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Some Metrics on Probability Distributions

Notations for Probability

Q@ X «+ Q: X isarandom variable with sample space Q.
@ Pryx denotes the probability function of X.

@ For an cvent E C ) we denote the probability of the event
F realized by X as

IE’(r(E) or Pr(X € F)

Q Prx(F | F) is the conditional probability defined only
when Prx (F') is positive and it is defined as

I}r(E N F)/I)’(r(F)
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Some Metrics on Probability Distributions

Notations for Probability

Q@ 2! := (z1,...,7) for any positive .
Xti=(X1,..., X)) < Q=01 x -+ x Q is also called joint

random variable.

© We denote Pr(X; = z; | Xi~! = 2071 as Pry(z; | 2'71).
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Some Metrics on Probability Distributions

Notations for Probability

Q@ 2! := (z1,...,7) for any positive .
Xti=(X1,..., X)) < Q=01 x -+ x Q is also called joint
random variable.
We denote Pr(X; = z; | X*~! = 2%71) as Prx(x; | 2'71).
Q Let X «+ Q, f:Q — R then
E X)) = Pr(x).
x(f(X)) = ) f(z) Pr(x)

e

©

Q@ If X is a real valued random variable

Var(X) = E((X — Ex(X))?).
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With and Without Replacement Sample

@ Examples. In statistics with replacement (WR) and
without replacement sample (WOR) sampling are very
popular.

Q U:=(Uy,...,U;) <wrS says that U +—sS?. So we specify
Pry completely as Pry(x!) = |S| 7.
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Some Metrics on Probability Distributions

and Without Replacement Sample

@ Examples. In statistics with replacement (WR) and
without replacement sample (WOR) sampling are very
popular.

Q U:=(Uy,...,U;) <wrS says that U +—sS?. So we specify
Pry completely as Pry(x!) = |S| 7.

@ WOR sample V := (Vi,...,V;) —wor S is specified through
conditional probability as

Pry(z; | 271 = m, for all distinct z1,...,x; € S.
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Some Metrics on Probability Distributions

Why do we study WR and WOR in Cryptography?

@ Let f<«sFunc(D, R) (random function). Then, for any
distinct z1,...,24 € D,

(f(x1),... 7f(l"q)) —wr R.
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Some Metrics on Probability Distributions

Why do we study WR and WOR in Cryptography?

@ Let f<«sFunc(D, R) (random function). Then, for any
distinct z1,...,24 € D,

(f(x1),... 7f(l"q)) —wr R.

@ If 7 <—sPerm(R) (random permutation - we use it for block
cipher or permutation in the ideal model) then

(m(z1), ..., m(2q)) <wor R.
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Some Metrics on Probability Distributions

Why do we study WR and WOR in Cryptography?

@ Let f<«sFunc(D, R) (random function). Then, for any
distinct z1,...,24 € D,

(f(x1),... 7f(l"q)) —wr R.

@ If 7 <—sPerm(R) (random permutation - we use it for block
cipher or permutation in the ideal model) then

(m(z1), ..., m(2q)) <wor R.

@ The both results are true even if x;’s are some functions of
y"~! where y; = f(z;) (or y; = m(x;)). This happens for

adaptive adversary interacting with f or .
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Some Metrics on Probability Distributions

Why do we study WR and WOR in Cryptography?

@ In cryptography blockcipher modeled to be pseudorandom
permutation.

@ This means (using hybrid argument) that we can replace
random permutation instead of a blockcipher.
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Why do we study WR and WOR in Cryptography?

@ In cryptography blockcipher modeled to be pseudorandom
permutation.

@ This means (using hybrid argument) that we can replace
random permutation instead of a blockcipher.

@ Consider the XOR construction: Ex (z||0) & Ex(z|1).

@ If we replace blockcipher by random permutation, te output
distribution of the XOR construction is same as X* where

Xi=VioVy,...,. Xy = Vo1 ® Vg

and
(Vl, cey V;g) <—wor {0, l}n
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Some Metrics on Probability Distributions

Total variation

Definition
Total variation (or statistical distance) is a metric on the set of
probability functions over (2.

1
[P0 — Pil| = 3 > |Po(x) — Pi(a).
x€eN
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Geometric interpretation of Total variation

Total variation between X and Y = area A+ area C.
(Picture courtesy Shoup’s book “A Computational Introduction to
Number Theory and Algebra”).

SO Sl
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Indistinguishability Game and total variation

o A is a distinguisher - two oracles 07 and Os.

o The advantage of the adversary in this game, denoted
Adv 4 (01, 02), is given by

AdVE 0, (A) = | Pr(A% — 1) — Pr(A% = 1)],

o If X7 and Y? denote the outputs of O and Oy
respectively. Then,

Advo,(A) < || Pr—Pr]|.
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Some Metrics on Probability Distributions

Properties of Total variation

Q@ ||Py — P1|| < 1. When equality holds?

@ Triangle inequality. Let P, be the probability function of

X, ield®{1,2,...,d} then

1P1 = Pall < |[Pr = Pof| + -+ -+ [[ Py — Pal|-

19/72
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Some Examples of Total Variation

We sometimes denote drv(X,Y) = || Prx — Pry ||.

Q Let T CSand X <«sS,Y <s7T. Then,

T
dTV(Xuy): _‘|‘S||

Q Let [S| =N, U?<wS and V7 <—wor S then

q—1 .
dTv(U, V) =1- H(l - %) = cp(q,N)
=1

where ¢p(q, N) denotes the collision probability of ¢
random elements chosen from a set of size .
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Some Metrics on Probability Distributions

Chi-square distance

The x? distance between Py and Py, with Pg < Py (support
of Py is contained in that of Pq), is defined as

(Po(z) — P1(x))?
P1<1‘) '

dXQ (P(), Pl) = Z

e
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Some Metrics on Probability Distributions

Chi-square distance

The x? distance between Py and Py, with Pg < Py (support
of Py is contained in that of Pq), is defined as

(Polx) - P1(2))*

dXQ(P(),Pl) = Z P1<m)

e

o Has its origin in mathematical statistics dating back to
Pearson.

o It can be seen that x? distance is not symmetric, does not
satisfy triangle inequality.

N
N

1
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Other Metrics

@ Helinger distance: Steinberger used this metric to bound
advantage of key-alternating cipher.

© Renyi divergence of order a (generalized form of 2. When
a = 2 it is closely related to x?). Used in lattice based
cryptography.

@ Separation measurement (used in Markov chain).

@ KL divergence is popular in cryptography. Also used in the
proof of the x? method.
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Two Tools: H-Coefficient and \‘2 Y or theory

x2 Method

@ O; or Oy two oracles returning ) elements.
© Transcript: y? € V9.

@ Let X7 and Y7 be the responses while A interacts with O
and Oy respectively.
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Theorem of H-coefficient technique

Theorem (H-coefficient technique)

Let Y9 = Vyood U Vhaa be a partition. Suppose for any
5l E Vgood’

Pr(X? = x4 i

I'( ZT ) — .|preal Z 1— s

PI‘(Yq = mq) IPideal

and
Pr[Y? € Vhad] < €bag-
Then,
AdV%TfOQ (-A) < €ratio T €bad-
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Simple Applications

@ PRP-PRF switching lemma.
@ Hash-then-PRF.
@ Hash-then-TBC.

@ Many more...
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Summing up H-Coefficient

©

Good tool for birthday bound.

Some times we have beyond birthday bound, mostly 23/4
and 22"/3 (in case of xor of k permutations we have bound
of the form 2(2k=1)n/2k),

Not so powerful for optimal security (i.e., n bit security).

Mirror theory for sum of permutation. Not easy to
understand the proof. Seems to have non-trivial gaps.
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What is Mirror theory?

@ A combinatorial result.

@ Hall’s result: Let G be an abelian group and f : G — G be a
function such that ) .o f(z) = 0. Then there exists two
permutations w1, mo over G such that f = m — mo.

@ It has been proved by induction by Marshall J. Hall in
1951.



y H-Coefficient Technique
Two Tools: H-Coefficient and x* l\l’il‘l‘or theory
x“ Method

What is Mirror theory?

@ Patarin extend this with a cryptographic motivation.

@ Number of functions is N%V and the number of
permutations is N! where N = |G|.

@ The number of pairs of permutations (71, w2) such that
f = m — mo is about %—ﬁ (on the average).

@ Instead of matching a function exactly, match over a
domain of size ¢ (the query set for an adversary).

%]
~
N
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What is Mirror theory?

@ Patarin claimed for ¢ < N/67 and for any ¢-distinct x9,
and any (not necessarily distinct) yi,...,y, (so no bad
transcripts and hence €paq = 0),

N2

Nd (1 - 6mtio)

#{(m1,m2) ¢ mi(@) + m2(xi) = vi} >

where €4t = O(q/2")
@ In other words,

PI‘(RPl(IL'l) + RPQ(.CCl) =Y1,..., RPl(azq) + RPQ(a:q) = yq)

1 — €ratio

2 Na
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x2 Method

Recall that for coefficients H technique, we need to compute a
lower bound for

1 — €rati
q_ .q ratio
Pr(X —:c)ziNq .

Mirror theory essentially provides the lower bound.
Pr(RPl(acl) + RPg(l'l) =Yly- -, RP1(.’L'q) + RPQ(.’L'q) = yq)

, 1-0/M)
Hence, Adv%iff@ (A) = O(q/N).
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What is Mirror theory?

@ Similar result with a single permutations.
© The number of permutations m sucthhat
7(0|lz;) + m(1]|x;) = y; is at least St for ¢ < N/67.

@ SO €ratio = 0. However, y;’s are non-zero (need a bad set of
transcripts and epag = ¢/2").

@ In other words, for all ¢-distinct ¢ and non-zero y;’s,

Pr(RP(0]|z1)+RP(1]|lz1) = y1,. .., RP(0]|z4)+RP(1]lzq) = yq)

1

> —.
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x2 Method

Patarin considered the following general problem also called
mirror theory.

@ distinct x;; € {0,1}", i € [¢],7 € [w] and

Q yi; €{0,1}". i€ [q],j € [w] such that y; ;’s are nonzero
and for every 4, y;1,...,¥iw—1 are distinct.

Pr( for all i, RP(z;1) ® RP(ziw) = Yi1,-- -,

RP(2iw-1) ® RP(2i,w) = Yiw-1) > N
This is also studied in CENC (by Tetsu Iwata, FSE 2006).
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Key stream for CENC with w =2, w =4

(Picture courtesy: https://eprint.iacr.org/2016,/1087.pdf ).

X

] ! }
[ 140)e | [ 1)a | [ 142)e] [ 1143)
! ] ! !

Ex Ex Eg Ex Ex Ex
ar) .
-y
e -
L

XORP[w](K, X) XORP[w](K, X)
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CENC cipher with w = 4

(Picture courtesy: https://eprint.iacr.org/2016,/1087.pdf ).

N1[{0) N|[(1)~

‘ !
11€0)s | |- II€
i :

Ex| |Bx| |Ex| |Ex| |Ex| |Ex| |Ex| |Ex

1)

' ! ) ' |
- 11€0)s | [- 11€0)s | [ 1€2)s | [ - 11€3)s 1(2)s] |- 143)s
' ! ! . : -

Y

) g - 1
< ot
N N
Y A Y
Mo -& My - My~ M3+ My~ Ms -
A Y
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o X:=(Xy,...,Xy) and Y := (Yq,...,Y,) are two random
vectors of size ¢ distributed over 9.

P0|xi—1 [wz] = PI‘(XZ‘ = $i|X1 =T1y.-. ,Xz‘_l = 1’1’—1)
P1|xi—1 [J:‘Z] = PI‘(YZ = ZL'1|Y1 =T1y.-- ,Yz'—l = $i_1)

® When i = 1, Pg,i-1[z1] represents P[X; = z1]. Similarly,
for Pl‘xifl [:El]

10 / 72
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o Let 27t c 1 i >1.

o x2(-) a real valued function defined as

X2($i_1) = dy2 (P0|xi—1 , Pl\xi—l)'




Y H-Coefficient Technique
Two Tools: H-Coefficient and x* Mirror theory

x“ Method

o Let 27t c 1 i >1.

o x2(-) a real valued function defined as

X2($i_1) = dy2 (P0|xi—1 , Pl\xi—l)'

@ In other notation,

2/ i—1\ ._ (PrX(xi,wifl)_PTY(xiWFl))Q
= Pry(zfa’ 1)

Ty
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Theorem

Suppose Pg and P1 denote probability distributions of
Xi=(Xq,...,Xq) and Y := (Y1,...,Yq) and for all z1,..., 21,
we have Pggi-1 < Pygi-1. Then

1
2
HPO—P1H§< ZEX (X'~ 1]) :

13 /72
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Comparison with H-coefficient technique

© Need: conditional probability instead of joint probabilities.

@ Suppose, for all 2% and ¢ < ¢,

Prx(xi|xi_1)
1 > ——— £ >1—
tez Pry(x;|zi=1) — ¢

@ Then, giigizg >1—geand so ||Prx —Pry | <exgq.

@ If we apply x? method, || Prx — Pry || < e x \/q/2.

@ If we know more on the distributions get better bound.
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Switching between PRF and PRP

@ Pry(z;]z*~1) = 1/2" for all i-distinct 2
li(r(a:i|mi*1) =1/2"—-i+1) if 2 21

=0 if x; € xi_l
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Switching between PRF and PRP

@ Pry(z;]z*~1) = 1/2" for all i-distinct 2

li(r(a:i|mi*1) =1/2"—-i+1) if o f 21
=0 if x; € !
(2]
(Prx(wile’™") —Pry(aila’1)"  G-1>
Pry(z;]ai 1) S iy TTET
= i if z; € 271

2n

16 / 72
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Switching between PRF and PRP

Z (Prx($i|xi_1) — Pry(xi|xi_1))2
Pry(x;|zi—1)
— 1 | —1)2
i1, =17
on T on(an i1 1)

X' =

By x? method,

17 /72
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Comparisons

Construction ‘ H-coefficient using mirror Th. X2
EDM (q3/22n>1/2 q/2n (q4/23n)1/2
XORP - q/2" q/2"
XORP (2-keyed) - q/2" gl5 /215m
Trunc-RP,, (q/2n7%)§ - q/2n7%

19 /72
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Encrypted Davies-Meyer (EDM) Construction

EDM; - : {0,1}" x {0,1}" — {0,1}"
e Takes two permutations 7, 7’ € Perm,, as key.

e On input = € {0,1}", returns 7' (7(z) @ x).

Bound using coefficients H technique (Cogliati and Seurin -
Crypto 2016)

Njw

f 5q
AdvE,(4) < 202
Bound using x? method (Dai, Hoang, Tessaro - Crypto 2017)
prf 3(]2
Advepy(A) <

= 3"
2

N
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Proof Sketch : EDM; .(z) = 7'(7(x) ® x)

upper bd Prx(z;[z~1) <1/(2" —4) < 51 + 222%
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upper bd Prx(z;[z~1) <1/(2" —4) < 51 + 222%

> 2" —4q 1 41

lower bd Pry(z;|zt~1) > @) 2 27 g
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Proof Sketch : EDM; .(z) = 7'(7(x) ® x)

upper bd Prx(z]z™!) < 1/(2" — i) < 5 + 525

i— 2n_4i 1 4
lower bd Pry(z;|zt~1) > Ty 2 2 — e




io
Construction

>
Sum of Permutat

Some Constructions and Applications

Proof Sketch : EDM; (z) = 7'(7(z) & x)

upper bd Prx (2] ™!) <1/(2" — i) < 5 + 24
lower bd Pry(z;|zt~1) > % > 2% — 242—@
| Pry(x;|oi—! 2%| < AL
o X(X1) < 12(?‘3%3 (non-random bound)
XA(XT)) < B840 5o, AdvES L (A) <

o >, Ex(

q .

M\CM

N
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Construction

@ Let m <n and trunc,, denote the function which returns
the first m bits of z € {0,1}".

@ We define for every z € {0,1}",
trRP,,(x) = trunc,,(RP,(x)).

Note that it is a function family, keyed by random
permutation, mapping the set of all n bits to the set of all
m bits.

@ Let Xy,...,X, denote all outputs of the construction to the
adversary then X; = trunc,,(V;) for all i.
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Proof Sketch : trRP,,(z) = trunc,,(RP(x))

o Pry(x;|ai™t) = % where H follows Hypergeomtric

distribution (HG).

. m F_ 2
o X*(@'h) =3, gt X (H-57)
e By using expectation and variance formula of HG and x?
method, we have

1
2 m—1)/2
rf i— q X 2(
Advit, (A ( EIE (X 11) =T
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Theorem for trRP,,

Theorem

For any adversary A making q queries we have

(m—1)/2

£ q X 2
Adviie (A) < T —

@ When, m = n (no truncation), PRF advantage is O(q/2"/?)
(again, the presence of square root).

@ When m =1 (returns only one bit), PRF advantage is
O(q/2").

@ When m = n/2 (mid-way : returns half of the bits), PRF
advantage is O(q/2°"/*).
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XOR Construction

@ Define XOR; : {0,1}"~! — {0,1}" to be the construction
that takes a permutation 7w € Perm,, as a key, and on input
x € {0,1}" 1 it returns 7 (z(|0) @ 7 (x[]1).

@ XOR construction based on a random permutation RP,,
returns X, ..., X, where Xy :=V; @ Vo, ...,
Xq = ng_l (&) ng and Vq,... ,VQq <{—wor {0, 1}".

@ Mirror theory and H-coefficients proves the PRF security.

61/
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Sum of Permutations.

Theorem (DHT-Crypto-17)

Fiz an integer n > 8 and let N = 2™. For any adversary A that
makes q < 3—N2 queries we have

1.5¢ + 3,/q
p— N .

N

Adviior(A)

o V..., U; {0, 1}".
@ Let P; and P2 denote the output distributions of
X = (Xq,...,Xg) and U":= (U], ..., Up) respectively. Thus,

AdvES(A) < Py — Pyl
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Sum of Permutations.

Q@ Py is the probability function for
(Ug,...,Uy) ¢—wr [N]* :={0,1}"™\ {0"}.

@ [[Po — P <¢/2".
@ It is sufficient to bound ||Po — Pq]|.

@ For every non-zero z1,...,z; we clearly have
P0|1.i71 (QZZ) = 1/(N - 1)

X&) = Z (N=1)(Yiz — N1

TA£0n

where ng = Pr(Xi = :L"Xi_l — :Ei_l).

63/
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Sum of Permutations.

@ S={Vi,Vy,...,Vy_o}.

@ Let D; ; be the number of pairs (u,u @ x) such that both u
and u @ x belongs to S.

@ Note that S and D; , are both random variables, and in
fact functions of the random variables V1, Vo, ..., Vo;_o.

N —4(i —1) + Dy,
Yia:: : —.
T (N —2i+ 1)(N — 2i)
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Sum of Permutations.

o
Nis - 1 2 < 3(Djz —4(i — 1)?/N)? + 18
N -17 N4 '
1
i— 1 2
E( (X ZN Ex|( z.t_m)] (3)
xF£0™
8 3 40— 1)% 5

@ D, as a function of Vi, Vs, ..., Va2, and the expectation
is taken over the choices of V1,Vo, ..., Vo;_o
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. 18 12(i —1)2
2/yi—1
Ex(x*(X'7)) < R

Summing up, from x?-method

1
2

||P0—P1||§< ZEX (X1 )

< 3\f+.5q'
- N

O
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@ Is everything OK?
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@ Is everything OK?

© we have

N —4(i—1)+ Di,

N —2i4+1)(N — 2i)
(6)

PX; = x|Vi =v1,...,Vaj_g = v 2] = (

But,
P[X; = z[V* 2 = v* | = P[X; = 2[X" ' =21 (7)

does not hold for every vy,...,v9;_2.
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How to get rid of it?

@ Consider an extended system which leaks more (similar to
H technique).

@ Release V; values in real world. In the ideal world simulate
the V; values keeping compatibility.

© We aim a more general useful form of Mirror theory.

69 /
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Summing Up

@ H-Technique is nowadays in popular (in comparison with
game playing technique).

©

Sometimes hard to get optimum bound.

@ 2 method can be another useful tool for proving security -
mainly for close to optimal security.

Mirror theory needs attention. It has high potential,
@ We should also study the potentiality of the other metrics.



Encrypted Davies-Meyer (EDM) Construction
Truncation Construction
Some Constructions and Applications Sum of Permutations Construction

Thank You for your attention

Hy 1y = ho + (—4a + 8) [, | ur (i.e. first blue term ) + [28(i1) + 28(12)
+28(13)+28(114) +28 (11 @ 0)+28(pt2 @ 0)+25(3 @ 6) + 28(ns @ 0)] [I;]
( i.e. terms with a value A not compatible with ¢ = 1 equation )

+ [26(11 @ pa) + 26(p1 @ pa) + 28(1 @ pa) + 28(pn2 & p3) + 28(n2 & pa)
+28(us ® pa)] [, ] (i.e. first green terms )
+ 6(a—2)(a— 4) [K] u(i.e. blue term with ¢ = 2 equations)
—15-2-3- 2A)a[H;| us( “first red term”, i.e. with ¢ = 2)
+ 4Auy [h;] (i.e. green term: one dependent equation with ¢ = 2)
— 8Aaus [hg] ( i.e. green term one dependent equation with ¢ = 3)
—4(a—2)(a—4)(a— 6)ug [h] (i.e. blue term with ¢ = 3)
+ 256a* Auz [hD] (i.e. red term with ¢ = 3)
+ (a—2)(a—4)(a—6)(a— 8)us [A?] (i.e. blue term with ¢ = 4)
—90a® Aug [h};“] ug( i.e. red term with ¢ = 4)
+ 12a%Auyg [hf)] (i.e. green term: one dependent equation with ¢ = 4)

+36- (24)%uy, [hy] (i.e. green term: two dependent equations with ¢ = 4)
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