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Introduction: Message Authentication Code (MAC)

• Symmetric-key Crypto for tampering detection
• MAC : K × {0, 1}∗ → T
• Alice computes Tag = MAC(K,M) = MACK(M) and sends
(M,Tag) to Bob

• Bob checks if (M,Tag) is authentic by computing tag locally
• If MACK(∗) is a variable-input-length PRF, it is secure
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Tweakable Block Cipher (TBC)

Extension of ordinal Block Cipher (BC), formalized by Liskov et
al. [LRW02]
• Ẽ : K × T ×M→M, tweak T ∈ T is a public input
• (K,T ) ∈ K × T specifies a permutation overM
• LetM = {0, 1}n and T = {0, 1}t

We implicitly assume additional small tweak i = 1, 2, . . . , used for
domain separation, and write as ẼiK(T,X) when necessary
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Building TBC

Block cipher modes for TBC: LRW [LRW02] and XEX [Rog04]
• Efficient but security is up to the birthday bound (O(264) attack

when AES is used)
• Beyond-the-birthday-bound (BBB) security is possible (e.g.

[Min09][LST12][LS15]) but not really efficient
Dedicated designs:
• HPC [Sch98]
• Threefish in Skein hash function [FLS+10]
• Deoxys-BC, Joltik-BC, KIASU-BC [JNP14a], SCREAM [GLS+14],

– in the CAESAR submissions

• SKINNY [BJK+16], QARMA [Ava17], . . .
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Security notions of TBC [LRW02]

• Indistinguishable from the set of independent uniform random
permutations indexed by tweak

– Tweakable uniform random permutation (TURP) denoted by P̃
– Tweak is chosen by the adversary

• CCA-secure TBC = TSPRP

• CPA-secure TBC = TPRP

ẼK Ẽ−1
K P̃ P̃

−1

A
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Building MAC with TBC : PMAC1

PMAC1 by Rogaway [Rog04], introduced in the proof of PMAC
• Parallel
• Security is up to the birthday bound wrt the block size (n)

– Adv
tprp

PMAC1(σ) = O(σ2/2n) for σ queried blocks
– Thus n/2-bit security

ẼK ẼK ẼK

ẼK

M [1] M [2] M [3] M [4]

Tag

0n

1 2 3

4

PMAC1
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Building MAC with TBC: PMAC TBC1k
PMAC TBC1k by Naito [Nai15]
• 2n-bit chaining similar to PMAC Plus [Yas11]

– Finalization by 2n-bit PRF built from TBC
• BBB-secure: improve security of PMAC1 to n bits
• Same computation cost as PMAC1 (except for the finalization)

ẼK ẼK ẼK

M [1] M [2] M [3]

0n

1 2 3

0n
2 2 22 2 2

︷ ︸︸ ︷
multiplication by 2 over GF(2n)

PMAC TBC1k (message hashing part)
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Efficiency of MAC

These TBC-based MACs are not optimally efficient
• They process n-bit input per 1 TBC call
• t-bit tweak does not process message – reserved for block index

Optimally-efficient TBC-based MAC?
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Our proposal: ZMAC (“The MAC”) [IMPS17]

ZMAC is
• The first optimally efficient TBC-based MAC

– (n+ t)-bit input per 1 TBC call
• Parellel, and BBB-secure

– min{n, (n+ t)/2}-bit security, e.g. n-bit-secure when t ≥ n
It uses TBC as a sole primitive, and secure if TBC is a TPRP
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Structure of ZMAC

A simple composition of message hashing and finalization
(Carter-Wegman MAC):
• ZMAC = ZFIN ◦ ZHASH
• ZHASH :M→ {0, 1}n+t is a computational universal hash

function
• ZFIN : {0, 1}n+t → {0, 1}2n is a PRF

– Output truncation if needed

Unified specs for any t (t = n or t < n or t > n)

We focus on ZHASH
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How ZHASH works: tweak extension
Optimal efficiency implies t-bit tweak of Ẽ must be extended to
incorporate block index
This can be done by XTX [MI15], an extension of LRW and XEX:

• Global tweak G ∈ G, |G| > 2t

• Keyed function H : L × G → ({0, 1}n × {0, 1}t)
• XTX[Ẽ,H]K,L(G,X) = ẼK(Wt,Wn ⊕X)⊕Wn with
(Wn,Wt) = HL(G)
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How ZHASH works: security of XTX/XT

XTX is secure if H is ε-partial AXU (pAXU) [MI15] :

max
G 6=G′,δ∈{0,1}n

Pr[L
$← L : HL(G)⊕HL(G

′) = (δ, 0t)] ≤ ε

that is, n-bit part is close to differentially uniform and t-bit part has a
small collision probability
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How ZHASH works: security of XTX/XT

In our case, G ∈ {0, 1}t︸ ︷︷ ︸
message part

× N︸︷︷︸
block index

†, and block index is a counter

Then XTX can be instantiated and optimized by
• Using the “doubling” trick as XEX
• Omitting the outer mask to Y (as decryption is not needed)

† Omitting domain separation variable
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How ZHASH works: security of XTX/XT
The resulting scheme is XT , using HL(G) defined as

H(L`,Lr)(T, i) = (2i−1L`, 2
i−1Lr ⊕t T ), using two n-bit keys (L`, Lr)

Details:
• 2iX is X multiplied by 2 over GF(2n) for i times

– Computation is easy by caching 2i−1X as done in XEX
• X ⊕t Y = msbt(X)⊕ Y if t ≤ n, (X ‖ 0t−n)⊕ Y if t > n

– Chop-or-pad before sum
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How ZHASH works: security of XTX/XT

Lemma

Let P̃ : T × {0, 1}n → {0, 1}n be a TURP and H is ε-pAXU. Then,

Adv
tprp

XT[P̃,H]
(q) ≤ q2ε

2
.

and our H is 1/2n+min{n,t}-pAXU. Thus,

Adv
tprp

XT[P̃,H]
(q) ≤ q2

2n+min{n,t}+1
.

Therefore, XT has min{n, (n+ t)/2}-bit, BBB-security
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How ZHASH works: chaining scheme
Given XT, it’s easy to apply it in the PMAC-like single-chaining hashing
scheme

• Message is divided into (n+ t)-bit blocks, (X`[i], Xr[i]) for
i = 1, 2, . . .

• This is optimally efficient, but security is up to the birthday bound

• Need a larger chaining value

...

Collision w/ 2(n/2)

queries
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How ZHASH works: chaining scheme

• Naive use of 2n-bit chaining scheme [Nai15][Yas11] doesn’t work
– XT output collision still breaks the scheme

...

Collision w/ 2(n/2)

queries

...
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How ZHASH works: chaining scheme
• Key observation: to avoid these collision attacks, the process of
(X`, Xr) (the dotted box) must be a permutation

• A Feistel-like 1-round permutation works (ZHASH)

...

...

ZHASH

Lemma
ZHASH (w/ XT using TURP) is ε-almost universal for ε = 4/2n+min{n,t}
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Full ZHASH
Input: X = (X[1], . . . , X[m]), |X[i]| = n+ t
Output (U, V ), |U | = n, |V | = t

X[1]

X` Xr

Ẽ8
K t

L`
Lr

t

2

0n

0t

X[2]

X` Xr

Ẽ8
K t

2 · L`
2 · Lr

t

2

. . .

. . .

X[m]

X` Xr

Ẽ8
K t

2m−1 · L`
2m−1 · Lr

t

2

U

V

Details:
• X ⊕t Y = msbt(X)⊕ Y if t ≤ n, (X ‖ 0t−n)⊕ Y if t > n
• 2 ·X : multiplication by 2
• L` and Lr : two n-bit masks from ẼK w/ domain separation
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ZFIN
ZFIN simply encrypts U with tweak V twice (for each n-bit output) and
takes a sum (with domain separation)

Ẽi
K

U

V Ẽi+1
K

U

V Ẽi+2
K

U

V Ẽi+3
K

U

V

Y [1] Y [2]

PRF security of ZFIN
• ZFIN is essentially “Sum of Permutations” [Luc00, BI99, Pat08a,

Pat13, CLP14, MN17]
• From a recent result by Dai et al. [DHT17], ZFIN is n-bit secure

Lemma

Adv
prf

ZFIN[P̃]
(q) ≤ 2

( q
2n

)3/2
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Security of ZMAC

Combining all lemmas,

Theorem
For q ≤ 2n−4 queries of total σ (n+ t)-bit blocks,

Adv
prf

ZMAC[P̃]
(q, σ) ≤ 2.5σ2

2n+min{n,t} + 4
( q
2n

)3/2
.

Thus ZMAC is min{n, (n+ t)/2}-bit secure
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Security Proof

...

...

ZHASH

• ZHASH is ε-almost universal for ε = 4/2n+min{n,t}

• max
X∈({0,1}n+t)m

X′∈({0,1}n+1)m
′

X 6=X′

Pr
XT

[ZHASHXT(X) = ZHASHXT(X
′)] ≤ ε
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A Feistel-like Network Is a Permutation

XT

t

Xℓ[i] Xr[i]

Cℓ[i] Cr[i]

i

• red lines are t bits
• X ⊕t Y = msbt(X)⊕ Y if t ≤ n, (X ‖ 0t−n)⊕ Y if t > n
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Breaking into Cases

• ZHASH is ε-almost universal for ε = 4/2n+min{n,t}

• For any distinct X ∈ ({0, 1}n+t)m and X ′ ∈ ({0, 1}n+1)m
′
,

Pr
XT

[ZHASHXT(X) = ZHASHXT(X
′)] ≤ ε

Cases:
1 m = m′, ∃h,X[h] 6= X ′[h], and ∀i 6= h,X[i] = X ′[i]

(same number of blocks, difference in exactly one block)
2 m = m′, ∃h, s,X[h] 6= X ′[h] and X[s] 6= X ′[s]

(same number of blocks, difference in two (or more) blocks)
3 m′ = m+ 1

4 m′ ≥ m+ 2

• focus on the case t ≤ n
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Case 1

• m = m′, ∃h,X[h] 6= X ′[h], and ∀i 6= h,X[i] = X ′[i]

• same number of blocks, difference in exactly one block

XT

2

t

∆Xℓ[h] ∆Xr[h]

∆Cℓ[h] ∆Cr[h]

h

∆V

∆U

• (∆C`[h], ∆Cr[h]) 6= (0n, 0t), so (∆U,∆V ) 6= (0n, 0t)

• PrXT[ZHASHXT(X) = ZHASHXT(X
′)] = 0
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Case 2

• m = m′, ∃h, s,X[h] 6= X ′[h] and X[s] 6= X ′[s]

• same number of blocks, difference in two (or more) blocks

XT

2

t

∆Xℓ[s] ∆Xr[s]

∆Cℓ[s] ∆Cr[s]

s

∆V

∆U

XT

2

t

∆Xℓ[h] ∆Xr[h]

∆Cℓ[h] ∆Cr[h]

h

• (∆C`[h], ∆Cr[h]) 6= (0n, 0t) and (∆C`[s], ∆Cr[s]) 6= (0n, 0t)

• approach: use ∆C`[h] and ∆C`[s] as randomness
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Case 2

XT

2

t

∆Xℓ[s] ∆Xr[s]

∆Cℓ[s] ∆Cr[s]

s

∆V

∆U

XT

2

t

∆Xℓ[h] ∆Xr[h]

∆Cℓ[h] ∆Cr[h]

h

• ∆U = 0t ⇔ 2m−h−1∆C`[h]⊕ 2m−s−1∆C`[s] = ∆1

• ∆V = 0n ⇔ ∆Cr[h]⊕∆Cr[s] = ∆2

⇔ msbt(∆C`[h]⊕∆C`[s]) = ∆′2
⇔ ∆C`[h]⊕∆C`[s] = ∆′2 ‖ ∗
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Case 2

•
{
∆U = 0t

∆V = 0n
⇔
{
2m−h−1∆C`[h]⊕ 2m−s−1∆C`[s] = ∆1

∆C`[h]⊕∆C`[s] = ∆′2 ‖ ∗
• For each (∆2, ∆

′
2 ‖ ∗), one possibility for (∆Cr[h], ∆Cr[s])

– at most 2n−t possible values of (∆Cr[h], ∆Cr[s])
s.t. (∆U,∆V ) = (0n, 0t)

• at least (2n − 1)2 possible choices for (∆Cr[h], ∆Cr[s])

• Pr[(∆U,∆V ) = (0n, 0t)] ≤ 2n−t

(2n − 1)2
≤ 4

2n+t
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Case 3

• m′ = m+ 1 X ′
ℓ[m] X ′

r[m]

C′
ℓ[m] C′

r[m]

X ′
ℓ[m+ 1]X ′

r[m+ 1]

C′
ℓ[m+ 1] C′

r[m+ 1]

XT

2

t

XT

2

t

m

V ′

U ′

m+ 1

Xℓ[m] Xr[m]

Cℓ[m] Cr[m]

XT

2

t

m

V

U

• ∆U = 2(C`[m]⊕ 2C ′`[m]⊕ C ′`[m+ 1]⊕∆1)

• ∆V = msbt(C`[m]⊕ C ′`[m]⊕ C ′`[m+ 1])⊕∆2

• use C`[m], C ′`[m], C ′`[m+ 1] as
randomness
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Case 3

• ∆U = 2(C`[m]⊕ 2C ′`[m]⊕ C ′`[m+ 1]⊕∆1)

• ∆V = msbt(C`[m]⊕ C ′`[m]⊕ C ′`[m+ 1])⊕∆2

•
{
∆U = 0t

∆V = 0n
⇔
{
C`[m]⊕ 2C ′`[m]⊕ C ′`[m+ 1] = ∆′1
C`[m]⊕ C ′`[m]⊕ C ′`[m+ 1] = ∆2 ‖ ∗

• Letting Y = C`[m]⊕ C ′`[m+ 1] and Z = C ′`[m] yields
{
Y ⊕ 2Z = ∆′1
Y ⊕ Z = ∆2 ‖ ∗

which has a unique solution
• they are uniform over {0, 1}n

• Pr[(∆U,∆V ) = (0n, 0t)] ≤ 2n−t

22n
≤ 1

2n+t
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Case 4

• m′ ≥ m+ 2

XT

2

t

XT

2

t

V ′

U ′

X ′
ℓ[m

′ 1] X ′
r[m

′ 1]

C′
ℓ[m

′ 1]

X ′
ℓ[m

′] X ′
r[m

′]

C′
ℓ[m

′]

m′ 1 m′

• use C ′`[m
′ − 1] and C ′`[m

′] as randomness
• ∆U = 2(2C ′`[m

′ − 1]⊕ C ′`[m′]⊕∆1)

• ∆V = msbt(C
′
`[m
′ − 1]⊕ C ′`[m′])⊕∆2

• the same analysis as Case 3 can be used

• Pr[(∆U,∆V ) = (0n, 0t)] ≤ 1

2n+t

• Pr[(∆U,∆V ) = (0n, 0t)] ≤ 4

2n+t
for all cases
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Instantiation Updates∗

• In [IMPS17], we used Deoxys-BC and SKINNY to instantiate
ZMAC

– standard TPRP security assumption
• “XOR some extra tweak material to the key input of the TBC”

– originally proposed by [LRW02] for BCs

• Given Ẽi : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n,
regard it as

E
i
: {0, 1}k × {0, 1}t+k × {0, 1}n → {0, 1}n

∗ Thanks to Christof Beierle for the suggestion.
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Instantiation Updates

• Input: X = (X[1], . . . , X[m]),
|X[i]| = n+ (t+ k), X[i] = (X`[i], Xr[i]): Xr[i] is t+ k bits

• Output (U, V ), |U | = n, |V | = t+ k

X� Xr

E8
K

L�
Lr

2

0n

X� Xr

E8
K

2 · L�
2 · Lr

2

. . .

. . .

X� Xr

E8
K

2m−1 · L�
2m−1 · Lr

2

U

V0t+k

t+k

t+k

t+k

t+k

t+k

t+k

• can process (n+ t+ k) bits per 1 TBC call
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Remarks

• related-key security of Ẽ is needed (strong assumption)
• limited to the birthday security w.r.t. k

– due to a generic birthday attack against EK⊕T (·) by [BK03]
– EKi(X) for 1 ≤ i ≤ 2k/2 and EK⊕Tj (X) for 1 ≤ j ≤ 2k/2

• with Deoxys-BC-256, k = 128, t = 124, n = 128 (4 bits for domain
separation)

– 64-bit security, expected to be 50% faster
– related-key security will not be an issue (also for SKINNY)
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Instantiation with AES-128

• Can use ZMAC with AES-128
– 64-bit security
– estimated speed: 0.45 cpb (taking into account the 1.4 slowdown

for recomputation of the key schedule at every block
– AES-256 is not suitable because of the related-key attack [BKN09]

schedule)
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Concluding remarks

• Reviewed ZMAC, a highly secure and fast MAC based on TBC
• Security Proof
• Instantiation updates

The power of XEX-like masking:
• We already see it in many blockcipher modes (e.g. PMAC, OCB)
• ZMAC shows it is also powerful for TBC modes
• As dedicated TBCs are becoming popular, this direction looks

worth to be further explored

Thank you!
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