Efficient Message Authentication Codes
with Combinatorial Group Testing

The paper was presented at ESORICS 2015,
September 23-25, Vienna, Austria

ASK 2015, October 3, Singapore

Introduction

Message Authentication Code (MAC)

« Symmetric-key primitive to detect forgery
 Compute T = MAC(K,M), send (M,T)
* Receiver checks if tag is correct using the same K

« Known efficient constructions, e.g. CMAC and
HMAC

Alice Bob
M corruption M
l’ (MI T) Q (M,I T,) > i
K > MAC A K > MAC T
v Eve |
T T*

Valid/Invalid

Limitation of standard MAC

Verification result is binary : when verification fails,
no information beyond the existence of corruption

— HDD sectors, File sections, DB entries...

If we know which parts have been corrupted, it
would be useful to reducing cost, e.g.

— retransmission in communication network

— manual investigation in digital forensics

Allows “fuzzy” authentication

M
{
MAC
\
T

Finding corruptions
* Trivial solution : taking multiple tags for
iIndividual parts (data items)

« We can always identify all corrupted items, but
tags impact storage

 Tread-off between the quality of information and
storage : could it be improved?

MIZ] | M2 | MBI | - | MIm]
! ! d !
MAC MAC MAC MAC

v \ v \
T[1] T[2] T[3] T[m]

Better tread-off

* A promising direction is taking multiple tags for
overlapping subsequences of items

« Example: for 7 items, take 3 tags for
(M[1],M[2],M[3],M[4]), (M[1],M[2],M[5],M[6]), and
(M[1],M[3],M[5],M[7])

» Represented as a 3x7 binary matrix

MI1] | M[2] | MI3] | M[4] | M[5] | MI6] | M[7]

M[1]... MI[7]

T[1](1111000

MAC MAC MAC | > T2)|1100110

v v v T3l1010101
T[1] T[2] T[3]

Verification result is a 3-bit vector

Better tread-off

— "1" denotes the (index of) unmatched tag string

Uniquely mapped to the index of single corrupted
item, or no corruption

That is, if at most 1 item is corrupted, this scheme

can identify it

M[1]...

M[7]

T[1]f1111000
T[2]]1100110
T[3]11010101

%

-

E.g. (011) implies M[1] to M[4]
are uncorrupted & only M[5]
can affect both T[2] and T[3]

\

)

Verification

Result 000, 001, 010, 011, 100, 101, 110, 111
Indexof | ohe 7. 6 5 4, 3 2 1
corrupted item

Combinatorial group testing (CGT)

Combinatorial group testing (CGT)

« What we are doing is an application of
combinatorial group testing (CGT)

« CGT : a method to identify defectives via group
test ("does group A contain any defective ?")

— Introduced by Dorfman during WWII (1943), as a
method to effectively find bad blood supplies

— Widely applied to biology and information science
(see [Du-Hwang 00])

* In our case,
— group test = tag check
— Defective = corrupted item

— Tags are non-adaptively computed — non-adaptive
CGT (NCGT)

Problem setting

1. We have a list of data items, M=(M[1],...,M[m]), and (t x m)
binary test matrix, Q
(each M[i] is a bit string)
2. We take a tag vector, T = (T[1],..., T[t]), following Q
3. An adversary A corrupts at most d items
(M, T) => (M'T)
4. At verification, we take local tag vector T*=(T*[1],..., T*[t])
for M" and check if T*[i] = T[i] for all i
5. Evict all items in negative tests (valid tags)
- if T*[i] = T[], then evict all j s.t. Q=1
- aka naive decoder in CGT
6. Outputs indexes of all remaining items as corrupted

M=(M[1],...,M[m]) <\§ > M'=(M'[1],...M'[m]) T,T*
Corrupt < d
MAC w/ Q items MAC w/ Q Decode w/ Q
v

T=(T[L],... it} Tr=(T*1al-. "It P {ElL....nD)

Building Test Matrix

Then, how we build (t x m) binary test matrix Q ?

For making this scheme to work, Q must be d-
disjunct

— Any union (bitwise OR) of <d columns of Q does not
cover another column of Q

d-disjunct matrix

— extensively studied from combinatorics and coding
theory

For given mand d, t = O(d? log m)
— Classical methods w/ larger order (e.g. [Macula 96])
— Matching deterministic method [Porat-Rothschild 08]

We will not go further here

Previous works

MAC/hashing/signature combined with CGT
has been proposed and studied in various
contexts

MAC : [Crescenzo-Arce 04] [Goodrich-
Atallah-Tamassia 05] etc.

Hashing : Corrupltion-localizing hashing
[Crescenzo-Jiang-Safavi-Naini 09], [Bonis-
Crescenzo 11] etc.

Signature : Batch signature verification
[Zaverucha-Stinson 09]

Applied to data forensics, computer virus
detection, HDD integrity check, etc.

Efficient MAC with CGT

Motivation

« Storage cost is reduced from O(m) to O(d?log m),
If we use optimum Q

* How about computation cost ?

— In standard MACs, taking single tag needs O(m)

computation, assuming item processing as unit
computation

— (To the best of our knowledge) not studied in the
previous works

 the underlying MAC or hash is treated as a black box

MI1] | M[2] | M3] | M[4] | M[5] | MI6] | M[7]

MAC MAC MAC

T[1] T[2] T[3]

MOQ,

MEQ;
MOQ;

Naive view
Let {0,1}*™ be the (normal) vector space of m-strings
— Each string is a non-empty bit sequence of any length
For M in {0,1}'™, let MBQ, be the extracted
subsequence of M for Q; (i-th row of Q)
— Eg. (M[1]M[2];M[3]) © (1,0,1) = (M[1],M[3])
Naive MAC w/ CGT method : T[i] = MAC(MEQ;)
— O(Hw(Q)) = O(mt) computation, usually >> O(m)
— much larger than taking single tag

It turns out to be hard to construct efficient MAC
with this view (in particular, independent of Q)

M[1] | M[2] | M[3] | M[4] —> MAC —> TI[1]

M[1] | M[2] | MI[5] | M[6] —> MAC —> T[]

M[1] | M[3] | M[5] | M[7]] —> MAC —> TI[3]

Our view

* Let {0,1}°™ be the space of extended vectors,
where each string can be an empty string (e€)
« ForM € {0,1}*"™ and B € {0,1}"™, let M(OB
€ {0,1}°™ be the extraction with empty
string : (M[1],M[2]M[3])©(1,0,1) = (M[1],
e, M[3])
» Our task is to take T[i] = MAC(MOQ,), where
underlying MAC works over {0,1}*™

MOQ; MI[1] [M[2] | M[3] | M[4] —> MAC —> T[1]

MOQ, MI1] [M[2] MI[5] | M[6] —> MAC —> T[]

MOQ; M[1] M[3] M[5] M[7] —> MAC —> T[3]

M[1] | M[2] | MI3]
2L$

P MAC [Black and Rogaway 02][Rogaway 04]
» A parallelizable, blockcipher-based MAC

— Defined over string space
— Each M[i] is non-empty n-bit string (except last one)
— E is an encryption function of n-bit blockcipher (e.g. AES)
* Incremental MAC for "replace” operation
— Once compute T for M, replace M[i] to M'[i] and recompute T’ need few E calls
 Still not suitable for our purpose
— each block has fixed length, non-empty

4L$ 8L

M([4]

Ey Ey Ey

Ey

MI1] [M21] Mi3] | Ml

»$<—16*3L 2L$ 4L€v9 8L€i9 e$<—16*3L

|—> Ey Ey Ey Ey

4 SN

L L

L=E(O"), 2L is GF doubling

|

4 A SN

M[2] -> M[2] >D—D

T' can be obtained by
E . 1(T) xor E¢(4L xor M'[2]) xor
E (4L xor M[2])

Group testing MAC

« gtm: a generalized & extended PMAC for extended vector
space
— G : n-bit tweakable permutation

— F:variable-input-length, n-bit output function
» Two input variables (index, (possibly empty) string)

* G is a tweakable PRP [Liskov-Rivest-Wagner 02]

* Fis an almost PRF. We require F(i, €) = 0" for any i, and
otherwise behaves as PRF

— Can be realized with PRF over non-empty strings

Mil] 2|\/|[2] M[lm]
Pl 1 T
e

N
—

>
4L
()
~

Properties of gtm

* Provably-secure MAC (PRF) over extended vector
space
— Security proof is mostly the same as PMAC

— F's fixed point is not a problem (computational XOR-
universality is enough, which allows one fixed point)

* We can handle incremental computation, “replace
with empty string”, in the same manner to PMAC

MI[1] MI2] MI3] MI[4] MI[1] empty M[3] M[4]
1 2 3 4 1 3 4
o1l 11 1 | il
/TN N\ /N | > 1N\ /N
L/ \L/ \/ L/ \/
M[2] -> empty

h—]G, h—]G,

T T

Computing MAC tags with gtm
* We compute T[i] = gtm(, MOQ,) fori=1,...t

— G's tweak (i) is used for security reason

 Ultimately simple method: compute by items

— Let S[1],...,S[t] be the state variables (initially all-
Zero)

— fori=1,.,m, take Z=F(i,M[i]), add Z to S[j] where
Q=1 forall j=1,...,t

— Output T[j] = G(,S[)1)
« We call this procedure “GTM"

GTM (m=7,t=3,d=1)

M[l] |M[2] | I\/I[3] |M[4] | M[5] | M[6] | M[7]

\/\/\/\/

55[1]-—>e

i 5 ‘1' v v 1'@
R S
§5[2]§—>69—>$ &

] 2 ~1G,
EEEEE
| | ¥ Tl
ES[B]E > >

A\ % \Y % A %
3 -{IGK'

T[3]

GTM (m=7,t=3,d=1)

M[l] |M[2] | I\/I[3] |M[4] | M[5] | M[6] | M[7]

\/\/\/\/

S[l]-'—>€
\l' ‘1' v v 1'@
Aeviie) e
S[2]-'—>€9—-—>$ 5 &
- 2 -6
[IEREE
VG I T
S[3]i>‘i >

A\ % \Y % A %
3 -{IGK'

T[3]

GTM (m=7,t=3,d=1)

M[l] |M[2] | I\/I[3] |M[4] | M[5] | M[6] | M[7]

n /"\' '/"\ A /
S[1] —>€¢ y Voo R
| 1/ \ 2/ s/ V6]
S[2] —>e>—n—>$. X T[1]
E i 2 =16
S[3] ?ij ? Yiij g:j T[2]
o 3 —IG

Complexity of GTM

Time: m F calls + t G calls

Typically, m> t and F input > G input ->
essentially O(m)

Memory : O(t)
And this holds for any Q

— Can be combined with any known CGT matrix !

For comparison, naive method (e.qg.)
computing T[i] = gtm(i, MOQ,)
— Hw(Q) F calls + t G calls -> essentially O(Hw(Q)) =
O(mt) time, O(t) memory
M| wagz | M | ME M | M2 | S | e s |u=.=|lw:b! MW7)

AL
4
T}

Security

We considered three notions (for fixed Q, t, m)

Goal : standard deterministic MAC + corruption-
finding ability, in a secure manner

First two notions are about unforgeability

— Tag vector forgery (TVF) and tag string forgery (TSF)
(we omit here)

— Variants of deterministic MAC security notions
Third one is about the correctness of corruption
identification
— Corruption misidentification (CM)

— Hardness of forging naive decoder’s output

TVF

 Oracles: tagging (O;) and verification (O,)

— O; takes M and returns T

— O, takes (M',T) and returns L(invalid) or T(valid)
« adversary A

— first queries O; and obtains (My,Ty),...,(M,T,)

— then queries (M, T') to O,, such that

- (M T) = (M, T, for all i=1,...,q
« Awins if O,'s response is valid

O; Oy

AT M) Lo

< Adversary >

M

» Oracles: tagging (O;) and identification (O)) which
performs naive decodlng

— O; takes M and returns T
— ?1 ’E[?kes (M',T") and returns {1,....m}-{i : M[i] is in a negative
es
 d-corruptive adversary A
— first queries O; and obtains (M1,). (Mg, To)
— then queries (M',T') to Oy such that
— T' =T, for some i=1,...,q, and |diff(M’'M)| < d
* A wins if Ofs response is not diff(M’,M))

diff(M,M"):
Oy o} Index set of
different items
|\/|iTlTi (M'.T) Tl P (index list of corrupted items)

< Adversary >

Security analysis

All notions holds if gtm is a secure PRF

For TVF Q needs to contain a standard MAC (i.e.
all-one row), otherwise simple attack works

— gtm taking all-one row = MAC for M
— No performance penalty in practice

For CM, suppose Q is d-disjunct

— chance to win = a non-trivial collision between tag
strings, and w/o non-trivial collision naive decoder
never fails against d-corruptive adversary

If F and G are ideally secure, and Q is d-disjunct

and has all-one row, security bounds are

O(g?t?/2") for all three notions

Implementation

CGT methods we use

We implemented GTM using two CGT methods:
Shifted traversal design (STD) [Thierry-Mieg
06][Thierry-Mieg-Bailly 08]

— Composition of simple matrices by rotation and shift

Chinise Reminder Sieve (CRS) [Eppstein-
Goodrich-Hirschberg 07]

— Number-theoretic construction
For STD and CRS, matrix generation programs
are available

— Originally, i-th text line = a list of item indexes for T[i]

— We need to invert it ; i-th text line = a list of test
indexes using M[i]

Implementation of GTM

F: CMAC [NIST SP800 38B]
G : XEX [Rogaway 04]
Both using AES-128

Single gtm computation for m-block input
needs m + few AES calls

Intel CPU (Ivybridge Core i7 3770 3.4GHz)
— AES in C runs at 13.3 cycles/byte

Compared with conventional method (T[]
=gtm(i, MOQ))

Only implemented tag computation

Results for STD

 Two cases: (m,t) = (940,169) and (2000,121)

* Proposed scheme achieves mostly the same
speed as AES for 2Kbyte items

« Speed ratio is quite close to the theory

(Hw(Q)/m)

Table 1. Implementation results for STD, with parameter (n,q, k).

Parameter (940, 13,13), Hw(Q) = 12,220, Hw(Q)/m = 13
(m,t) = (940, 169) 16| 32] 64| 128| 256| 512| 1024| 2048 Item length (byte)
Proposed 63.4] 64.0| 26.8] 20.5| 17.3| 15.7| 14.8| 14.4 Speed
Conventional [430.2]312.2]249.4/219.8/200.4|190.8/186.7|184.0 (cycles/byte)
Parameter (2000, 11,11), Hw(Q) = 22,220, Hw(Q)/m = 11.11
(m,t) = (2000,121)| 16 32 64| 128 256| 512| 1024| 2048
Proposed 55.3| 33.9| 27.3| 20.2| 16.8| 15.1| 14.5| 14.1
Conventional 3611259.7(206.9|180.7|166.8|159.5155.9(153.8

32

Results for CRS

e Three cases: (m,t)=(10%378), (10%89) and (10~,131)
« Similar results as STD
« Improvement factor around 8 ~ 15 (depending on matrix)

Table 2. Implementation results for CRS, with parameter (n,d).

Parameter (10*,5), Hw(Q) = 150,000, Hw(Q)/m = 15
(m,t) = (10%,378)] 16| 32| 64| 128|256 512| 1024|2048
Proposed 60.9| 37.6|25.8] 20[17.1| 15.6| 14.8| 14.5
Conventional [492.4|353.5| 285(251.4| 233|226.9(218.2|215.5
Parameter (10%,2), Hw(Q) = 80,000, Hw(Q)/m = 8
(m,t) = (10%,89)] 16| 32[64| 128 256] 512| 1024 2048
Proposed 51| 30.8| 22.6| 18.4| 16.4| 15.3| 14.7| 14.5
Conventional |259.5[189.7|156.1|135.5/125.7|121.2|117.7|116.3
Parameter (10°,2), Hw(Q) = 1,000,000, Hw(Q)/m = 10
(m,t) = (10°,131)] 16| 32| 64| 128 256| 512| 1024| 2048
Proposed 49.7| 31.9] 23| 18.6| 16.3| 15.1| 14.5| 14.1
Conventional [319.6(237.5|190.7|171.6{158.1|148.9/144.1|141.5

cycles/byte

cycles/byte

500

300

200

100

350

300

250

200

150

100

30

comparisons

conventional
proposed
AES ECB

0 500 1000 1500 2000
data item size (byte)
The case of STD (m,t) = (940,169)
conventional

| proposed

il AES ECB

[

il

II|

L \H .
0 500 1000 1500 2000

data item size (byte)

The case of CRS (m,t)

= (10~,131)

Extensions

1. CM-security does not allow the tags to be
corrupted

— When tags are stored separately this is fine, but for
communication it is unlikely to hold

2. More relaxed identification

— Output is a superset of corrupted items with
predetermined margin

— Studied by Corruption-localizing hashing [CJS09]
* Both extensions are possible by using CGT matrix
that can tolerate errors at testing

— Error-correcting list disjunct matrix [Ngo-Porat-Rudra
11] or [Cheraghchi 13]

— work In progress

Conclusion

We studied MAC combined with CGT, in
particular about its efficiency

Naively we need O(mt) computations, if we
use a CGT matrix of t tests

Our proposal (GTM) achieves O(m+t)
computations (essentially O(m)) for any
matrix of t tests

— using a simple yet non-trivial extension of PMAC
— proved security in a concrete security framework

Experimental implementation w/ known CGT
matrices demonstrate the effectiveness of our
proposal

Thank you!

