ZMAC: Specification, Security Proof, and
Instantiation Updates*

Tetsu Iwataf
Nagoya University, Japan

Joint work with Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin

ASK 2017
Fenglin Hotel, Changsha, China
December 10, 2017

* Based on: Iwata, Minematsu, Peyrin, and Seurin. ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message Authentication. CRYPTO 2017

1 Supported by JSPS KAKENHI, Grant-in-Aid for Scientific Research (B), Grant Number 26280045

36

Introduction: Message Authentication Code (MAC)

o Symmetric-key Crypto for tampering detection

e MAC: K x {0,1} =T

e Alice computes Tag = MAC(K, M) = MACg (M) and sends
(M, Tag) to Bob

» Bob checks if (M, Tag) is authentic by computing tag locally

o If MACk () is a variable-input-length PREF, it is secure

M, Ta
Alice (g Bob

(M', Tag')

Eve

36

Tweakable Block Cipher (TBC)

Extension of ordinal Block Cipher (BC), formalized by Liskov et
al. [LRW02]

e E:KxT xM— M,tweak T € T is a public input

e (K,T) € K x T specifies a permutation over M

o Let M ={0,1}"and 7 = {0,1}*
We implicitly assume additional small tweak i = 1,2,.. ., used for
domain separation, and write as E. (T, X)) when necessary

M

Building TBC

Block cipher modes for TBC: LRW [LRWO02] and XEX [Rog04]

« Efficient but security is up to the birthday bound (O(2%4) attack
when AES is used)

» Beyond-the-birthday-bound (BBB) security is possible (e.qg.
[Min09][LST12][LS15]) but not really efficient
Dedicated designs:
o HPC [Sch98]
e Threefish in Skein hash function [FLS+10]

» Deoxys-BC, Joltik-BC, KIASU-BC [JNP14a], SCREAM [GLS+14],
— in the CAESAR submissions

o SKINNY [BJK+16], QARMA [Avai7], ...

Security notions of TBC [LRW02]

« Indistinguishable from the set of independent uniform random
permutations indexed by tweak

— Tweakable uniform random permutation (TURP) denoted by P
— Tweak is chosen by the adversary

e CCA-secure TBC = TSPRP

Security notions of TBC [LRW02]

« Indistinguishable from the set of independent uniform random
permutations indexed by tweak

— Tweakable uniform random permutation (TURP) denoted by P
— Tweak is chosen by the adversary

e CCA-secure TBC = TSPRP
o CPA-secure TBC = TPRP

Ex P

Building MAC with TBC : PMACH1

PMAC1 by Rogaway [Rog04], introduced in the proof of PMAC
o Parallel

e Security is up to the birthday bound wrt the block size (n)

— Advpyhe (o) = O(0?/2) for o queried blocks
— Thus n/2-bit security

M1 M[2) M][3] M[4]

yany
A

on

fany
Ay

.
A\
fany
A\

Tag

PMACH1

Building MAC with TBC: PMAC _TBC1k
PMAC_TBC1k by Naito [Nai15]
e 2n-bit chaining similar to PMAC_Plus [Yas11]
— Finalization by 2n-bit PRF built from TBC

o BBB-secure: improve security of PMAC1 to » bits
o Same computation cost as PMAC1 (except for the finalization)

M1 M2 M(3]

fany
A\
.
A\

2 2 2
on D e Vi NN

AV >4 =S A\ A

Fany
A\
o]

multiplication by 2 over GF(2")

PMAC_TBC1k (message hashing part)

Efficiency of MAC

These TBC-based MACs are not optimally efficient
o They process n-bit input per 1 TBC call
o t-bit tweak does not process message — reserved for block index

36

Efficiency of MAC

These TBC-based MACs are not optimally efficient
o They process n-bit input per 1 TBC call
o t-bit tweak does not process message — reserved for block index

Mi]
"1
——1
Optimally-efficient TBC-based MAC?

Clil

Our proposal: ZMAC (“The MAC”) [IMPS17]

ZMAC is
e The first optimally efficient TBC-based MAC
— (n 4+ t)-bit input per 1 TBC call
e Parellel, and BBB-secure
— min{n, (n + t)/2}-bit security, e.g. n-bit-secure whent > n
It uses TBC as a sole primitive, and secure if TBC is a TPRP

Structure of ZMAC

A simple composition of message hashing and finalization
(Carter-Wegman MAC):

o ZMAC = ZFIN o ZHASH

e ZHASH : M — {0,1}"** is a computational universal hash
function

e ZFIN : {0,1}"" — {0,1}*" is a PRF
— QOutput truncation if needed
Unified specs forany ¢t (t =nort <mort>mn)

M e {0,1}"

ZFIN ——F— Tag
n+t 2n

10/36

Structure of ZMAC

A simple composition of message hashing and finalization

(Carter-Wegman MAC):
e ZMAC = ZFIN o ZHASH

e ZHASH : M — {0,1}"** is a computational universal hash

function

e ZFIN : {0,1}"" — {0,1}*" is a PRF
— QOutput truncation if needed

Unified specs forany ¢t (t =nort <mort>mn)

M e {0,1}"

We focus on ZHASH

n+t

ZFIN

——~— Tag
2n

10/36

How ZHASH works: tweak extension

Optimal efficiency implies ¢-bit tweak of E must be extended to
incorporate block index

This can be done by XTX [MI15], an extension of LRW and XEX:

 Global tweak G € G, |G| > 2!
 Keyed function H : £ x G — ({0,1}" x {0,1}!)

o XTX[E, H|g.1(G, X) = Ex(W;, W,, & X) @ W,, with
(W, Wi) = Hr(G)

D~

&S]

W,
1% —
e I‘ t Hy, G

<D
>.'<‘\J

11/36

How ZHASH works: security of XTX/XT

XTX is secure if H is e-partial AXU (pAXU) [MI15] :

max Pr[L & £ : HL(G) @ Hi(G') = (5,01)] < e
GG 5e{0,1}7

that is, n-bit part is close to differentially uniform and ¢-bit part has a
small collision probability

X
a W
A\
1 n
~ Wi
EK I t HL — G
t
fan)
A\
J
Y

12/36

How ZHASH works: security of XTX/XT

In our case, G € {0, 1}t X N T, and block index is a counter

message part block index

Then XTX can be instantiated and optimized by

» Using the “doubling” trick as XEX
e Omitting the outer mask to Y (as decryption is not needed)

X

pan W
A\

1 n
EK Wt . 7 HL DI G

t

o

A\

'

Y

 Omitting domain separation variable

13/36

How ZHASH works: security of XTX/XT

The resulting scheme is XT , using H;(G) defined as

Hp,r)(T,i) = (27" Ly, 27 Ly @, T)), using two n-bit keys (L, L)

Details:
e 2'X is X multiplied by 2 over GF(2") for i times

— Computation is easy by caching 2i~1 X as done in XEX
o XY =mshy(X)@Yift<n, (X0 Yift>n
— Chop-or-pad before sum

X

© 24 L

w

Bk I" — T L= (L Ly) €5 ({0,1}™)
2 - L, G = (Tai)

l Hp(G)

14/36

How ZHASH works: security of XTX/XT

Lemma
LetP: 7 x {0,1}" — {0,1}" be a TURP and H is e-pAXU. Then,

tprp q2€
Advy o (@) < 5
and our H is 1/2tmin{ntl.nAXU. Thus,
q2
Adv. PR (g) <

XT[P,H] = 9n+min{n,t}+1"

Therefore, XT has min{n, (n + t)/2}-bit, BBB-security

15/36

How ZHASH works: chaining scheme

Given XT, it's easy to apply it in the PMAC-like single-chaining hashing
scheme

» Message is divided into (n + ¢)-bit blocks, (X,[:], X [i]) for
i=1,2,...

e This is optimally efficient, but security is up to the birthday bound

Xo[1] X[2]

D -

Collision w/ 2"
queries

16/36

How ZHASH works: chaining scheme
Given XT, it's easy to apply it in the PMAC-like single-chaining hashing
scheme
» Message is divided into (n + ¢)-bit blocks, (X,[:], X [i]) for
1=1,2,...
e This is optimally efficient, but security is up to the birthday bound
» Need a larger chaining value

Xo[1] X[2]

D -

Collision w/ 2"
queries

16/36

How ZHASH works: chaining scheme

» Naive use of 2n-bit chaining scheme [Nai15][Yas11] doesn’t work
— XT output collision still breaks the scheme

X[1] Xo[2]
A
xt 50| xr %8
-— 1 -— 2
2 :
0" & o—®-

Collision w/ 2"
queries

7/36

How ZHASH works: chaining scheme

» Key observation: to avoid these collision attacks, the process of
(X¢, Xr) (the dotted box) must be a permutation

o A Feistel-like 1-round permutation works (ZHASH)

Xe[l] X[l Xe[2) X.[2]
Y
XT I XT
-1 -2
yan) yany
A Dt
Y 2% y 2
0" —b—® S—w0—

ZHASH

18/36

How ZHASH works: chaining scheme

» Key observation: to avoid these collision attacks, the process of
(X¢, Xr) (the dotted box) must be a permutation

o A Feistel-like 1-round permutation works (ZHASH)

X1l X[1] X2 X[2)
Y
XT I XT
-1 -2
a yan)
Dt N %
t yany yany
0 I 2\»\ A\ I 9 AN
0" —H—® S—o—
ZHASH

Lemma
ZHASH (w/ XT using TURP) is e-almost universal for e = 4/2n+min{n.t}

18/36

Full ZHASH
Input: X = (X[1],...,X[m]), | X[i]|=n+t
Output (U, V), [U| =n, |V| =t

X1 X[2] X([m)
5%, X, 5%, X, 5%, X,
L —@® I 2-L, —~@ al? 271 L —’G? gm-1.p,
T T
| N oy
E} %t E} %t E} ©;
t t t
ot %
N N N
o b—-® 4 ® ® U
Details:

® XY =mshy(X)®Yift<n (X|[|0"")@Yift>n
® 2. X : multiplication by 2
® [, and L, : two n-bit masks from Ex w/ domain separation
19/36

ZFIN

ZFIN simply encrypts U with tweak V' twice (for each n-bit output) and
takes a sum (with domain separation)

U U U U
| | |
\@ P \@ P

Yl[l] Yl[2]
PRF security of ZFIN

e ZFIN is essentially “Sum of Permutations” [Luc00, BI99, Pat08a,
Pat13, CLP14, MN17]

o From a recent result by Dai et al. [DHT17], ZFIN is n-bit secure

Lemma

prf i 3/2
dVZFIN[ﬁ] (q) <2 (2”)

20/36

Security of ZMAC

Combining all lemmas,

Theorem
For ¢ < 27~ queries of total o (n + t)-bit blocks,

AdvP™ _2se (.)3/2.

ZMACIP)] (g,0) < on+min{n,t} on

Thus ZMAC is min{n, (n + t)/2}-bit secure

21/36

Security Proof

Xﬂ[l] Xr[l] XZ[Q] Xr[2]
Y
XT I‘— xT B
«1 «2
Dy Dy
0t 5 a5, bS—-
9
A\ J Y
0" —PH—1® H—o—
ZHASH

o ZHASH is e-almost universal for e = 4/2n+min{n.t}
o ma Pr[ZHASHyxT(X) = ZHASHxT(X")] < €
S On. Pr xT(X) xT(X7)] <

X'e({0,1}m)™’
X#£X'

N
w

A Feistel-like Network Is a Permutation

Xl Xeld]
!
XT |,
Gl Crli]

e red lines are ¢t bits
o X @Y =msty(X)pYift <nm, (X]||0O"") Y ift >n

23/36

Breaking into Cases

o ZHASH is e-almost universal for ¢ = 4/2n+min{n.t}
« For any distinct X € ({0,1}"*")™ and X’ € ({0, 1}"1)™’,

Pr[ZHASHxT(X) = ZHASHxT(X)] < ¢

Cases:
@ m =m/,3h, X[h] # X'[h], and Vi # h, X[i] = X[i]
(same number of blocks, difference in exactly one block)
® m =m/,3h,s, X[h] # X'[h] and X[s] # X'[s]
(same number of blocks, difference in two (or more) blocks)
O@m=m+1
O >m+2

e focusonthecaset <n

24/36

Case 1

o m=m',3h, X[h] # X'[h], and Vi # h, X[i] = X'[]

» same number of blocks, difference in exactly one block

AX([h] AX,[h]
)
xT [,
ach]| acn)]’
— AV
/\y — AU

o (ACY[R], AC,[h]) # (07, 01), s0 (AU, AV) % (07, 0%)
L PI‘XT[ZHASHXT<X) - ZHASHXT<X/)] =0

25/36

Case 2

e m=m/, 3h,s, X[h] # X'[h] and X|[s] # X'[s]
» same number of blocks, difference in two (or more) blocks

AX([h] AX,[h]

1

XT

~— h

ACq[h]

AC W]

AXels] AX,[s]
)
XT [,
ACs) | AC[s]] .

—>—}—;@7 —>—}—;@7 — AU
2 2

o (ACy[h], AC,[h]) # (0™,0%) and (ACy[s], AC,[s]) # (0™, 0%)
e approach: use ACy[h] and AC,[s] as randomness

26/36

Case 2

AXoh] AX,[H]

l

XT

AC,[h]

AX(s] AX,[s]
}
xT [,
ACs) | Ac[s]]
— AV
/\y — AU

2

o AU =0 & 2™ h"1AC)[h] ® 2" 5"1AC[s] = A,
o« AV =0" & AC,[h] ® AC,[s] = A

& msby(AC[h] & AC[s]) = A]

& ACHh ® ACy[s] = A || =

27/36

Case 2

. {AU =0 {2m_h_1AC’g[h] @ 2™ 5L ACy[s] = Ay
AV =" ACy[h] ® AC[s] = AL | *
o For each (Ag, A || *), one possibility for (AC, [h], AC,[s])
— at most 2! possible values of (AC,.[h], AC,.[s])
s.t. (AU, AV) = (0™, 0%)
o at least (2" — 1)2 possible choices for (AC,[h], AC,[s])
on—t 4

o Pr[(AU, AV) = (0",0%)] < (@12 = gnit

28/36

Case 3

em' =m+1 Xim] XL[m) Xy[m +1] XL[fm + 1]
}
XT m 7 @ m +7

Cifm]| Cilml]" Cifm+11|Cim+ 1]}

g&

—_

\7d

0 0 U’
2/u Z/U

X,[m] X,.[m]

BEL , use C¢[m],Cy[m],Cjlm + 1] as

randomness
Colm)| C.m)]"
.
—»@—;@—»U
2

o AU = 2(Cy[m] & 2C)[m] ® C)m + 1] & Ay)
o AV =msb;(Ce[m] @ Cylm| & Cj[m + 1]) & A

29/36

Case 3

o AU = 2(Cy[m] & 2C)[m] & Cjm + 1] & 4Ay)
o AV =msb;(Ce[m] @ Cy[m] & Cj[m + 1]) & A
AU = 0t - Ce[m] ® 2C)[m] @ Cj[m + 1] = A}
AV =0" Cilm]) & C)lm] & Cjm + 1] = Ay || *
Letting Y = Cy[m] @& C)[m + 1] and Z = C}[m] yields

Y @27 = A
Y®Z=2A2:]x

which has a unique solution

they are uniform over {0, 1}"
n—t 1

PI'[(AU, AV) = (Onaot)] S 2271 S W

30/36

Case 4

m' >m+2
Xglm' —1] X7[m' -1 Xgm'] X [m]
XT | e XT | I
m —1 ~— m
1 Yt t
Cym’ = 1] Cylm’)

V/

. . 4
2 2

use Cy[m' — 1] and Cj[m/] as randomness
AU =2(2C)m' — 1] @ Cj[m/] & Ay)

AV = msb;(Cy[m' — 1] @ Cy[m/]) @ Ay

the same analysis as Case 3 can be used

Pr[(AU, AV) = (0",0%)] <

Pr[(AU, AV) = (0*,0")] <

1
gn+t
4
gn+t

for all cases

31/36

Instantiation Updates*

e In [IMPS17], we used Deoxys-BC and SKINNY to instantiate
ZMAC

— standard TPRP security assumption
» “XOR some extra tweak material to the key input of the TBC”
— originally proposed by [LRWO02] for BCs
e Given E* : {0,1}* x {0,1}f x {0,1}" — {0,1}",
regard it as

' {0,1}* x {0,1}'"* x {0,1}" — {0, 1}"

+ Thanks to Christof Beierle for the suggestion.

32/36

Instantiation Updates

e Input: X = (X[1],..

-, X[m])

[X[l = n+ (t+ k), X[i] = (

il Xo[i]): X, Ji] is ¢ + k bits
e Output (U, V), [U| =n, |V| =t +k

X, X, X, b X,
Le _’? L 2-Le _’? 2L, Ly »Q{B om-1.,
B I*é;;‘ EY *E%B;H—,' By I"G%B,;T
t+k t+k t+k
(1824
0 o o o

e can process (n +t + k) bits per 1 TBC call

33/36

Remarks

« related-key security of E is needed (strong assumption)
e limited to the birthday security w.r.t. k
— due to a generic birthday attack against Exq7(-) by [BK03]
— Ek,(X)for1<i<2%?and Exer,(X) for1 < j < 2k/2
o with Deoxys-BC-256, k = 128,¢t = 124, n = 128 (4 bits for domain
separation)

— 64-bit security, expected to be 50% faster
— related-key security will not be an issue (also for SKINNY)

34/36

Instantiation with AES-128

o Can use ZMAC with AES-128
— 64-bit security
— estimated speed: 0.45 cpb (taking into account the 1.4 slowdown
for recomputation of the key schedule at every block
— AES-256 is not suitable because of the related-key attack [BKNQ9]
schedule)

35/36

Concluding remarks

o Reviewed ZMAC, a highly secure and fast MAC based on TBC
o Security Proof
e Instantiation updates
The power of XEX-like masking:
» We already see it in many blockcipher modes (e.g. PMAC, OCB)
e ZMAC shows it is also powerful for TBC modes

o As dedicated TBCs are becoming popular, this direction looks
worth to be further explored

36/36

Concluding remarks

o Reviewed ZMAC, a highly secure and fast MAC based on TBC
o Security Proof
e Instantiation updates
The power of XEX-like masking:
» We already see it in many blockcipher modes (e.g. PMAC, OCB)
e ZMAC shows it is also powerful for TBC modes

o As dedicated TBCs are becoming popular, this direction looks
worth to be further explored

Thank you!

36/36

