Efficient Message Authentication Codes with Combinatorial Group Testing

Kazuhiko Minematsu (NEC Corporation)

The paper was presented at ESORICS 2015, September 23-25, Vienna, Austria

ASK 2015, October 3, Singapore

Introduction

Message Authentication Code (MAC)

- Symmetric-key primitive to detect forgery
- Compute T = MAC(K,M), send (M,T)
- Receiver checks if tag is correct using the same K
- Known efficient constructions, e.g. CMAC and HMAC

Limitation of standard MAC

- Verification result is binary: when verification fails, no information beyond the existence of corruption
 - HDD sectors, File sections, DB entries...
- If we know which parts have been corrupted, it would be useful to reducing cost, e.g.
 - retransmission in communication network
 - manual investigation in digital forensics
- Allows "fuzzy" authentication

Finding corruptions

- Trivial solution: taking multiple tags for individual parts (data items)
- We can always identify all corrupted items, but tags impact storage
- Tread-off between the quality of information and storage: could it be improved?

Better tread-off

- A promising direction is taking multiple tags for overlapping subsequences of items
- Example: for 7 items, take 3 tags for (M[1],M[2],M[3],M[4]), (M[1],M[2],M[5],M[6]), and (M[1],M[3],M[5],M[7])
- Represented as a 3x7 binary matrix

Better tread-off

- Verification result is a 3-bit vector
 - "1" denotes the (index of) unmatched tag string
- Uniquely mapped to the index of single corrupted item, or no corruption
- That is, if at most 1 item is corrupted, this scheme can identify it

	M[1] M[7] T[1]	are uncorrup	olies M[1] to M[4] oted & only M[5] oth T[2] and T[3]
Verification Result	000, 001, 010, 011	, 100, 101, 110, 113	L
Index of corrupted item	none, 7, 6, 5,	4, 3, 2, 1	- -

Combinatorial group testing (CGT)

Combinatorial group testing (CGT)

- What we are doing is an application of combinatorial group testing (CGT)
- CGT: a method to identify defectives via group test ("does group A contain any defective?")
 - Introduced by Dorfman during WWII (1943), as a method to effectively find bad blood supplies
 - Widely applied to biology and information science (see [Du-Hwang 00])
- In our case,
 - group test = tag check
 - Defective = corrupted item
 - Tags are non-adaptively computed non-adaptive CGT (NCGT)

Problem setting

- We have a list of data items, M=(M[1],...,M[m]), and (t x m) binary test matrix, Q
 (each M[i] is a bit string)
- 2. We take a tag vector, T = (T[1],...,T[t]), following **Q**
- 3. An adversary A corrupts at most d items (M,T) => (M',T)
- 4. At verification, we take local tag vector T*=(T*[1],...,T*[t]) for M' and check if T*[i] = T[i] for all i
- 5. Evict all items in negative tests (valid tags)
 - if $T^*[i] = T[i]$, then evict all j s.t. $\mathbf{Q}_{i,j} = 1$
 - aka *naïve decoder* in CGT
- 6. Outputs indexes of all remaining items as corrupted

Building Test Matrix

- Then, how we build (t x m) binary test matrix Q?
- For making this scheme to work, Q must be ddisjunct
 - Any union (bitwise OR) of \leq d columns of \mathbf{Q} does not cover another column of \mathbf{Q}
- d-disjunct matrix
 - extensively studied from combinatorics and coding theory
- For given m and d, $t = O(d^2 \log m)$
 - Classical methods w/ larger order (e.g. [Macula 96])
 - Matching deterministic method [Porat-Rothschild 08]
- We will not go further here

Previous works

- MAC/hashing/signature combined with CGT has been proposed and studied in various contexts
- MAC : [Crescenzo-Arce 04] [Goodrich-Atallah-Tamassia 05] etc.
- Hashing: Corrupltion-localizing hashing [Crescenzo-Jiang-Safavi-Naini 09], [Bonis-Crescenzo 11] etc.
- Signature : Batch signature verification [Zaverucha-Stinson 09]
- Applied to data forensics, computer virus detection, HDD integrity check, etc.

Efficient MAC with CGT

Motivation

- Storage cost is reduced from O(m) to O(d²log m), if we use optimum Q
- How about computation cost?
 - In standard MACs, taking single tag needs O(m) computation, assuming item processing as unit computation
 - (To the best of our knowledge) not studied in the previous works
 - the underlying MAC or hash is treated as a black box

Naïve view

- Let $\{0,1\}^{*m}$ be the (normal) vector space of m-strings
 - Each string is a non-empty bit sequence of any length
- For M in $\{0,1\}^{*m}$, let $M \ominus \mathbf{Q}_i$ be the extracted subsequence of M for \mathbf{Q}_i (i-th row of \mathbf{Q})
 - E.g. $(M[1],M[2],M[3]) <math>\ominus (1,0,1) = (M[1],M[3])$
- Naïve MAC w/ CGT method : $T[i] = MAC(M \ominus \mathbf{Q}_i)$
 - $O(Hw(\mathbf{Q})) = O(mt)$ computation, usually >> O(m)
 - much larger than taking single tag
- It turns out to be hard to construct efficient MAC with this view (in particular, independent of **Q**)

Our view

- Let $\{0,1\}^{\bullet m}$ be the space of extended vectors, where each string can be an *empty string* (ϵ)
- For $M \in \{0,1\}^{*m}$ and $B \in \{0,1\}^{m}$, let $M \odot B \in \{0,1\}^{*m}$ be the extraction with empty string : $(M[1],M[2],M[3])\odot(1,0,1) = (M[1], \epsilon,M[3])$
- Our task is to take T[i] = MAC(M \odot **Q**_i), where underlying MAC works over $\{0,1\}^{\bullet m}$

PMAC [Black and Rogaway 02][Rogaway 04]

- A parallelizable, blockcipher-based MAC
 - Defined over string space
 - Each M[i] is non-empty n-bit string (except last one)
 - E_K is an encryption function of n-bit blockcipher (e.g. AES)
- Incremental MAC for "replace" operation
 - Once compute T for M, replace M[i] to M'[i] and recompute T' need few E calls
- Still not suitable for our purpose
 - each block has fixed length, non-empty

Group testing MAC

- gtm: a generalized & extended PMAC for extended vector space
 - G : n-bit tweakable permutation
 - F: variable-input-length, n-bit output function
 - Two input variables (index, (possibly empty) string)
- G is a tweakable PRP [Liskov-Rivest-Wagner 02]
- F is an almost PRF. We require $F(i, \epsilon) = 0^n$ for any i, and otherwise behaves as PRF
 - Can be realized with PRF over non-empty strings

Properties of gtm

- Provably-secure MAC (PRF) over extended vector space
 - Security proof is mostly the same as PMAC
 - F's fixed point is not a problem (computational XOR-universality is enough, which allows one fixed point)
- We can handle incremental computation, "replace with empty string", in the same manner to PMAC

Computing MAC tags with **gtm**

- We compute $T[i] = \mathbf{gtm}(i, M \odot \mathbf{Q}_i)$ for i=1,...,t
 - G's tweak (i) is used for security reason
- Ultimately simple method: compute by items
 - Let S[1],...,S[t] be the state variables (initially all-zero)
 - for i = 1,...,m, take Z=F(i,M[i]), add Z to S[j] where $\mathbf{Q}_{i,j}=1$ for all j=1,...,t
 - Output T[j] = G(j,S[j])
- We call this procedure "GTM"

GTM (m=7,t=3,d=1)

GTM (m=7,t=3,d=1)

GTM (m=7,t=3,d=1)

Complexity of GTM

- Time: m F calls + t G calls
- Typically, m>> t and F input >> G input -> essentially O(m)
- Memory : O(t)
- And this holds for any Q
 - Can be combined with any known CGT matrix!
- For comparison, naïve method (e.g.) computing $T[i] = \mathbf{gtm}(i, M \ominus \mathbf{Q}_i)$
 - $Hw(\mathbf{Q})$ F calls + t G calls -> essentially $O(Hw(\mathbf{Q})) = O(mt)$ time, O(t) memory

Security

- We considered three notions (for fixed Q, t, m)
- Goal: standard deterministic MAC + corruptionfinding ability, in a secure manner
- First two notions are about unforgeability
 - Tag vector forgery (TVF) and tag string forgery (TSF)
 (we omit here)
 - Variants of deterministic MAC security notions
- Third one is about the correctness of corruption identification
 - Corruption misidentification (CM)
 - Hardness of forging naïve decoder's output

TVF

- Oracles: tagging (O_T) and verification (O_V)
 - O_T takes M and returns T
 - O_V takes (M',T') and returns \perp (invalid) or \top (valid)
- adversary A
 - first queries O_T and obtains $(M_1, T_1), ..., (M_q, T_q)$
 - then queries (M',T') to O_V such that
 - $-(M',T') \neq (M_i,T_i)$ for all i=1,...,q
- A wins if O_V's response is valid

CM

- Oracles: tagging (O_T) and identification (O_I) which performs naïve decoding
 - O_T takes M and returns T
 - O_I takes (M',T') and returns {1,...,m}-{i : M[i] is in a negative test}
- d-corruptive adversary A
 - first queries O_T and obtains $(M_1, T_1), ..., (M_q, T_q)$
 - then queries (M',T') to O₁ such that
 - $-T' = T_i$ for some i=1,...,q, and $|diff(M',M_i)| \le d$
- A wins if O_i's response is not diff(M',M_i)

Security analysis

- All notions holds if gtm is a secure PRF
- For TVF **Q** needs to contain a standard MAC (i.e. all-one row), otherwise simple attack works
 - gtm taking all-one row = MAC for M
 - No performance penalty in practice
- For CM, suppose Q is d-disjunct
 - chance to win = a non-trivial collision between tag strings, and w/o non-trivial collision naïve decoder never fails against d-corruptive adversary
- If F and G are ideally secure, and $\bf Q$ is d-disjunct and has all-one row, security bounds are $O(q^2t^2/2^n)$ for all three notions

Implementation

CGT methods we use

- We implemented GTM using two CGT methods:
- Shifted traversal design (STD) [Thierry-Mieg 06][Thierry-Mieg-Bailly 08]
 - Composition of simple matrices by rotation and shift
- Chinise Reminder Sieve (CRS) [Eppstein-Goodrich-Hirschberg 07]
 - Number-theoretic construction
- For STD and CRS, matrix generation programs are available
 - Originally, i-th text line = a list of item indexes for T[i]
 - We need to invert it: i-th text line = a list of test indexes using M[i]

Implementation of GTM

- F: CMAC [NIST SP800 38B]
- G: XEX [Rogaway 04]
- Both using AES-128
- Single **gtm** computation for m-block input needs m + few AES calls
- Intel CPU (Ivybridge Core i7 3770 3.4GHz)
 - AES in C runs at 13.3 cycles/byte
- Compared with conventional method (T[i] = $\mathbf{gtm}(i, M \ominus \mathbf{Q}_i)$)
- Only implemented tag computation

Results for STD

- Two cases: (m,t) = (940,169) and (2000,121)
- Proposed scheme achieves mostly the same speed as AES for 2Kbyte items
- Speed ratio is quite close to the theory (Hw(Q)/m)

Table 1. Implementation results for STD, with parameter (n, q, k).

Parameter (940, 13, 13), $Hw(\mathbb{Q}) = 12, 220, Hw(\mathbb{Q})/m = 13$								
(m,t) = (940,169)	16	32	64	128	256	512	1024	2048
Proposed 63	.4	64.0	26.8	20.5	17.3	15.7	14.8	14.4
Conventional 430	.2 31	2.2	249.4	219.8	200.4	190.8	186.7	184.0
Parameter (2000, 11, 11), $Hw(\mathbb{Q}) = 22, 220, Hw(\mathbb{Q})/m = 11.11$								
(m,t) = (2000,121)	16	32	64	128	256	512	1024	2048
Proposed 55	.3	33.9	27.3	20.2	16.8	15.1	14.5	14.1
Conventional 3	61 25	59.7	206.9	180.7	166.8	159.5	155.9	153.8

Item length (byte)
Speed
(cycles/byte)

Results for CRS

- Three cases: $(m,t)=(10^4,378)$, $(10^4,89)$ and $(10^5,131)$
- Similar results as STD
- Improvement factor around 8 ~ 15 (depending on matrix)

Table 2. Implementation results for CRS, with parameter (n, d).

Parameter $(10^4, 5)$, $Hw(\mathbb{Q}) = 150,000$, $Hw(\mathbb{Q})/m = 15$								
$(m,t) = (10^4, 378)$		$6 \mid 3$	2 64	128	256	512	1024	2048
Proposed	60.	9 37.	6 25.8	20	17.1	15.6	14.8	14.5
Conventional	492.	4 353.	5 285	251.4	233	226.9	218.2	215.5
Parameter $(10^4, 2)$, $Hw(\mathbb{Q}) = 80,000$, $Hw(\mathbb{Q})/m = 8$								
$(m,t) = (10^4, 89)$	16	32	64	128	256	512	1024	2048
Proposed	51	30.8	22.6	18.4	16.4	15.3	14.7	14.5
Conventional	259.5	189.7	156.1	135.5	125.7	121.2	117.7	116.3
Parameter $(10^5, 2)$, $\text{Hw}(\mathbb{Q}) = 1,000,000$, $\text{Hw}(\mathbb{Q})/m = 10$								
$(m,t) = (10^5, 131)$	16	32	64	128	256	512	1024	2048
Proposed	49.7	31.9	23	18.6	16.3	15.1	14.5	14.1
Conventional	319.6	237.5	190.7	171.6	158.1	148.9	144.1	141.5

Speed comparisons

The case of STD (m,t) = (940,169)

The case of CRS $(m,t) = (10^5,131)$

Extensions

- 1. CM-security does not allow the tags to be corrupted
 - When tags are stored separately this is fine, but for communication it is unlikely to hold
- 2. More relaxed identification
 - Output is a superset of corrupted items with predetermined margin
 - Studied by Corruption-localizing hashing [CJS09]
- Both extensions are possible by using CGT matrix that can tolerate errors at testing
 - Error-correcting list disjunct matrix [Ngo-Porat-Rudra 11] or [Cheraghchi 13]
 - work in progress

Conclusion

- We studied MAC combined with CGT, in particular about its efficiency
- Naively we need O(mt) computations, if we use a CGT matrix of t tests
- Our proposal (GTM) achieves O(m+t) computations (essentially O(m)) for any matrix of t tests
 - using a simple yet non-trivial extension of PMAC
 - proved security in a concrete security framework
- Experimental implementation w/ known CGT matrices demonstrate the effectiveness of our proposal

Thank you!