Encryption based on Card Shuffile

Jooyoung Lee
Faculty of Mathematics and Statistics, Sejong University

October 3, 2015

Block Cipher

- A block cipher is a function

$$
E:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}
$$

such that for all $k \in\{0,1\}^{\kappa}$ the mapping $E(k, \cdot)$ is a permutation on $\{0,1\}^{n}$.

- Most block ciphers such as DES and AES operate on 64 ~ 128 bit blocks

Security of Encryption Scheme: Indistinguishability

- An adversary makes a certain number of oracle queries to the black box in two different directions
- Ideal World: a truly random permutation P
- Real World: a keyed block cipher E_{k} for a random secret key k
- The adversarial goal is to tell apart the two worlds
- If the distinguishing advantage is small, this block cipher is said to be secure

Encryption of Data of Small Size

- If we need to encrypt all the credit card numbers in the data base as the ciphertexts of the same format
- Data size is too small
- Using AES? A new block cipher?

Bank Name

- Even in the case the round function is perfectly secure (namely, truly random):
- the entire permutation is secure only up to $2^{\frac{n}{2}}$ queries for a sufficient number of rounds, where n is the block size
- Not suitable if the data size n is too small

Card Shuffle

(1) The final position of a card of a certain position(=plaintext) is viewed as the encryption of the plaintext
(2) Card shuffle is a Markov process

- Mixing time=number of rounds
(0) Should be oblivious: one should be able to trace the trajectory of a card without attending to lots of other cards

Thorp Shuffle

- 3-bit values represent the positions of the cards
- The cards at $0 * *$ and $1 * *$ are matched
- They come together, while swapped or not according to the evaluation of a round function at " $*$ *"
- This process is a single round of a blockcipher structure
- Secure up to $2^{n} / n$ queries (Crypto 2009) for $O\left(n^{2}\right)$ rounds

Thorp Shuffle

- 3-bit values represent the positions of the cards
- The cards at $0 * *$ and $1 * *$ are matched
- They come together, while swapped or not according to the evaluation of a round function at " $*$ *"
- This process is a single round of a blockcipher structure
- Secure up to $2^{n} / n$ queries (Crypto 2009) for $O\left(n^{2}\right)$ rounds

Swap-or-Not Shuffile (Crypto 2012)

- A round key $K(\neq 0)$ is chosen uniformly at random from $\{0,1\}^{3}$
- The cards at positions x and $x \oplus K$ are matched
- They are swapped or not according to the evaluation of a round function at "max $\{x, x \oplus K\}$ "
- Secure up to $(1-\epsilon) 2^{n}$ queries for any $\epsilon>0$ for $O(n)$ rounds

Another View of the SN Shuffle

(1) For each element, a distinct element is chosen uniformly at random.

- A single pairing might determine all the other pairings.
(2) A random permutation is applied to the pair of size two.
- The random permutations applied to the pairs are all independent.

New Construction: Partition-and-Mix

(1) For each element, $D-1$ distinct elements are chosen uniformly at random ($D \geq 2$).

- A single block might determine all the other blocks.
(2) A random permutation is applied to the set of size D.
- The random permutations applied to the blocks are all independent.

New Construction: Partition-and-Mix

Definition

Let $N, D \geq 2$ be integers such that $D \mid N, \varepsilon>0$ and let

$$
\mathcal{B}_{K}=\left\{B_{K}^{i}\right\}_{i=1, \ldots, \frac{N}{D}}
$$

be a keyed partition of $[N]=\{0,1, \ldots, N-1\}$ into blocks of size D. Then \mathcal{B}_{K} is called ε-almost D-uniform if for any set U of size D

$$
\operatorname{Pr}\left[K \leftarrow_{\Phi} \mathcal{K}: U \in \mathcal{B}_{K}\right] \leq \frac{1+\varepsilon}{\binom{N-1}{D-1}} .
$$

Remark

If a partition of $[N]$ into blocks of size D is chosen uniformly at random from the set of all possible partitions, then for any set U of size D

$$
\operatorname{Pr}\left[U \in \mathcal{B}_{K}\right]=\frac{1}{\binom{N-1}{D-1}}
$$

Security of the Partition-and-Mix

Theorem

Let PM^{r} be the r-round partition-and-mix shuffle on $[N]$ defined by an ε-almost D-uniform keyed partition. Then

$$
\operatorname{Adv}_{\mathrm{PM}^{r}}^{\mathrm{cca}}(q) \leq \frac{4(1+\varepsilon)^{\frac{r}{4}} N^{\frac{r}{4}+\frac{1}{2}}}{(r-4) D^{\frac{r}{4}}(N-q)^{\frac{r}{4}-1}}
$$

Result

The number of rounds is reduced by a factor of $\log _{2} \frac{D}{1+\varepsilon}$ for a same level of security.

Efficient Implementation of the Partition-and-Mix

Problem

How to implement a (almost) D-uniform random partition for a given D ?

Definition

A family of permutations on N elements is perfect D-wise independent if it acts uniformly on tuples of D elements.

Example

A keyed permutation family g such that $g_{K_{1}, K_{2}}(v)=K_{1} \cdot v+K_{2}$ is perfect 2-wise independent.

- multiplication and addition are done in $\operatorname{GF}\left(2^{n}\right)$ and K_{1} is nonzero

Partition: Using D-wise Independent Permutation Family

(1) Each element u is mapped by g^{-1}, where g is (implicitly keyed) D-wise independent permutation.
(2) $g^{-1}(u)$ is contained in a certain block V in a fixed partition of $\{0,1\}^{n}$.
(3) $U=g(V)$ is defined as a random block containing u.

Partition: Using D-wise Independent Permutation Family

(1) Each element u is mapped by g^{-1}, where g is (implicitly keyed) D-wise independent permutation.

(1) Each element u is mapped by g^{-1}, where g is (implicitly keyed) D-wise independent permutation.
(2) $g^{-1}(u)$ is contained in a certain block V in a fixed partition of $\{0,1\}^{n}$.
(3) $U=g(V)$ is defined as a random block containing u.

(1) Each element u is mapped by g^{-1}, where g is (implicitly keyed) D-wise independent permutation.
(2) $g^{-1}(u)$ is contained in a certain block V in a fixed partition of $\{0,1\}^{n}$.
(3) $U=g(V)$ is defined as a random block containing u.

Example: 2-wise Independent Permutation Family

- Suppse that the fixed partition is

$$
\mathcal{V}=\left\{\{v, v+1\}: v \in\{0,1\}^{n}\right\}
$$

- A random permutation is defined as

$$
g_{K_{1}, K_{2}}(v)=K_{1} \cdot v+K_{2}
$$

- Given $u \in\{0,1\}^{n}, g_{K_{1}, K_{2}}^{-1}(u)=K_{1}^{-1} \cdot\left(u+K_{2}\right)$
- Then u is paired with

$$
g\left(g_{K_{1}, K_{2}}^{-1}(u)+1\right)=K_{1} \cdot\left(K_{1}^{-1} \cdot\left(u+K_{2}\right)+1\right)+K_{2}=u+K_{1}
$$

- Same as used in the swap-or-not shuffle
- Negative result: no nontrivial subgroups of $S_{n}(n \geq 25)$ which are 4-wise independent

Partition: Using Hamming Codes (3-dimension)

(1) For each round, linearly independent round keys K_{1}, K_{2}, K_{3} are chosen uniformly at random
(3) Set $\{0,1\}^{n}$ is decomposed into the cosets of $\left\langle K_{1}, K_{2}, K_{3}\right\rangle$
(0 Two vertices on a diagonal line are randomly chosen for each coset
© Each coset is again decomposed into two blocks around the vertices

Partition: Using Hamming Codes (3-dimension)

(1) For each round, linearly independent round keys K_{1}, K_{2}, K_{3} are chosen uniformly at random
(2) Set $\{0,1\}^{n}$ is decomposed into the cosets of $\left\langle K_{1}, K_{2}, K_{3}\right\rangle$
© Two vertices on a diagonal line are randomly chosen for each coset
(9) Each coset is again decomposed into two blocks around the vertices

Partition: Using Hamming Codes (3-dimension)

(1) For each round, linearly independent round keys K_{1}, K_{2}, K_{3} are chosen uniformly at random
(2) Set $\{0,1\}^{n}$ is decomposed into the cosets of $\left\langle K_{1}, K_{2}, K_{3}\right\rangle$
(3) Two vertices on a diagonal line are randomly chosen for each coset
© Each coset is again decomposed into two blocks around the vertices

Partition: Using Hamming Codes (3-dimension)

(1) For each round, linearly independent round keys K_{1}, K_{2}, K_{3} are chosen uniformly at random
(2) Set $\{0,1\}^{n}$ is decomposed into the cosets of $\left\langle K_{1}, K_{2}, K_{3}\right\rangle$
(3) Two vertices on a diagonal line are randomly chosen for each coset
(9) Each coset is again decomposed into two blocks around the vertices

Partition: Using Hamming Codes

This approach is extended to the use of binary perfect $\left[2^{s}-1,2^{s}-s-1,3\right]$-Hamming codes (for $D=2^{s}$)
(1) Choose uniformly at random a set of linearly independent keys $K_{1}, \ldots, K_{D-1} \in\{0,1\}^{n}$.

- The entire domain $\{0,1\}^{n}$ is partitioned into the cosets of $V=\left\langle K_{1}\right.$,
(2) Choose a random representative a for each coset, and define a bijection from $\{0,1\}^{D-1}$ to the coset by mapping

(3) Using the Hamming code \mathcal{C}_{s}, one obtains a partition of each coset as

$$
\{0,1\}^{D-1}=\bigcup_{c \in C_{s}}\{c+e: w t(e) \leq 1\}
$$

Partition: Using Hamming Codes

This approach is extended to the use of binary perfect $\left[2^{s}-1,2^{s}-s-1,3\right]$-Hamming codes (for $D=2^{s}$)
(1) Choose uniformly at random a set of linearly independent keys $K_{1}, \ldots, K_{D-1} \in\{0,1\}^{n}$.

- The entire domain $\{0,1\}^{n}$ is partitioned into the cosets of $V=\left\langle K_{1}, \ldots, K_{D-1}\right\rangle$.
(2) Choose a random representative a for each coset, and define a bijection from $\{0,1\}^{D-1}$ to the coset by mapping $\left(\theta_{1}, \ldots, \theta_{D-1}\right) \in\{0,1\}^{D-1} \mapsto a+\theta_{1} K_{1}+\cdots+\theta_{D-1} K_{D-1}$
(3) Using the Hamming code \mathcal{C}_{s}, one obtains a partition of each coset as

$$
\{0,1\}^{D-1}=\bigcup_{c \in C_{s}}\{c+e: w t(e) \leq 1\}
$$

Partition: Using Hamming Codes

This approach is extended to the use of binary perfect
$\left[2^{s}-1,2^{s}-s-1,3\right]$-Hamming codes (for $D=2^{s}$)
(1) Choose uniformly at random a set of linearly independent keys $K_{1}, \ldots, K_{D-1} \in\{0,1\}^{n}$.

- The entire domain $\{0,1\}^{n}$ is partitioned into the cosets of $V=\left\langle K_{1}, \ldots, K_{D-1}\right\rangle$.
(2) Choose a random representative a for each coset, and define a bijection from $\{0,1\}^{D-1}$ to the coset by mapping

$$
\left(e_{1}, \ldots, e_{D-1}\right) \in\{0,1\}^{D-1} \mapsto \mathbf{a}+e_{1} K_{1}+\cdots+e_{D-1} K_{D-1} .
$$

(3) Using the Hamming code \mathcal{C}_{S}, one obtains a partition of each coset as
$\{0,1\}^{D-1}=\bigcup\{c+e: \mathbf{w t}(e) \leq 1\}$

Partition: Using Hamming Codes

This approach is extended to the use of binary perfect
$\left[2^{s}-1,2^{s}-s-1,3\right]$-Hamming codes (for $D=2^{s}$)
(1) Choose uniformly at random a set of linearly independent keys $K_{1}, \ldots, K_{D-1} \in\{0,1\}^{n}$.

- The entire domain $\{0,1\}^{n}$ is partitioned into the cosets of $V=\left\langle K_{1}, \ldots, K_{D-1}\right\rangle$.
(2) Choose a random representative a for each coset, and define a bijection from $\{0,1\}^{D-1}$ to the coset by mapping

$$
\left(e_{1}, \ldots, e_{D-1}\right) \in\{0,1\}^{D-1} \mapsto \mathbf{a}+e_{1} K_{1}+\cdots+e_{D-1} K_{D-1} .
$$

(3) Using the Hamming code \mathcal{C}_{S}, one obtains a partition of each coset as

$$
\{0,1\}^{D-1}=\bigcup_{c \in \mathcal{C}_{s}}\{c+e: \mathbf{w t}(e) \leq 1\}
$$

Partition: Using Hamming Codes

- The resulting keyed partition is $\frac{2^{D}}{2^{n}}$-almost D-uniform

- This example of the partition-and-mix uses a keyed 4-bit S-boxes

Conclusion

Results

- Generalized the swap-or-not shuffle
- Number of rounds reduced
- Can be viewed as a new block cipher structure
- Particularly useful for format preserving encryption

Future Research Problems

- Finding (almost) uniform keyed partitions that allow efficient implementation
- Efficient construction of very small permutations (operating on a small number of bits)

Thank You!

