
Efficient Message Authentication Codes 
with Combinatorial Group Testing

Kazuhiko Minematsu (NEC Corporation)

ASK 2015, October 3, Singapore

The paper was presented at ESORICS 2015, 
September 23-25, Vienna, Austria 



Introduction

2



Message Authentication Code (MAC)

• Symmetric-key primitive to detect forgery

• Compute T = MAC(K,M), send (M,T) 

• Receiver checks if tag is correct using the same K

• Known efficient constructions, e.g. CMAC and 
HMAC

3

(M, T) 

K

M

MACMAC

T

Alice Bob

Eve

=?

K

M’

MACMAC

T*

(M’, T’) 

T’

Valid/Invalid

corruption



Limitation of standard MAC
• Verification result is binary : when verification fails, 

no information beyond the existence of corruption 
– HDD sectors, File sections, DB entries…

• If we know which parts have been corrupted, it 
would be useful to reducing cost, e.g.
– retransmission in communication network

– manual investigation in digital forensics

• Allows “fuzzy” authentication

4

TT

MACMAC

M



Finding corruptions

• Trivial solution : taking multiple tags for 
individual parts (data items)

• We can always identify all corrupted items, but 
tags impact storage 

• Tread-off between the quality of information and 
storage  : could it be improved?

5

T[1]T[1]

MACMAC

T[2]T[2]

MACMAC

T[3]T[3]

MACMAC

T[m]T[m]

MACMAC

…M[1] M[2] M[3] M[m]



Better tread-off

• A promising direction is taking multiple tags for 
overlapping subsequences of items

• Example: for 7 items, take 3 tags for 
(M[1],M[2],M[3],M[4]), (M[1],M[2],M[5],M[6]), and 
(M[1],M[3],M[5],M[7])

• Represented as a 3x7 binary matrix

6

M[1] M[2] M[3] M[7]M[4] M[5] M[6]

T[1]T[1]

MACMAC

T[2]T[2]

MACMAC

T[3]T[3]

MACMAC
1 1 1 1 0 0 0 
1 1 0 0 1 1 0 
1 0 1 0 1 0 1 

T[1]
T[2]

T[3]

M[1] M[7]…



Better tread-off
• Verification result is a 3-bit vector

– “1” denotes the (index of) unmatched tag string

• Uniquely mapped to the index of single corrupted 
item, or no corruption

• That is, if at most 1 item is corrupted, this scheme 
can identify it 

7

Verification 
Result 000,  001,  010,  011, 100,  101,  110,  111

Index of 
corrupted item 

none,   7,      6,       5,     4 ,      3,      2,      1

1 1 1 1 0 0 0 
1 1 0 0 1 1 0 
1 0 1 0 1 0 1 

T[1]
T[2]

T[3]

M[1] M[7]…

E.g. (011) implies M[1] to M[4] 
are uncorrupted & only M[5]  
can affect both T[2] and T[3]



Combinatorial group testing (CGT)

8



Combinatorial group testing (CGT)

• What we are doing is an application of 
combinatorial group testing (CGT)

• CGT : a method to identify defectives via group 
test (“does group A contain any defective ?”)
– Introduced by Dorfman during WWII (1943), as a 

method to effectively find bad blood supplies

– Widely applied to biology and information science 
(see [Du-Hwang 00])

• In our case, 
– group test = tag check

– Defective = corrupted item 

– Tags are non-adaptively computed – non-adaptive 
CGT (NCGT)

9



Problem setting 
1. We have a list of data items, M=(M[1],…,M[m]), and (t x m) 

binary test matrix, Q 
(each M[i] is a bit string)

2. We take a tag vector, T = (T[1],…,T[t]),  following Q
3. An adversary A corrupts at most d items

(M,T)  => (M’,T) 

4. At verification, we take local tag vector T*=(T*[1],…,T*[t]) 
for M’ and check if T*[i] = T[i] for all i

5. Evict all items in negative tests (valid tags) 
- if T*[i] = T[i], then evict all j s.t. Qi,j=1 
- aka naïve decoder in CGT

6. Outputs indexes of all remaining items as corrupted

10

M=(M[1],…,M[m]) 

MAC w/ Q

T=(T[1],…,T[t]) 

M’=(M’[1],…,M’[m]) 

Corrupt < d 
items MAC w/ Q

T*=(T*[1],…,T*[t]) 

Decode  w/ Q

T, T*

P (⊆[1,…,n])



Building Test Matrix

11

• Then, how we build (t x m) binary test matrix Q ? 

• For making this scheme to work, Q must be d-
disjunct
– Any union (bitwise OR) of <d columns of Q does not 

cover another column of Q

• d-disjunct matrix
– extensively studied from combinatorics and coding 

theory

• For given m and d,  t = O(d2 log m)
– Classical methods w/ larger order (e.g. [Macula 96])
– Matching deterministic method [Porat-Rothschild 08]

• We will not go further here



Previous works

• MAC/hashing/signature combined with CGT 
has been proposed and studied in various 
contexts

• MAC : [Crescenzo-Arce 04] [Goodrich-
Atallah-Tamassia 05] etc.

• Hashing : Corrupltion-localizing hashing 
[Crescenzo-Jiang-Safavi-Naini 09], [Bonis-
Crescenzo 11] etc.

• Signature : Batch signature verification 
[Zaverucha-Stinson 09]

• Applied to data forensics, computer virus 
detection, HDD integrity check, etc.

12



Efficient MAC with CGT

13



Motivation
• Storage cost is reduced from O(m) to O(d2log m), 

if we use optimum Q
• How about computation cost ?

– In standard MACs, taking single tag needs O(m) 
computation, assuming item processing as unit 
computation

– (To the best of our knowledge) not studied in the 
previous works
• the underlying MAC or hash is treated as a black box

14

M[1] M[2] M[3] M[7]M[4] M[5] M[6]

T[1]T[1]

MACMAC

T[2]T[2]

MACMAC

T[3]T[3]

MACMAC



Naïve view 
• Let 0,1 ∗� be the (normal) vector space of m-strings

– Each string is a non-empty bit sequence of any length

• For M in 0,1 ∗��, let M⊖Qi be the extracted 
subsequence of M for Qi (i-th row of Q)
– E.g. (M[1],M[2],M[3]) ⊖ (1,0,1) = (M[1],M[3])

• Naïve MAC w/ CGT method : T[i] = MAC(M⊖Qi ) 
– O(Hw(Q)) = O(mt) computation, usually >> O(m) 
– much larger than taking single tag

• It turns out to be hard to construct efficient MAC 
with this view (in particular, independent of Q)

15

M⊖Q1

M⊖Q2

M⊖Q3

M[1] M[2] M[3] M[4] T[1]T[1]MACMAC

M[1] M[2] M[5] M[6] T[2]T[2]MACMAC

M[1] M[3] M[5] M[7] T[3]T[3]MACMAC



Our view

• Let 0,1 •� be the space of extended vectors, 
where each string can be an empty string (
) 

• For M ∈ 0,1 ∗� and B ∈ 0,1 �, let M⊙B 
∈ 0,1 •� be the extraction with empty 
string : (M[1],M[2],M[3])⊙(1,0,1) = (M[1], 

,M[3])

• Our task is to take T[i] = MAC(M⊙Qi), where 
underlying MAC works over 0,1 •�

16

M[1] M[2] M[3] M[4]

M[1] M[2] M[3] M[7]M[4] M[5] M[6]

T[1]T[1]MACMAC

T[2]T[2]MACMAC

M[1] M[2] M[3] M[7]M[4] M[5] M[6] T[3]T[3]MACMAC

M⊙Q1

M⊙Q2

M⊙Q3



PMAC [Black and Rogaway 02][Rogaway 04]

• A parallelizable, blockcipher-based MAC
– Defined over string space
– Each M[i] is non-empty n-bit string (except last one)
– EK is an encryption function of n-bit blockcipher (e.g. AES)

• Incremental MAC for “replace” operation
– Once compute T for M, replace M[i] to M’[i] and recompute T’ need few E calls 

• Still not suitable for our purpose 
– each block has fixed length, non-empty

17

M[1] M[2] M[3] M[4]

EKEK EKEK EKEK EKEK

TT

2L 4L 8L 16*3L

M[1] M[3] M[4]

EKEK EKEK EKEK EKEK

T’T’

2L 4L 8L

M[2]  -> M’[2]  

M’[2]

T’ can be obtained by
EK

-1(T) xor EK(4L xor M’[2]) xor 
EK(4L xor M[2])

16*3L

L=EK(0
n), 2L is GF doubling



Group testing MAC
• gtm : a generalized & extended PMAC for extended vector 

space
– G : n-bit tweakable permutation
– F : variable-input-length, n-bit output function

• Two input variables (index, (possibly empty) string)

• G is a tweakable PRP [Liskov-Rivest-Wagner 02]
• F is an almost PRF.  We require F(i, 
) = 0n for any i, and 

otherwise behaves as PRF
– Can be realized with PRF over non-empty strings

18

M[1] M[2] M[m]

GK’

T

...FK FK FK

...

1 2 m

TT

h

gtm(h, M)



Properties of gtm
• Provably-secure MAC (PRF) over extended vector 

space
– Security proof is mostly the same as PMAC
– F’s fixed point is not a problem (computational XOR-

universality is enough, which allows one fixed point) 

• We can handle incremental computation, “replace 
with empty string”, in the same manner to PMAC

19

M[2]  -> empty  

M[1] M[2] M[4]

T

FK FK FK

1 2 4

TT

M[3]

FK

3
M[1] M[4]

T

FK FK

1 4

T’T’

M[3]

FK

3
empty

GK’h GK’h



Computing MAC tags with gtm

• We compute T[i] = gtm(i, M⊙Qi) for i=1,…,t

– G’s tweak (i) is used for security reason

• Ultimately simple method: compute by items

– Let S[1],…,S[t] be the state variables (initially all-
zero)

– for i = 1,…,m, take Z=F(i,M[i]), add Z to S[ j] where 
Qi,j=1 for all j=1,…,t

– Output T[ j] = G(j,S[ j]) 

• We call this procedure “GTM”

20



GTM (m=7,t=3,d=1)

21

M[1] M[2] M[3] M[7]M[4] M[5] M[6]

T[1]

T[2]

T[3]

1 2 3 4

1 2 5 6

1 3 5 7

GK’1

GK’2

GK’3

S[1]

S[2]

S[3]



GTM (m=7,t=3,d=1)

22

M[1] M[2] M[3] M[7]M[4] M[5] M[6]

T[1]

T[2]

T[3]

1 2 3 4

1 2 5 6

1 3 5 7

GK’1

GK’2

GK’3

S[1]

S[2]

S[3]



GTM (m=7,t=3,d=1)

23

M[1] M[2] M[3] M[7]M[4] M[5] M[6]

T[1]

T[2]

T[3]

1 2 3 4

1 2 5 6

1 3 5 7

GK’1

GK’2

GK’3

S[1]

S[2]

S[3]



Complexity of GTM

• Time : m F calls + t G calls

• Typically, m
 t and F input 
 G input -> 
essentially O(m)

• Memory : O(t)

• And this holds for any Q

– Can be combined with any known CGT matrix !

• For comparison, naïve method (e.g.) 
computing T[i] = gtm(i, M⊖Qi)

– Hw(Q) F calls + t G calls -> essentially O(Hw(Q)) = 
O(mt) time, O(t) memory

24



Security

• We considered three notions (for fixed Q, t, m)

• Goal : standard deterministic MAC + corruption-
finding ability, in a secure manner

• First two notions are about unforgeability

– Tag vector forgery (TVF) and tag string forgery (TSF) 
( we omit here)

– Variants of deterministic MAC security notions

• Third one is about the correctness of corruption 
identification

– Corruption misidentification (CM)

– Hardness of forging naïve decoder’s output

25



TVF

• Oracles: tagging (OT) and verification (Ov)
– OT takes M and returns T

– OV takes (M’,T’) and returns ⊥(invalid) or ⊤(valid)

• adversary A
– first queries OT and obtains (M1,T1),…,(Mq,Tq)

– then queries (M’,T’) to OV such that  

– (M’,T’) ≠ (Mi,Ti) for all i=1,…,q

• A wins if OV’s response is valid

26

Adversary

OT OV

Mi Ti
(M’,T’) ⊥ or ⊤



CM  
• Oracles: tagging (OT) and identification (OI) which 

performs naïve decoding
– OT takes M and returns T
– OI takes (M’,T’) and returns {1,…,m}-{i : M[i] is in a negative 

test}

• d-corruptive adversary A
– first queries OT and obtains (M1,T1),…,(Mq,Tq)
– then queries (M’,T’) to OI such that  
– T’ = Ti for some i=1,…,q, and |diff(M’,Mi)| < d

• A wins if OI’s response is not diff(M’,Mi)

27

Adversary

OT OI

Mi Ti
(M’,T’) P (index list of corrupted items)

diff(M,M’): 
Index set of 
different  items



Security analysis

• All notions holds if gtm is a secure PRF

• For TVF Q needs to contain a standard MAC (i.e. 
all-one row), otherwise simple attack works

– gtm taking all-one row = MAC for M

– No performance penalty in practice

• For CM, suppose Q is d-disjunct

– chance to win = a non-trivial collision between tag 
strings, and w/o non-trivial collision naïve decoder 
never fails against d-corruptive adversary

• If F and G are ideally secure, and Q is d-disjunct
and has all-one row, security bounds  are 
O(q2t2/2n) for all three notions

28



Implementation

29



CGT methods we use

• We implemented GTM using two CGT methods:

• Shifted traversal design (STD) [Thierry-Mieg
06][Thierry-Mieg-Bailly 08] 

– Composition of simple matrices by rotation and shift

• Chinise Reminder Sieve (CRS) [Eppstein-
Goodrich-Hirschberg 07]

– Number-theoretic construction

• For STD and CRS, matrix generation programs 
are available

– Originally, i-th text line = a list of item indexes for T[i]

– We need to invert it : i-th text line = a list of test 
indexes using M[i]

30



Implementation of GTM

• F : CMAC [NIST SP800 38B]

• G : XEX [Rogaway 04]

• Both using AES-128

• Single gtm computation for m-block input 
needs m + few AES calls

• Intel CPU (Ivybridge Core i7 3770 3.4GHz)
– AES in C runs at 13.3 cycles/byte

• Compared with conventional method (T[i] 
=gtm(i, M⊖Qi))

• Only implemented tag computation

31



Results for STD
• Two cases: (m,t) = (940,169) and (2000,121)
• Proposed scheme achieves mostly the same 

speed as AES for 2Kbyte items 
• Speed ratio is quite close to the theory 

(Hw(Q)/m)

32

Item length (byte)

Speed 
(cycles/byte)



Results for CRS
• Three cases: (m,t)=(104,378), (104,89) and (105,131)
• Similar results as STD
• Improvement factor around 8 ~ 15 (depending on matrix) 

33



Speed comparisons

34The case of CRS (m,t) = (105,131)

The case of STD (m,t) = (940,169) 



Extensions

1. CM-security does not allow the tags to be 
corrupted 
– When tags are stored separately this is fine, but for 

communication it is unlikely to hold

2. More relaxed identification
– Output is a superset of corrupted items with 

predetermined margin

– Studied by Corruption-localizing hashing [CJS09]

• Both extensions are possible by using CGT matrix 
that can tolerate errors at testing
– Error-correcting list disjunct matrix [Ngo-Porat-Rudra

11] or [Cheraghchi 13]

– work in progress

35



Conclusion

• We studied MAC combined with CGT, in 
particular about its efficiency

• Naively we need O(mt) computations, if we 
use a CGT matrix of t tests 

• Our proposal (GTM) achieves O(m+t) 
computations (essentially O(m)) for any 
matrix of t tests
– using a simple yet non-trivial extension of PMAC

– proved security in a concrete security framework

• Experimental implementation w/ known CGT 
matrices demonstrate the effectiveness of our 
proposal

36



Thank you! 

37


