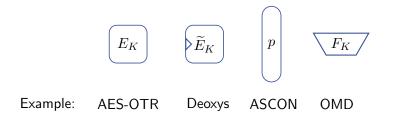
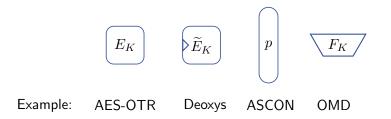

The Limited Power of Verification Queries in Message Authentication and Authenticated Encryption


September 29, 2015

Atul Luykx, Bart Preneel, Kan Yasuda

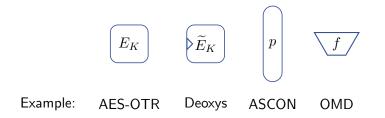

Modes of Operation

Modes of Operation

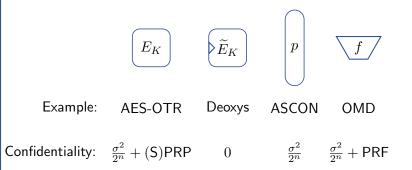
Modes of Operation

Advantage of modes: able to focus on primitive

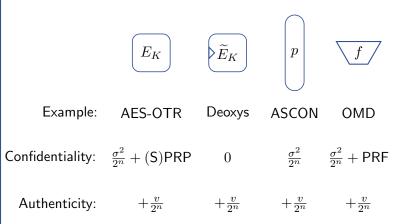
- Reduce security of AE scheme to that of underlying primitive
- 2 For AE this is done for confidentiality and authenticity


Reduction Loss

- Reduction is often not perfect, results in a loss of security
- **2** Loss of security quantified in terms of parameters


Table: Examples of parameters.

- n Block size
- q Number of tagging or encryption queries
- k Key length
- ℓ Maximum message length
- σ Total number of encryption and decryption blocks


Various AE Bounds

Various AE Bounds

Various AE Bounds

Much research performed reducing message length dependence from quadratic to linear for MACs: PMAC, CBC-MAC, EMAC, OMAC, TMAC

$$\frac{\ell^2 q^2}{2^n} \longrightarrow \frac{\ell q^2}{2^n}$$

Much research performed reducing message length dependence from quadratic to linear for MACs: PMAC, CBC-MAC, EMAC, OMAC, TMAC

$$\frac{\ell^2 q^2}{2^n} \longrightarrow \frac{\ell q^2}{2^n}$$

$$n=128, q=2^{48}$$
 :
$$\ell \leq 2^{15} \longrightarrow \ell \leq 2^{30}$$

Much research performed reducing message length dependence from quadratic to linear for MACs: PMAC, CBC-MAC, EMAC, OMAC, TMAC

$$\frac{\ell^2 q^2}{2^n} \longrightarrow \frac{\ell q^2}{2^n}$$

$$n = 128, q = 2^{48}$$
:
 $\ell \le 2^{15} \longrightarrow \ell \le 2^{30}$

 $n = 128, \ell = 2^{15}$:

$$q \leq 2^{48} \longrightarrow q \leq 2^{63}$$

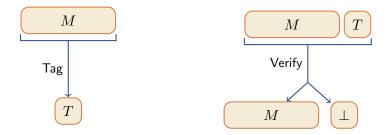
	С	n	k	security
Ascon	192	128	96	96
	256	64	128	128
ICEPOLE	254	1026	128	128
	318	962	256	256
NORX	192	320	128	128
	384	640	256	256
GIBBON/ HANUMAN	159	41	80	80
	239	41	120	120

	с	n	k	security
Ascon	96	224	96	96
	128	192	128	128
ICEPOLE	254	1026	128	128
	318	962	256	256
NORX	192	320	128	128
	384	640	256	256
GIBBON/ HANUMAN	159	41	80	80
	239	41	120	120

	С	n	$\frac{n}{n_{\rm old}}$	k	security
Ascon	96	224	1.75	96	96
	128	192	3	128	128
ICEPOLE	254	1026		128	128
	318	962		256	256
NORX	192	320		128	128
	384	640		256	256
GIBBON/ HANUMAN	159	41		80	80
	239	41		120	120

	с	n	$rac{n}{n_{old}}$	k	security
Ascon	96	224	1.75	96	96
	128	192	3	128	128
ICEPOLE	128	1152	1.12	128	128
	256	1024	1.06	256	256
NORX	128	384	1.2	128	128
	256	768	1.2	256	256
GIBBON/ HANUMAN	80	120	2.92	80	80
	120	160	3.90	120	120

Improved security bounds leads to


- **1** Better parameter choices
- Increased longevity
- Increased efficiency

Improved security bounds leads to

- 1 Better parameter choices
- Increased longevity
- Increased efficiency

Despite advances, there is still a lot of work left.

Authenticity Definition

 $\operatorname{Auth}(q,v):$ forgery success with q tagging queries and v forgery attempts

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+{\pmb v})^2}{2^n}$$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+\boldsymbol{v})^2}{2^n}$$

1 128 bit block cipher

$$\frac{\ell^2 (q+v)^2}{2^{128}}$$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+\mathbf{v})^2}{2^n}$$

128 bit block cipher

Only one-block verification queries

$$\frac{1^2(0+v)^2}{2^{128}}$$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+\mathbf{v})^2}{2^n}$$

128 bit block cipher

Only one-block verification queries

 $\frac{v^2}{2^{128}}$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+\mathbf{v})^2}{2^n}$$

128 bit block cipher

Only one-block verification queries

$$\frac{v^2}{2^{128}}$$
 vs $\frac{v}{2^{128}}$

$$\frac{\sigma^2}{2^n} \longrightarrow \frac{\ell^2 (q+\boldsymbol{v})^2}{2^n}$$

128 bit block cipher

Only one-block verification queries

$$\frac{v^2}{2^{128}} \quad {\rm vs} \quad \frac{v}{2^{128}}$$

$$v=2^{64}: \quad 1 \quad {\rm vs} \quad \frac{1}{2^{64}}$$

Optimal Bound

So far only certain types of MACs have optimal bound:

- 1 Nonce-based
- 2 Multiple keys

Excludes PMAC, CBC-MAC, OMAC

Optimal Bound

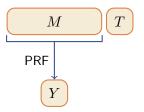
So far only certain types of MACs have optimal bound:

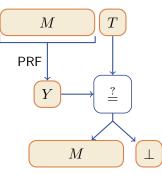
- 1 Nonce-based
- 2 Multiple keys

Excludes PMAC, CBC-MAC, OMAC

For AE

- except for TBC modes, none with optimal bounds
- 2 Generic composition: reduction to MAC-security \rightarrow need optimal MACs


Why do well-designed schemes exhibit quadratic dependence?


Why do well-designed schemes exhibit quadratic dependence?

Proof techniques

PRF-based MAC

PRF-based MAC

Best possible generic reduction:

 $\mathsf{Auth}(q,v)$

Best possible generic reduction:

$$\operatorname{Auth}(q, v) \le \frac{v}{2^{\tau}} + \operatorname{PRF}(q + v)$$

Best possible generic reduction:

$$\begin{aligned} \mathsf{Auth}(q,v) &\leq \frac{v}{2^{\tau}} + \mathsf{PRF}(q+v) \\ \mathsf{PRF}(q+v) &\in \Omega\left(\frac{q^2 + v^2}{2^s}\right) \end{aligned}$$

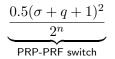
Best possible generic reduction:

$$\begin{aligned} \mathsf{Auth}(q,v) &\leq \frac{v}{2^\tau} + \mathsf{PRF}(q+v) \\ \mathsf{PRF}(q+v) &\in \Omega\left(\frac{q^2 + v^2}{2^s}\right) \end{aligned}$$

PMAC

$$\frac{v}{2^\tau} + c \cdot \frac{\ell (q+v)^2}{2^n}$$

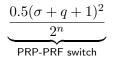
PRP-PRF Switch:
$$\frac{0.5\sigma^2}{2^n}$$


PRP-PRF Switch:
$$rac{0.5\sigma^2}{2^n}$$

GCM with nonce length fixed to 96 bits

PRP-PRF Switch:
$$rac{0.5\sigma^2}{2^n}$$

GCM with nonce length fixed to 96 bits


Confidentiality:

PRP-PRF Switch:
$$rac{0.5\sigma^2}{2^n}$$

GCM with nonce length fixed to 96 bits

Confidentiality:

Authenticity:

$$\underbrace{\frac{0.5(\sigma+q+v+1)^2}{2^n}}_{\text{PRP-PRF switch}} + \frac{v(\ell+1)}{2^\tau}$$

Better security bounds improve longevity and efficiency of schemes

Summary

- Better security bounds improve longevity and efficiency of schemes
- Many schemes exhibit a quadratic dependence on verification queries

Summary

- Better security bounds improve longevity and efficiency of schemes
- Many schemes exhibit a quadratic dependence on verification queries

Conjecture: All CAESAR modes provably achieve the optimal bound.

Summary

- Better security bounds improve longevity and efficiency of schemes
- 2 Many schemes exhibit a quadratic dependence on verification queries

Conjecture: All CAESAR modes provably achieve the optimal bound.

Paper in the works

- Generalizing known techniques, applied to GCM to recover bound
- Analyze block cipher based modes in detail, applied to PMAC to recover bound