices (DMs)?
 - Finite subsystem of larger system;
 - Correlations of products of local observables.
- Quantum renormalization group.

Why Numerical Methods?

- Ground-state properties (energy, correlations, *T* = 0 phase diagram) of *N* → ∞ interacting QM degrees of freedom (spins, bosons, fermions) can be calculated from the ground-state wave function.
- Exact analytical many-body wave functions rare.
- Approximate analytical many-body wave functions
 - Perturbative: not valid over all Hamiltonian parameter(s); or
 - Variational: involve *a priori* assumptions on structure of wave function.
- Numerical methods like
 - Exact Diagonalization (ED); and/or
 - Quantum Monte Carlo (QMC)

to obtain numerical wave functions or correlations of finite systems. Extrapolations then needed for $N \rightarrow \infty$.

Why Density Matrices?

• Build up QM state of infinite system from QM states of finite subsystems.

• Pure state on infinite system \implies mixed state on finite subsystem. (wave function Ψ) (density matrix ρ)

Why Density Matrices?

• Calculation of correlations of products of local observables.

• Expectation: $\langle \Psi | c_1^{\dagger} c_2^{\dagger} c_3 c_4 | \Psi \rangle = \langle c_1^{\dagger} c_2^{\dagger} c_3 c_4 \rangle = \operatorname{Tr} \rho_{AB} c_1^{\dagger} c_2^{\dagger} c_3 c_4.$

Quantum Renormalization Group (QRG)

- Repeated cycles of truncation and renormalization. [S. R. White, PRL **69**, 2863 (1992); R. J. Bursill, PRB **60**, 1643 (1999)]
- Truncation naturally guided by density matrix (DM).

• Understanding structure of DM may lead to algorithmic improvements (e.g. Transfer-Matrix Renormalization Group (TMRG)) and better ways to build symmetries of problem into RG.

Overview of Chapters 2 & 3

- Model & system definitions.
- Exact formula for cluster DM:
 - Exact formula;
 - Cluster Green-function matrix;
 - Derivation.
- Many-body eigenstates and eigenvalues of cluster DM.
 - Scaling behaviour of cluster DM eigenvalues and eigenfunctions.
- Statistical mechanics analogy.
- Operator-based DM truncation scheme:
 - Formulation;
 - Dispersion relation calculation for 1D noninteracting spinless fermions.

B Examination, Cornell University, October 6, 2005

Exact Formula for Cluster DM

• For cluster of *N_C* sites, DM found to have the structure [M.-C. Chung and I. Peschel, PRB **64**, 064412 (2001)]

$$\rho_C \propto \exp\left[-\sum_{l=1}^{N_C} \varphi_l f_l^{\dagger} f_l\right], \quad \{f_l, f_l^{\dagger}\} = 1.$$

 φ_l and f_l determined numerically.

• Exact formula for cluster DM [SAC and C. L. Henley, PRB **69**, 075111 (2004); I. Peschel, J. Phys. A: Math. Gen **36**, L205 (2003)]

$$\rho_C = \det(\mathbb{1} - G_C) \exp\left\{\sum_{i,j} \left[\log G_C (\mathbb{1} - G_C)^{-1}\right]_{ij} c_i^{\dagger} c_j\right\}$$

in terms of cluster Green-function matrix G_C .

Cluster Green-Function Matrix

• Organize two-point functions $G_{\bar{i}j} = \langle \Psi_F | c_i^{\dagger} c_j | \Psi_F \rangle$ into Green-function matrix \mathscr{G} and cluster Green-function matrix G_C :

Derivation of Exact Formula

• Start from normalized grand-canonical DM of system

$$\rho = \mathscr{Q}^{-1} \exp\left[-\beta(H-\mu F)\right] = \mathscr{Q}^{-1} \exp\left[\sum_{i,j} \Gamma_{i,j} c_i^{\dagger} c_j\right] = \mathscr{Q}^{-1} \exp\left[\sum_k \tilde{\Gamma}_{kk} \tilde{c}_k^{\dagger} \tilde{c}_k\right],$$

chemical potential μ , inverse temperature β , fermion number operator $F = \sum_i c_i^{\dagger} c_i = \sum_k \tilde{c}_k^{\dagger} \tilde{c}_k$, grand-canonical partition function \mathcal{Q} , and coefficient matrices Γ ($\tilde{\Gamma}$ in momentum space).

• Introduce fermionic coherent states

$$|\boldsymbol{\xi}\boldsymbol{\eta}\rangle = |\boldsymbol{\xi}_1 \cdots \boldsymbol{\xi}_{N_C}; \boldsymbol{\eta}_1 \cdots \boldsymbol{\eta}_{N-N_C}\rangle = \exp\left(-\sum_{i=1}^{N_C} \boldsymbol{\xi}_i c_i^{\dagger} - \sum_{j=1}^{N-N_C} \boldsymbol{\eta}_j c_j^{\dagger}\right)|0\rangle.$$

 ξ_i and η_j are anticommuting Grassman variables.

• Matrix elements of ρ are

$$\langle \boldsymbol{\xi} \boldsymbol{\eta} | \rho | \boldsymbol{\xi}' \boldsymbol{\eta}' \rangle = \mathscr{Q}^{-1} \exp\left[\left(\boldsymbol{\xi}^* \ \boldsymbol{\eta}^* \right) e^{\Gamma} \begin{pmatrix} \boldsymbol{\xi}' \\ \boldsymbol{\eta}' \end{pmatrix} \right].$$

• Coefficient matrices

$$\mathbb{1} + e^{\Gamma} = \begin{bmatrix} A & B \\ B^{T} & C \end{bmatrix}, \quad \left(\mathbb{1} + e^{\Gamma}\right)^{-1} = \begin{bmatrix} D & E \\ E^{T} & F \end{bmatrix},$$

A and D square $N_C \times N_C$ symmetric matrices, B and E nonsquare $N_C \times (N-N_C)$ matrices, C and F square $(N - N_C) \times (N - N_C)$ symmetric matrices.

• Partial trace over environment, gaussian integration and matrix block inversion gives matrix elements of cluster DM

$$\langle \boldsymbol{\xi} | \rho_C | \boldsymbol{\xi}' \rangle = \int d\boldsymbol{\eta}^* d\boldsymbol{\eta} \, e^{-\boldsymbol{\eta}^* \mathbb{1}\boldsymbol{\eta}} \, \langle \boldsymbol{\xi} - \boldsymbol{\eta} | \rho_0 | \boldsymbol{\xi}' \, \boldsymbol{\eta} \rangle$$

= det $D \, \exp\left\{ \boldsymbol{\xi}^* \left[D^{-1} - \mathbb{1} \right] \boldsymbol{\xi}' \right\}.$

• Momentum space matrix elements of $\tilde{\mathscr{G}}$ and $\tilde{\Gamma}$,

$$\tilde{\mathscr{G}}_{kk} = \langle \Psi_F | \tilde{c}_k^{\dagger} \tilde{c}_k | \Psi_F \rangle = \frac{1}{\exp \beta(\epsilon_k - \mu) + 1}, \quad \tilde{\Gamma}_{kk} = -\beta(\epsilon_k - \mu)$$

• Matrix relations

$$e^{\tilde{\Gamma}} = \tilde{\mathscr{G}}(\mathbb{1} - \tilde{\mathscr{G}})^{-1} \implies e^{\Gamma} = \mathscr{G}(\mathbb{1} - \mathscr{G})^{-1}, \quad \mathbb{1} + e^{\Gamma} = (\mathbb{1} - \mathscr{G})^{-1}.$$

• Cluster matrix relations

$$D = \mathbb{1} - G_C$$
, $D^{-1} = (\mathbb{1} - G_C)^{-1}$, $D^{-1} - \mathbb{1} = G_C(\mathbb{1} - G_C)^{-1}$.

• Cluster DM matrix elements

$$\langle \boldsymbol{\xi} | \rho_C | \boldsymbol{\xi}' \rangle = \det(\mathbb{1} - G_C) \exp\left[\boldsymbol{\xi}^* G_C (\mathbb{1} - G_C)^{-1} \boldsymbol{\xi}' \right].$$

• Operator form from matrix elements, using the relation

$$\langle \boldsymbol{\xi} | \exp(\boldsymbol{c}^{\dagger} \Gamma' \boldsymbol{c}) | \boldsymbol{\xi}' \rangle = \exp\left(\boldsymbol{\xi}^* \boldsymbol{e}^{\Gamma'} \boldsymbol{\xi}'\right), \qquad \boldsymbol{c}^{\dagger} \Gamma' \boldsymbol{c} = \sum_i \sum_j c_i^{\dagger} \Gamma'_{ij} c_j.$$

Many-Body Eigenstates and Eigenvalues of Cluster DM

• Eigenstates and eigenvalues of cluster Green-function matrix

 $|\lambda_l\rangle = f_l^{\dagger} |0\rangle, \quad G_C |\lambda_l\rangle = \lambda_l |\lambda_l\rangle.$

• $|\lambda_l\rangle$ simultaneous 1-particle eigenstates of ρ_C ,

$$\rho_C |\lambda_l\rangle = \det(\mathbb{1} - G_C) e^{-\varphi_l} |\lambda_l\rangle, \quad \varphi_l = -\ln \left|\lambda_l (1 - \lambda_l)^{-1}\right|$$

• *P*-particle eigenstate of ρ_C described by a set of numbers $(n_1, \ldots, n_l, \ldots, n_{N_C})$, $n_l = 0, 1$,

$$|w\rangle = f_{l_1}^{\dagger} f_{l_2}^{\dagger} \cdots f_{l_P}^{\dagger} |0\rangle, \quad n_l = \delta_{l,l_i},$$

with eigenvalue (DM weight)

$$w = \det(\mathbb{1} - G_C) \exp(-\Phi), \quad \Phi = \sum_{l=1}^{N_C} n_l \varphi_l.$$

Scaling Behaviour of Eigenvalues & Eigenfunctions

• Approximate scaling behaviour of 1-particle pseudo-energies

 $\varphi(l, N_C, \bar{n}) \approx N_C f(\bar{n}, x), \quad x \equiv (l - l_F)/N_C, \quad l_F = \bar{n}N_C + \frac{1}{2}.$

• Properties of scaling function

$$f(\bar{n},0) = 0, \quad f'(\bar{n},0) > 0, \quad f(\bar{n},-x) = -f(1-\bar{n},x).$$

• Approximate scaling behaviour of pseudo-Fermi eigenfunction

$$|\chi_F(j, N_C)|^2 \approx \frac{\alpha}{N_C(\log N_C + \kappa)} g(y) \frac{\frac{1}{2}[1 - (-1)^j]}{\sin^2 \pi y}, \quad y = (j - \frac{1}{2})/N_C$$

at half-filling.

• The scaling function g(y) is very nearly $\sin \pi y$.

• [SAC and C. L. Henley, PRB **69**, 075112 (2004)]

free spinless fermion		ρ_C	
Hamiltonian	$H = \sum_{k} \epsilon_k \tilde{c}_k^{\dagger} \tilde{c}_k$	$ ilde{H} = \sum_{l} \varphi_{l} f_{l}^{\dagger} f_{l}$	pseudo-Hamiltonian
1-particle energy	ϵ_k	$arphi_l$	1-particle pseudo-energy
1-particle operator	${\widetilde c}_k$	f_l	1-particle pseudo-operator
occupation number	n_k	n_l	pseudo-occupation number
total energy	$E = \sum_{l} n_k \epsilon_k$	$\Phi = \sum_{l} n_l \varphi_l$	total pseudo-energy
Fermi level	ϵ_F	$arphi_F$	pseudo-Fermi level

• Based on analogy, average pseudo-occupation is

$$\langle n_l \rangle = \lambda_l = \frac{1}{\exp \varphi_l + 1}.$$

- Most probable eigenstate of ρ_C has structure of Fermi sea: $\varphi_l \leq \varphi_F$ occupied, $\varphi_l > \varphi_F$ empty.
- Other eigenstates look like 'excitations' about Fermi sea.

Operator-Based DM Truncation Scheme

- DM eigenstates with largest weights always have $\varphi_l \ll \varphi_F$ occupied and $\varphi_l \gg \varphi_F$ empty. These differ in n_l for $\varphi_l \approx \varphi_F$;
- Keep only f_l^{\dagger} with $\varphi_l \approx \varphi_F$:

- Compare with weight-ranked truncation (used for e.g., in the DMRG):
 - eigenstates with largest weights all kept;
 - some eigenstates with intermediate weights not kept, but replaced with eigenstates with slightly smaller weights;
 - eigenstates with small weights not kept.

Results: 1D Noninteracting Spinless Fermions

B Examination, Cornell University, October 6, 2005

Overview of Chapter 4

- System, cluster and model definitions.
- Computation of cluster DM.
- Finite size effects and twist boundary conditions averaging.
- Comparison of cluster DM spectra:
 - Noninteracting 1-particle cluster DM weights after averaging;
 - Strongly-interacting 1-particle cluster DM weights after averaging.

System, Cluster & Model

• Various $\mathbf{R}_1 \times \mathbf{R}_2$ systems, with $N = |\mathbf{R}_1 \times \mathbf{R}_2|$ sites.

- 5-site cross-shaped cluster with same point group symmetry as square lattice; angular-momentum-like notation:
 - 1-particle states : $|s\rangle, |p\rangle, |d\rangle, ...;$ many-particle states : $|S\rangle, |P\rangle, |D\rangle, ...$
- nearest-neighbor hopping (noninteracting) and nearest-neighbor hopping + infinite nearest-neighbor repulsion (strongly-interacting);

$$H_t = -t \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} c^{\dagger}_{\mathbf{r}} c_{\mathbf{r}'}, \qquad H_{tV} = H_t + V \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} n_{\mathbf{r}} n_{\mathbf{r}'}$$

Computation of Cluster DM

- obtain ground state $|\Psi\rangle = \sum_{\mathbf{n}} \Psi_{\mathbf{n}} |\mathbf{n}\rangle = \sum_{\mathbf{l}} \sum_{\mathbf{m}} (-1)^{f(\mathbf{n};\mathbf{l},\mathbf{m})} \Psi_{\mathbf{l},\mathbf{m}} |\mathbf{l}\rangle |\mathbf{m}\rangle$, where $|\mathbf{n}\rangle = (-1)^{f(\mathbf{n};\mathbf{l},\mathbf{m})} |\mathbf{l}\rangle |\mathbf{m}\rangle$, $|\mathbf{l}\rangle$, $|\mathbf{m}\rangle$ occupation number basis states of system, cluster and environment respectively:
 - noninteracting: construct finite-system Fermi-sea ground state directly;
 - strongly-interacting: ED taking advantage of translational invariance.

•
$$\rho = |\Psi\rangle \langle \Psi| \xrightarrow{\text{partial}}_{\text{trace}} \rho_C$$
 (care with fermion sign $(-1)^{f(\mathbf{n};\mathbf{l},\mathbf{m})}!$) gives
 $\langle \mathbf{l}|\rho_C|\mathbf{l}'\rangle = \sum_{\mathbf{m}} \sum_{\mathbf{m}'} (-1)^{f(\mathbf{n};\mathbf{l},\mathbf{m})+f(\mathbf{n}';\mathbf{l}',\mathbf{m}')} \Psi_{\mathbf{l},\mathbf{m}} \Psi_{\mathbf{l}',\mathbf{m}'}^* \delta_{\mathbf{m},\mathbf{m}'}.$

- Show that ρ_C so defined gives $\langle \Psi | A | \Psi \rangle = \langle A \rangle = \text{Tr}_C \rho_C A$ for observable A local to cluster.
- Average ρ_C over degenerate ground states, and orientations of system relative to cluster.

Finite Size Effects & Twist Boundary Conditions Averaging

- For 'squarish' finite noninteracting systems subject to periodic boundary conditions (PBC), cluster DM spectra calculated approaches infinite-system limit when $N \sim 200$ sites.
- Small finite systems (noninteracting & strongly-interacting) of N ~ 20 sites, strong influence from finite size effects (most severe for *d* state, least severe for s₁ state) ⇒ require twist boundary conditions (TBC) averaging.
- In bond gauge, replace $c_{\mathbf{r}} \to e^{-i\boldsymbol{\phi}\cdot\mathbf{r}}c_{\mathbf{r}}, c_{\mathbf{r}}^{\dagger} \to e^{i\boldsymbol{\phi}\cdot\mathbf{r}}c_{\mathbf{r}}^{\dagger}$, in Hamiltonian, where $\boldsymbol{\phi} = (\phi_x, \phi_y)$ is the twist vector associated with TBC. Calculate bond-gauge ground state $|\Psi_{\text{bond}}(\boldsymbol{\phi})\rangle$.
- Gauge transformation

$$\varphi: |\mathbf{n}\rangle \to e^{-i\sum_{\mathbf{r}} (\boldsymbol{\phi} \cdot \mathbf{r}) n_{\mathbf{r}}} |\mathbf{n}\rangle$$

to get boundary-gauge ground state $|\Psi_{\text{boundary}}(\phi)\rangle$. Construct boundary-gauge TBC cluster DM $\rho_C(\phi)$.

• Average $\rho_C(\phi)$ over all ϕ in FBZ. Best approximation to infinite-system ρ_C .

1-Particle Weights (Noninteracting)

B Examination, Cornell University, October 6, 2005

1-Particle Weights (Strongly-Interacting)

B Examination, Cornell University, October 6, 2005

- Formulation (Chapters 5 & 6):
 - Definition of correlation DM, singular value decomposition (SVD), and order parameters.
 - Operator SVD starting from operator basis of referencing operators; Frobenius orthonormalization.
- Model (Chapter 7):
 - Extended Hubbard ladder of spinless fermions with correlated hops; Compare/contrast Luttinger-liquid physics of 1D interacting fermions;
 - Three limiting cases:
 - * $t' \gg t_{||}, t_{\perp};$ * $t_{\perp} \ll t_{||}, t' = 0;$ * $t_{\perp} \gg t_{||}, t' = 0.$
- Numerics (Chapter 8):

Correlation DM and SVD

- Entanglement entropy $S = -\operatorname{Tr} \rho_C \log \rho_C$ as gross diagnostic of correlations. [Vidal *et al*, PRL **90**, 227902 (2003)].
- Systematic extraction of order parameters from cluster DM:
 - Disconnected clusters *a* at **r** and *b* at **r**';
 - Cluster DMs ρ^a and ρ^b , supercluster DM ρ^{ab} ;
 - Define correlation DM, $\rho^c = \rho^{ab} \rho^a \otimes \rho^b$;
- Correlation DM contains all correlations between *a* and *b* want to attribute these correlations to various order parameters. Write SVD

$$\rho^{c} = \sum_{\alpha} \sigma_{\alpha} X_{\alpha} Y_{\alpha}^{\dagger},$$

where $X_{\alpha}Y_{\alpha}^{\dagger}$ and $X_{\beta}Y_{\beta}^{\dagger}$ represent independent quantum fluctuations on clusters *a* and *b*, i.e. X_{α} and Y_{α} are the desired order parameters.

• Start from operator basis of referencing operators

$$K_{\mathbf{n}} = \prod_{i} \left[n_{i}c_{i} + (1 - n_{i})c_{i}c_{i}^{\dagger} \right], \quad K_{\mathbf{n}} |\mathbf{n}'\rangle = \delta_{\mathbf{nn}'} |0\rangle,$$

for system basis states. Similarly defined for cluster and environment basis states.

• Product of referencing operators $X_{\mathbf{l}\mathbf{l}'} = K_{\mathbf{l}}^{\dagger}K_{\mathbf{l}'}, Y_{\mathbf{mm}'} = K_{\mathbf{m}}^{\dagger}K_{\mathbf{m}'}$ orthonormal with respect to Frobenius norm

$$\operatorname{Tr} X_{\mathbf{l}\mathbf{l}'}X_{\mathbf{l}''\mathbf{l}'''} = \delta_{\mathbf{l}\mathbf{l}',\mathbf{l}''\mathbf{l}'''}, \quad \operatorname{Tr} Y_{\mathbf{m}\mathbf{m}'}Y_{\mathbf{m}''\mathbf{m}'''} = \delta_{\mathbf{m}\mathbf{m}',\mathbf{m}''\mathbf{m}'''};$$

• Write

$$\rho^{c} = \sum_{\mathbf{n},\mathbf{n}'} \left[(-1)^{f(\mathbf{n};\mathbf{l},\mathbf{m})+f(\mathbf{n}';\mathbf{l}',\mathbf{m}')} \langle \mathbf{n} | \rho^{ab} | \mathbf{n}' \rangle - \langle \mathbf{l} | \rho^{a} | \mathbf{l}' \rangle \langle \mathbf{m} | \rho^{b} | \mathbf{m}' \rangle \right] K_{\mathbf{l}}^{\dagger} K_{\mathbf{l}'} K_{\mathbf{m}}^{\dagger} K_{\mathbf{m}'}.$$

• Numerical singular value decompose the coefficient matrix **K** of ρ^c , whose matrix elements are

$$\mathsf{K}_{\lambda\mu} = \mathsf{K}_{\mathbf{l}\mathbf{l}',\mathbf{m}\mathbf{m}'} = (-1)^{f(\mathbf{n};\mathbf{l},\mathbf{m})+f(\mathbf{n}';\mathbf{l}',\mathbf{m}')} \langle \mathbf{n}|\rho^{ab}|\mathbf{n}'\rangle - \langle \mathbf{l}|\rho^{a}|\mathbf{l}'\rangle \langle \mathbf{m}|\rho^{b}|\mathbf{m}'\rangle.$$

Extended Hubbard Ladder of Spinless Fermions

$$\begin{split} H_{t_{||}t_{\perp}t'V} &= -t_{||} \sum_{i} \sum_{j} \left(c_{i,j}^{\dagger} c_{i,j+1} + c_{i,j+1}^{\dagger} c_{i,j} \right) - t_{\perp} \sum_{j} \left(c_{1,j}^{\dagger} c_{2,j} + c_{2,j}^{\dagger} c_{1,j} \right) \\ &- t' \sum_{j} \left(c_{1,j}^{\dagger} n_{2,j+1} c_{1,j+2} + c_{1,j+2}^{\dagger} n_{2,j+1} c_{1,j} \right) \\ &- t' \sum_{j} \left(c_{2,j}^{\dagger} n_{1,j+1} c_{2,j+2} + c_{2,j+2}^{\dagger} n_{1,j+1} c_{2,j} \right) \\ &+ V \sum_{i} \sum_{j} n_{i,j} n_{i,j+1} + V \sum_{j} n_{1,j} n_{1,j} \end{split}$$

 $V \rightarrow \infty$, no nearest-neighbor occupation, smaller Hilbert space for ED.

B Examination, Cornell University, October 6, 2005

Luttinger-Liquid Physics

- Tunable parameters in model:
 - Filling fraction \bar{n} : fermion fluid for $\bar{n} \gtrsim 0$, hole fluid for $\bar{n} \leq \frac{1}{2}$;
 - Nearest-neighbor hopping anisotropy t_{\perp}/t_{\parallel} ;
 - Correlated hop t'/t_{\parallel} . Large t'/t_{\parallel} favors pairing and hence SC.
- Three limiting cases:
 - $-t' \gg t_{\parallel}, t_{\perp}$, SC dominate, FL exponential decay;
 - $t_{\perp} \ll t_{\parallel}, t' = 0$, FL dominant, power-law decay;
 - $-t_{\perp} \gg t_{\parallel}, t' = 0$, true long-range CDW order at quarter-filling.
- Compare and contrast basic physics of spinless Luttinger liquid: Insulator at half-filling. Away from half-filling,
 - Power-law decay of CDW and SC correlations;
 - CDW dominate at long distances if $K_{\rho} < 1$, SC dominate at long distances if $K_{\rho} > 1$, FL if $K_{\rho} = 1$;

Correlated Hops Only

- In limit $t'/t_{\parallel}, t'/t_{\perp} \to \infty$, ground state of P = 2p particles that of p strongly-interacting bound pairs.
- Exact infinite-ladder ground state obtained from

bound pair $(c_{1,j}c_{2,j+1}) \rightarrow$ extended hard-core boson $(B_j) \rightarrow$ hard-core boson $(b_j) \rightarrow$ noninteracting spinless fermion (c_j) sequence of maps.

• SC correlations decay as power laws,

$$\langle \Delta_{j}^{\dagger} \Delta_{j+r} \rangle = \langle B_{j}^{\dagger} B_{j+r} \rangle \sim r^{-1}, \qquad \Delta_{j} = \frac{1}{\sqrt{2}} (-1)^{j} \left(c_{1,j} c_{2,j+1} \pm c_{2,j} c_{1,j+1} \right).$$

• FL correlations decay exponentially,

$$\langle c_{i,j}^{\dagger}c_{i,j+r}\rangle \sim \exp\left(-r\cdot\frac{1}{2}\int_{0}^{1-\bar{n}_{1}}f(\bar{n}_{1},x)\,dx\right),$$

where $f(\bar{n}, x)$ is universal scaling function found in Chapter 3.

Weak Inter-Leg Hopping

- In limit t_⊥ ≪ t_{||}, t' = 0, intra-leg hopping of particle on leg i = 1 restricted by the two particles on leg i = 2 closest to it, and vice versa. Hence particle on leg i will never be directly by other particles on the same leg.
- Exact infinite-ladder ground states obtained from 1D Fermi sea ground state by the staggered maps

$$c_{j_{1}}^{\dagger}c_{j_{2}}^{\dagger}\cdots c_{j_{2p-1}}^{\dagger}c_{j_{2p}}^{\dagger} \to c_{1,j_{1}}^{\dagger}c_{2,j_{2}}^{\dagger}\cdots c_{1,j_{2p-1}}^{\dagger}c_{2,2p}^{\dagger},$$

$$c_{j_{1}}^{\dagger}c_{j_{2}}^{\dagger}\cdots c_{j_{2p-1}}^{\dagger}c_{j_{2p}}^{\dagger} \to c_{2,j_{1}}^{\dagger}c_{1,j_{2}}^{\dagger}\cdots c_{2,j_{2p-1}}^{\dagger}c_{1,2p}^{\dagger},$$

• Dominant FL correlations

$$\langle c_{\pm,j}^{\dagger} c_{\pm,j+r} \rangle \sim r^{-1}, \qquad c_{\pm,j} = \frac{1}{\sqrt{2}} (c_{1,j} \pm c_{2,j}).$$

• Subdominant CDW and SC correlations

$$\langle n_j n_{j+r} \rangle \sim r^{-2}, \qquad \langle \Delta_j^{\dagger} \Delta_{j+r} \rangle \sim r^{-2},$$

for various n_j constructed out of $c_{i,j}^{\dagger}c_{i,j}$, and various Δ_j constructed out of $c_{1,j}c_{2,j+1}$ and $c_{2,j}c_{1,j+1}$.

Strong Inter-Leg Hopping

- In limit $t_{\perp} \gg t_{\parallel}$, t' = 0, each particle very nearly in rung eigenstate. Effectively 1D gas of interacting rung-fermions with extended core, i.e. infinite nearest-neighbor repulsion.
- Can be mapped to chain of noninteracting spinless fermions,

$$C_{j}^{\dagger}N_{j+1} = 0, \quad C_{j}^{\dagger}(\mathbb{1} - N_{j+1}) \to c_{j}^{\dagger},$$

 C_i^{\dagger} creates extended core rung-fermions, and c_i^{\dagger} creates spinless fermions.

- Think of leg index as 'spin projection', then intra-leg hopping t_{\parallel} introduces only very weak exchange between rung-fermions. Essentially uncorrelated 'spin projections'.
- Slow power-law decay of CDW correlations which becomes true long-range order at quarter-filling.
- Exponential decay of FL and SC correlations, both vanishing at quarter-filling.
- Phase separation above quarter-filling.

Results From SVD of Correlation DM

B Examination, Cornell University, October 6, 2005

- Learning from noninteracting spinless fermions:
 - Exact formula for cluster DM;
 - Scaling behaviour of eigenvalues and eigenfunctions;
 - Statistical mechanics analogy;
 - Operator-based DM truncation scheme;
 - When 2D infinite-system limit reached numerically;
 - Effectiveness of averaging aparatus.
- Applying to strongly-interacting spinless fermions:
 - Adaptation and extension of operator-based DM truncation scheme.
- SVD of correlation DM
 - Systematic extraction of order parameters;
 - Approximate zero-temperature phase diagram.