PMAC's Message Length Dependence

September 29, 2015

Atul Luykx, Bart Preneel, Alan Szepieniec, Kan Yasuda

PRF-based MACs

- 1 Many MACs are PRF-based
- Due to reduction from authenticity bound to PRF bound we can focus on PRF-bounds for MACs (Connection with verification queries)

PRF-based MACs

- 1 Many MACs are PRF-based
- Due to reduction from authenticity bound to PRF bound we can focus on PRF-bounds for MACs (Connection with verification queries)

- **I** PRFs with state size n have a generic attack with success probability $q^2/2^n$, with q the number of queries made to the PRF
- In contrast, the best-known MAC upper bounds are of the form lq²/2ⁿ: PMAC, EMAC, CBC-MAC, HMAC/NMAC, polynomial based MACs.

Generic Attacks and Optimal Bounds

- **1** Factor- ℓ gap: there is no known generic attack establishing a $\ell^\epsilon q^2/2^n$ lower bound for some $\epsilon>0$
- 2 Two possibilities:
 - 1 There exists such a generic attack
 - 2 There exists a MAC of state size n with upper bound $q^2/2^n$

We focus on the second possibility

PMAC's Role

- None of the above mentioned MACs can be candidates: all have attacks establishing dependence on message length
- 2 Exception: PMAC. Has no attack establishing the bound
- **3** PMAC is interesting to analyze:
 - It is simple
 - 2 It has a radically different structure from other MACs
 - 3 Many beyond the birthday bound variants, PMAC-with-Parity, PMACX

PHASH Definition

 $\begin{array}{ll} \mathsf{X} & \text{finite field} \\ \vec{c} \in \mathsf{X}^\ell & \text{Vector of masks} \\ \pi:\mathsf{X} \to \mathsf{X} & \text{URP} \end{array}$

Standard argument to reduce to PRP

PMAC Definition

- PMAC, add final block cipher call to PHASH, fix finite field, two types of masks:
 - Gray codes
 - 2 Powering up

Connection Between PHASH and PMAC

- \blacksquare A collision for PHASH implies a collision for PMAC \rightarrow distinguishing attack
- Open problem: to what extent does a distinguishing attack against PMAC imply a collision for PHASH?

Generic PMAC

Generic PMAC, with independent output transformation

- 1 Tight connection between generic PMAC and PHASH
- 2 Allows us to focus on PHASH

Results

1 One of the following two statements is true:

- either there are infinitely many instances of PHASH for which it is impossible to find collisions with probability greater than $2q^2/2^n$,
- 2 or finding a collision against PHASH with probability greater than $2q^2/2^n$ is computationally hard*

*this statement relies on a conjecture

Collision for PHASH with Gray codes establishing roughly linear dependence on message length

Connection With PHASH Collision Probability

Two messages \vec{m}_1 and \vec{m}_2 collide with probability $k/2^n$ if the corresponding set in X² is evenly covered by k slopes. Simple proof of ℓ -bound:

Set Evenly Covered by Two Slopes

Figure: A set of four points evenly covered by the slopes 0 and a^{-1} . The x-coordinates of the points are 0 and a, and the y-coordinates are 0 and 1.

Guarantees a collision with probability $2/2^n$.

Set Evenly Covered by Three Slopes

Figure: A set of four points evenly covered by the slopes 0, a^{-1} , and b^{-1} . The x-coordinates of the points are 0, a, b, and c, and the y-coordinates are 0 and 1.

Exists if and only if a + b + c = 0.

Another Set Evenly Covered by Three Slopes

Figure: A set of points evenly covered by the slopes u, v, and w. Each point is accompanied by another point with the same x-coordinate. The x-coordinates of the pairs are indicated below the lower points.

Exists if and only if
$$a^2 + b^2 + c^2 + ab + ac = 0$$
.

Evenly Covered Sets in General

The x-coordinates of evenly covered sets satisfy one of the following:

- **1** They contain a subset summing to zero (NP-complete)
- Integration They are the solution to a non-trivial binary quadratic form (similar problem NP-complete)

Conjecture

Given $S \subset X$, finding a subset of S satisfying either of the above requirements is computationally hard.

Searching for Evenly Covered Sets

Proposition

An evenly covered set with distinct x-coordinates forms a complete graph if and only if the x-coordinates are an additive subgroup of X.

- For sufficiently long messages, the masks will always contain an additive subgroup
- Finding additive subgroups in Gray codes is easy for every power of two.

Success probability of Gray code attack:

$$\frac{2^{k-1}-1}{2^n} \text{ for } \ell = 2^k$$