



### MILP Modeling for (Large) S-boxes to Optimize Probability of Differential Characteristics

Ahmed Abdelkhalek<sup>1</sup>, <u>Yu Sasaki</u><sup>2</sup>, Yosuke Todo<sup>2</sup>, Mohamed Tolba<sup>1</sup>, and Amr M. Youssef<sup>1</sup> 1:Concordia University, 2: NTT Talk @ ASK2017, 10 December 2017



### New MILP model for 8-bit S-boxes

- New method to model truncated DDT
- New method to evaluate probability in DDT

### Applications

- SKINNY-128: the max diff prob reaches 2<sup>-128</sup> with 14 rounds (prev. 15 rounds)
- AES-round based Func from FSE2016: improved the max probability of diff trail





Mouha et al. at Inscrypt 2011:

Problem of finding optimal differential trail



Optimization problem in MILP

Advantage:

Speed of solving MILP has been researched a lot. We can exploit their effort to search for differential propagation trails.





## Optimize objective function within the solution range satisfying all the constraints.



3

### MILP Model for 3-Round Toy Cipher



6-bit round function: 3-bit S-box, 3-bit xor, swap

To make the MILP model, define a binary variable  $x_i \in \{0,1\}$  for each round;

- $x_i = 0$  denotes the bit *i* has no difference
- $x_i = 1$  denotes the bit *i* has difference

Objective Function Minimize:  $x_0 + x_1 + \dots + x_{6r-1}$ 

### **Constraints for Linear Operations**





 $a \oplus b = c$  can be modeled with 4 inequalities by removing each impossible (a, b, c).

 $(a, b, c) \neq (0, 0, 1) \iff a + b - c \ge 0$   $(a, b, c) \neq (0, 1, 0) \iff a - b + c \ge 0$   $(a, b, c) \neq (1, 0, 0) \iff -a + b + c \ge 0$  $(a, b, c) \neq (1, 1, 1) \iff -a - b - c \ge -2$ 



Differential Distribution Table (DDT)



We compute the probability that  $\Delta x$ propagates to  $\Delta y$  for each  $(\Delta x, \Delta y)$ .



| Input Difference |              |          | Ou       | itput I  | Differer | nce      |          |          |  |  |  |  |
|------------------|--------------|----------|----------|----------|----------|----------|----------|----------|--|--|--|--|
| $(\Delta x)$     | $(\Delta y)$ |          |          |          |          |          |          |          |  |  |  |  |
| $(\Delta x)$     | 0x0          | 0x1      | 0x2      | 0x3      | 0x4      | 0x5      | 0x6      | 0x7      |  |  |  |  |
| 0x0              | 1            | 0        | 0        | 0        | 0        | 0        | 0        | 0        |  |  |  |  |
| 0x1              | 0            | $2^{-2}$ | $2^{-2}$ | 0        | 0        | $2^{-2}$ | $2^{-2}$ | 0        |  |  |  |  |
| 0x2              | 0            | $2^{-2}$ | $2^{-2}$ | 0        | 0        | $2^{-2}$ | $2^{-2}$ | 0        |  |  |  |  |
| 0x3              | 0            | 0        | 0        | $2^{-1}$ | 0        | 0        | 0        | $2^{-1}$ |  |  |  |  |
| 0x4              | 0            | 0        | 0        | 0        | $2^{-1}$ | 0        | 0        | $2^{-1}$ |  |  |  |  |
| 0x5              | 0            | $2^{-2}$ | $2^{-2}$ | 0        | 0        | $2^{-2}$ | $2^{-2}$ | 0        |  |  |  |  |
| 0x6              | 0            | $2^{-2}$ | $2^{-2}$ | 0        | 0        | $2^{-2}$ | $2^{-2}$ | 0        |  |  |  |  |
| 0x7              | 0            | 0        | 0        | $2^{-1}$ | $2^{-1}$ | 0        | 0        | 0        |  |  |  |  |

Innovative R&D by NTT

To count the # of active S-boxes, we only care whether each pattern is possible (non-zero probability) or impossible (zero probability). We call it "\*-DDT".

| Input Difference          |              |     | Ou  | itput I | Differer | nce |     |     |  |  |  |  |
|---------------------------|--------------|-----|-----|---------|----------|-----|-----|-----|--|--|--|--|
| $\frac{1111}{(\Delta x)}$ | $(\Delta y)$ |     |     |         |          |     |     |     |  |  |  |  |
| $(\Delta x)$              | 0x0          | 0x1 | 0x2 | 0x3     | 0x4      | 0x5 | 0x6 | 0x7 |  |  |  |  |
| 0x0                       | 1            | 0   | 0   | 0       | 0        | 0   | 0   | 0   |  |  |  |  |
| 0x1                       | 0            | 1   | 1   | 0       | 0        | 1   | 1   | 0   |  |  |  |  |
| 0x2                       | 0            | 1   | 1   | 0       | 0        | 1   | 1   | 0   |  |  |  |  |
| 0x3                       | 0            | 0   | 0   | 1       | 0        | 0   | 0   | 1   |  |  |  |  |
| 0x4                       | 0            | 0   | 0   | 0       | 1        | 0   | 0   | 1   |  |  |  |  |
| 0x5                       | 0            | 1   | 1   | 0       | 0        | 1   | 1   | 0   |  |  |  |  |
| 0x6                       | 0            | 1   | 1   | 0       | 0        | 1   | 1   | 0   |  |  |  |  |
| 0x7                       | 0            | 0   | 0   | 1       | 1        | 0   | 0   | 0   |  |  |  |  |





|              | H-repre<br>of con | sentation<br>vex hull | Logical<br>model ( | condition<br>Sun et al.) |  |  |
|--------------|-------------------|-----------------------|--------------------|--------------------------|--|--|
| tool         | SAGE              | Math                  | N/A                |                          |  |  |
| support alg  | greedy            | Sub MILP              | greedy             | Sub MILP                 |  |  |
| type         | heuristic         | optimal               | heuristic          | optimal                  |  |  |
| coefficients | any ir            | nteger                | {-1,               | 0, 1}                    |  |  |
| #inequ.      | sn                | nall                  | large              |                          |  |  |
| 8-bit S-box  | infea             | asible                |                    | ?                        |  |  |

### **Our Focus**



### Logical Condition Model for S-box



$$\begin{array}{c} x_0 \xrightarrow{} & y_0 \\ x_1 \xrightarrow{} & y_1 \\ x_2 \xrightarrow{} & y_2 \end{array}$$

\*-DDT tells impossible patterns of  $(x_2x_1x_0y_2y_1y_0)$ . Each impossible pattern can be removed one inequality.

Example: 
$$Pr[(\Delta_i, \Delta_0) = (0x1, 0x2)] = 0$$
  
 $x_2 x_1 x_0 = 001, \quad y_2 y_1 y_0 = 010$   
 $x_2 + x_1 - x_0 + y_2 - y_1 + y_0 \ge -1$ 

Out of 64 entries of \*-DDT, about 32 entries are impossible. Each S-box can be modeled with about 32 inequalities.



### Reducing the Number of Inequalities

$$\begin{array}{c} x_0 \rightarrow & y_0 \\ x_1 \rightarrow & S \\ x_2 \rightarrow & y_1 \\ \rightarrow & y_2 \end{array}$$

Sun et al. pointed out that several impossible patterns of  $(x_2x_1x_0y_2y_1y_0)$  can be removed simultaneously.

## Example: $Pr[(\Delta_i, \Delta_0) = (0x1, 0x2)] = Pr[(\Delta_i, \Delta_0) = (0x1, 0x6)] = 0$ $x_2 x_1 x_0 y_2 y_1 y_0 = 001010$ $x_2 x_1 x_0 y_2 y_1 y_0 = 001110$ $x_2 + x_1 - x_0 - y_1 + y_0 \ge -1$

Each S-box can be modeled with less than 32 inequalities.





- 1. The number of constraints for each S-box is exponential to the S-box size.
  - 5-bit to 5-bit S-box: feasible
  - 6-bit to 4-bit S-box: feasible
  - 8-bit to 8-bit S-box: infeasible (folklore)
- 2. Probability of differential transition is ignored. An attempt was proposed by Sun et al. in 2014:
  - feasible only up to 4-bit to 4-bit S-box
  - Probability must be  $2^{-x}$  where x is an integer.







### New Method to Model \*-DDT

### **Core Observation**





a well-studied topic!!





- Define a 2*n*-bit to 1-bit Boolean function that outputs 1 only when the propagation is possible.
- This can be achieved by listing impossible propagations as a term of product-of-sum or the Conjunctive Normal Form (CNF)
- Indeed, for f to be 1, even a single term must not be 0, i.e. 2n variables must avoid impossible patterns.

$$f(x_2, x_1, x_0, y_2, y_1, y_0)$$

$$= (x_2 \lor x_1 \lor x_0 \lor y_2 \lor y_1 \lor \overline{y_0}) \land (x_2 \lor x_1 \lor x_0 \lor y_2 \lor \overline{y_1} \lor y_0)$$

$$\land (x_2 \lor x_1 \lor x_0 \lor y_2 \lor \overline{y_1} \lor \overline{y_0}) \land (x_2 \lor x_1 \lor x_0 \lor \overline{y_2} \lor y_1 \lor y_0) \land$$

 $\wedge (\overline{x_2} \vee \overline{x_1} \vee \overline{x_0} \vee \overline{y_2} \vee \overline{y_1} \vee y_0) \wedge (\overline{x_2} \vee \overline{x_1} \vee \overline{x_0} \vee \overline{y_2} \vee \overline{y_1} \vee \overline{y_0})$ 



### QM, Espresso and LogicFriday

- Finding min. representation of product-of-sum (NP-hard) is well studied in computer science.
- Quine-McCluskey algorithm [Qui52,Qui55,McC56] provides optimal solution and the Espresso algorithm is the heuristic algorithm.
- The freeware called LogicFriday can execute both QM and Espresso.

| Structure        | # non-zero entries | QM  | Espresso |
|------------------|--------------------|-----|----------|
| AES S-box        | 33150              | -   | 8302     |
| SKINNY-128 S-box | 54067              | 372 | 376      |

# inequalities to represent \*-DDT of 8-bit S-boxes









### Generating constraints for \*-DDT of PRESENT S-box by using Logic Friday



|  | Innovative R&D by NTT |
|--|-----------------------|

|              | H-repre<br>of con | sentation<br>vex hull | Logical condition<br>model (Sun et al.)       |
|--------------|-------------------|-----------------------|-----------------------------------------------|
| tool         | SAGE              | Math                  | ${\sf LogicFriday} < {\rm QM}_{\rm espresso}$ |
| aux alg      | greedy            | Sub MILP              | no nood                                       |
| type         | heuristic         | optimal               | noneeu                                        |
| coefficients | any ir            | nteger                | {-1, 0, 1}                                    |
| #inequ.      | sn                | nall                  | large                                         |
| 8-bit S-box  | infea             | asible                | feasible                                      |







### New Methods to Evaluate Probability



• Separate DDT to multiple tables so that each table contains entries with the same probability.

# $\begin{array}{c|c} pb-\text{DDT} & \hline 1 & \text{if the entry in DDT has probability } pb \\ \hline 0 & \text{otherwise} \end{array}$

• Use conditional constraints (with the big-M method) to activate only a single pb-DDT.



| Input Difference $(\Delta m)$ |     |          | Ou       | tput I $(\Delta$ | Differen $(y)$ | nce      |          |          |                       |
|-------------------------------|-----|----------|----------|------------------|----------------|----------|----------|----------|-----------------------|
| $(\Delta x)$                  | 0x0 | 0x1      | 0x2      | 0x3              | 0x4            | 0x5      | 0x6      | 0x7      | Innovative R&D by NTT |
| 0x0                           | 1   | 0        | 0        | 0                | 0              | 0        | 0        | 0        |                       |
| 0x1                           | 0   | $2^{-2}$ | $2^{-2}$ | 0                | 0              | $2^{-2}$ | $2^{-2}$ | 0        |                       |
| 0x2                           | 0   | $2^{-2}$ | $2^{-2}$ | 0                | 0              | $2^{-2}$ | $2^{-2}$ | 0        | ΤΠΠ                   |
| 0x3                           | 0   | 0        | 0        | $2^{-1}$         | 0              | 0        | 0        | $2^{-1}$ |                       |
| 0x4                           | 0   | 0        | 0        | 0                | $2^{-1}$       | 0        | 0        | $2^{-1}$ |                       |
| 0x5                           | 0   | $2^{-2}$ | $2^{-2}$ | 0                | 0              | $2^{-2}$ | $2^{-2}$ | 0        |                       |
| 0x6                           | 0   | $2^{-2}$ | $2^{-2}$ | 0                | 0              | $2^{-2}$ | $2^{-2}$ | 0        |                       |
| 0x7                           | 0   | 0        | 0        | $2^{-1}$         | $2^{-1}$       | 0        | 0        | 0        |                       |

# $2^{-1}$ -DDT $2^{-2}$ -DDT

| $\Delta r$ |     | $\Delta y$ |     |     |     |     |     |     |  |  |  |  |  |  |  |
|------------|-----|------------|-----|-----|-----|-----|-----|-----|--|--|--|--|--|--|--|
| $\Delta x$ | 0x0 | 0x1        | 0x2 | 0x3 | 0x4 | 0x5 | 0x6 | 0x7 |  |  |  |  |  |  |  |
| 0x0        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x1        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x2        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x3        | 0   | 0          | 0   | 1   | 0   | 0   | 0   | 1   |  |  |  |  |  |  |  |
| 0x4        | 0   | 0          | 0   | 0   | 1   | 0   | 0   | 1   |  |  |  |  |  |  |  |
| 0x5        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x6        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x7        | 0   | 0          | 0   | 1   | 1   | 0   | 0   | 0   |  |  |  |  |  |  |  |

| $\Delta r$ |     | $\Delta y$ |     |     |     |     |     |     |  |  |  |  |  |  |  |
|------------|-----|------------|-----|-----|-----|-----|-----|-----|--|--|--|--|--|--|--|
| $\Delta u$ | 0x0 | 0x1        | 0x2 | 0x3 | 0x4 | 0x5 | 0x6 | 0x7 |  |  |  |  |  |  |  |
| 0x0        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x1        | 0   | 1          | 1   | 0   | 0   | 1   | 1   | 0   |  |  |  |  |  |  |  |
| 0x2        | 0   | 1          | 1   | 0   | 0   | 1   | 1   | 0   |  |  |  |  |  |  |  |
| 0x3        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x4        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x5        | 0   | 1          | 1   | 0   | 0   | 1   | 1   | 0   |  |  |  |  |  |  |  |
| 0x6        | 0   | 1          | 1   | 0   | 0   | 1   | 1   | 0   |  |  |  |  |  |  |  |
| 0x7        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |

20

### Experimental Data for pb-DDT



| Structure        |            | Num. of zero entries | QM  | Espresso |
|------------------|------------|----------------------|-----|----------|
| AFS Show         | $2^{-7}$   | 33406                | -   | 8241     |
| AES S-DOX        | $2^{-6}$   | 65281                | -   | 350      |
|                  | $2^{-7}$   | 62848                | 206 | 208      |
|                  | $2^{-6}$   | 60530                | 275 | 283      |
|                  | $2^{-5.4}$ | 65472                | 33  | 34       |
|                  | $2^{-5}$   | 62708                | 234 | 239      |
|                  | $2^{-4.4}$ | 65458                | 42  | 52       |
|                  | $2^{-4}$   | 64884                | 147 | 159      |
| SKINNY-128 S-box | $2^{-3.7}$ | 65534                | 15  | 15       |
|                  | $2^{-3.4}$ | 65518                | 24  | 28       |
|                  | $2^{-3.2}$ | 65534                | 15  | 15       |
|                  | $2^{-3}$   | 65435                | 62  | 67       |
|                  | $2^{-2.7}$ | 65534                | 16  | 16       |
|                  | $2^{-2.4}$ | 65532                | 17  | 17       |
|                  | $2^{-2}$   | 65513                | 37  | 40       |



Representing Probability of each S-box



#### **Activeness variable**

n<sub>i</sub>: 1 if the *i*-th Sbox is active, 0 otherwise.

### **Probability Variables**

Q<sub>i,pbj</sub>: 1 if the *i*-th Sbox is active and its differential probability is pb<sub>j</sub>, 0 otherwise.

E.g.  $Q_{i,2^{-1}}$  and  $Q_{i,2^{-2}}$  in the above 3-bit S-box.

The probability when the *i*-th S-box is active is modeled by

$$\sum_{j} Q_{i,pb_{j}} = n_{i} \qquad \text{E.g. } Q_{i,2^{-1}} + Q_{i,2^{-2}} = n_{i}$$

**Objective Function** 

minimize  $\sum_{i,j} -\log(pb_j) \times Q_{i,pb_j}$  E.g.  $\sum Q_{i,2^{-1}} + 2Q_{i,2^{-2}}$ 

Activating Inequalities only When Necessary

• We model  $pb_j$ -DDT independently for all j.

 $2^{-1}$ -DDT

| $\Delta x$ |     | $\Delta y$ |     |     |     |     |     |     |  |  |  |  |  |  |  |
|------------|-----|------------|-----|-----|-----|-----|-----|-----|--|--|--|--|--|--|--|
| $\Delta x$ | 0x0 | 0x1        | 0x2 | 0x3 | 0x4 | 0x5 | 0x6 | 0x7 |  |  |  |  |  |  |  |
| 0x0        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x1        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x2        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x3        | 0   | 0          | 0   | 1   | 0   | 0   | 0   | 1   |  |  |  |  |  |  |  |
| 0x4        | 0   | 0          | 0   | 0   | 1   | 0   | 0   | 1   |  |  |  |  |  |  |  |
| 0x5        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x6        | 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |  |  |  |  |  |  |  |
| 0x7        | 0   | 0          | 0   | 1   | 1   | 0   | 0   | 0   |  |  |  |  |  |  |  |

Inequality to model  $pb_j$ -DDT is given by the following form:

 $a_0x_2 + a_1x_1 + a_2x_0 + a_3y_2 + a_4y_1 + a_5y_0 \ge b$ where,  $a_0, a_1, \dots, a_5 \in \{-1, 0, 1\}, b \le -1$ .

- Inequalities to model  $pb_j$ -DDT should be meaningful only when  $pb_j = 1$ .
- big-*M* method

 $a_0x_2 + a_1x_1 + a_2x_0 + a_3y_2 + a_4y_1 + a_5y_0 + M(1 - Q_{i,pb_i}) \ge b$ 

*M* is a sufficiently big constant.





- 1. Separate the DDT into pb-DDTs.
- 2. Add an inequality to represent probability.
- 3. Model all pb-DDTs with QM or espresso.
- 4. Add a term for Big-M in each inequality.

Example: actual lp file for SKINNY-128







### **Applications to SKINNY-128**





- Proposed at CRYPTO2016 by Beierle et al.
- Tweakable block cipher supporting *n*-bit block and *n*-, 2*n*-, and 3*n*-bit tweakey, where *n* ∈ {64,128}.

In this talk, we focus our attention on the single-key analysis of SKINNY-128.



Innovative R&D by NTT

AES-like Round Function

- SubCells (SC): Application of an 8-bit Sbox Max differential probability of the S-box is 2<sup>-2</sup>.
- AddConstants and AddRoundTweakey
- ShiftRows (SR): Rotate row *i* by *i* bytes to right
- MixColumns (MC): Multiply the state by a binary matrix





| rounds                | 1 | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|-----------------------|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| LB (word) $[BJK^+16]$ | 1 | 2 | 5 | 8 | 12 | 16 | 26 | 36 | 41 | 46 | 51 | 55 | 58 | 61 | 66 |

"LB" denotes lower bound

- Lower bounds can be given by  $#ASbox \times 2^{-2}$ .
- Block size is 128 bits. We are targeting differential trails with prob higher than 2<sup>-128</sup> (64 active S-boxes).
- 15 rounds are secure.





|                                |      |          |     |       |      |       |     |       |      |      |       |     |    |                       | -        |
|--------------------------------|------|----------|-----|-------|------|-------|-----|-------|------|------|-------|-----|----|-----------------------|----------|
| rounds                         | 1    | 2        | 3   | 4     | 5    | 6     | 7   | 8     | 9    | 10   | 11    | 12  | 13 | 14                    | 15       |
| LB (word) [BJK <sup>+</sup> 10 | 6] 1 | 2        | 5   | 8     | 12   | 16    | 26  | 36    | 41   | 46   | 51    | 55  | 58 | 61                    | 66       |
| simple UB (bit)                | 1    | <b>2</b> | 5   | 8     | 12   | 16    | 26  | 36    | 43   | 48   | 52    | 56  | 62 | 68                    | -        |
| "LB"                           | den  | otes     | low | ver b | ound | l and | "UB | " den | otes | uppe | r bou | nd. |    | $\overline{\bigcirc}$ | <b>,</b> |

- We then derived simple upper bounds by assuming all the active S-boxes output the same difference (cancellation by XOR occurs with probability 1)
- Gap exists from 9 rounds to 14 rounds.
- Up to 13 rounds can be attacked simply.
- Is 14-round secure or insecure?



- Two-stage strategy by Sun et al.
  - List up all truncated differentials with word-wise search (fast but may contain contradiction if looked in bit-wise level)
  - 2. Test the best probability of each truncated diffs.

 The word-wise truncated differential search detect 4 rotation variants. Checking one of them is sufficient.





Let's consider the 9-round search.

- LB of #ASbox is 41: 2<sup>-82</sup>
- UB of #ASbox is 43: 2<sup>-86</sup>

Gap is at most  $2^{-4}$ , thus no need to test the differential propagation with prob  $2^{-7}$  or  $2^{-6}$ .

83% of the non-zero DDT entries propagate with probability  $2^{-7}$  or  $2^{-6}$ . Removing them from the search space has significant impact.

| probability  | $2^{-7}$ | $2^{-6}$ | $2^{-5.4}$ | $2^{-5}$ | $2^{-4.4}$ | $2^{-4}$ | $2^{-3.7}$ | $2^{-3.4}$ | $2^{-3.2}$ | $2^{-3}$ | $2^{-2.7}$ | $2^{-2.4}$ | $2^{-2}$ |
|--------------|----------|----------|------------|----------|------------|----------|------------|------------|------------|----------|------------|------------|----------|
| DDT value    | 2        | 4        | 6          | 8        | 12         | 16       | 20         | 24         | 28         | 32       | 40         | 48         | 64       |
| # of entries | 2688     | 5006     | 64         | 2828     | 78         | 652      | 2          | 18         | 2          | 101      | 2          | 4          | 23       |



### Search Results



| Rounds      | 9                | 10               | 11         | 12         | 13                       | 14              |
|-------------|------------------|------------------|------------|------------|--------------------------|-----------------|
| LB          | 2 <sup>-82</sup> | 2 <sup>-92</sup> | $2^{-102}$ | $2^{-110}$ | $2^{-116}$               | $2^{-122}$      |
| Simple UB   | $2^{-86}$        | 2 <sup>-96</sup> | $2^{-104}$ | $2^{-112}$ | $2^{-124}$               | $2^{-136}$      |
| Tight bound | 2 <sup>-86</sup> | 2 <sup>-96</sup> | $2^{-104}$ | $2^{-112}$ | <b>2</b> <sup>-123</sup> | $\leq 2^{-128}$ |

- The cutting-off technique cannot be used for 13 rounds. The experiment took more than 2 weeks.
- All 14-round truncated diffs are the extension of 13-round trail with 3 additional active S-boxes. The maximum prob is  $2^{-123-6} = 2^{-129}$ .
- Improved diff resistance of SKINNY-128 by 1 round.





### Applications to AES-Round Based Function

- Proposed by Jean and Nikolić at FSE2016.
- many parameters to process multiple AES states
- Lower bound of #active S-boxes is evaluated by MILP.
   Tightness is unknown. Probability is not evaluated.
- 7 constructions are finally proposed.





### **C1 construction:**

|      | #Active S | 5-boxes | Probability |            |  |  |
|------|-----------|---------|-------------|------------|--|--|
| Prev | lower     | 22      | lower       | $2^{-132}$ |  |  |
| New  | tight     | 22      | tight       | $2^{-134}$ |  |  |

### **C5 Construction:**

|      | #Active S | 5-boxes | Probability |            |  |  |
|------|-----------|---------|-------------|------------|--|--|
| Prev | lower     | 22      | lower       | $2^{-132}$ |  |  |
| New  | lower     | 24      | lower       | $2^{-144}$ |  |  |







### **Concluding Remarks**



### New MILP model

- QM and Espresso for modeling \*-DDT.
- *pb*-DDT and big-M for evaluating probability.

### Applications

- Improved diff resistance of SKINNY-128
- Evaluated prob of AES-round based function.

MILP can be applied to 8-bit Sboxes!!

### Thank you for your attention!!