Encryption based on Card Shuffle

Jooyoung Lee

Faculty of Mathematics and Statistics, Sejong University

October 3, 2015

Jooyoung Lee Encryption based on Card Shuffle

A block cipher is a function

$$E: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$$

such that for all $k \in \{0, 1\}^{\kappa}$ the mapping $E(k, \cdot)$ is a permutation on $\{0, 1\}^{n}$.

• Most block ciphers such as DES and AES operate on $64 \sim 128$ bit blocks

Security of Encryption Scheme: Indistinguishability

- An adversary makes a certain number of oracle queries to the black box in two different directions
 - Ideal World: a truly random permutation P
 - Real World: a keyed block cipher *E_k* for a random secret key *k*
- The adversarial goal is to tell apart the two worlds
- If the distinguishing advantage is small, this block cipher is said to be secure

Encryption of Data of Small Size

- If we need to encrypt all the credit card numbers in the data base as the ciphertexts of the same format
- Data size is too small
- Using AES? A new block cipher?

Feistel Network

- Even in the case the round function is perfectly secure (namely, truly random):
- the entire permutation is secure only up to 2^{n/2} queries for a sufficient number of rounds, where *n* is the block size
- Not suitable if the data size *n* is too small

- The final position of a card of a certain position(=plaintext) is viewed as the encryption of the plaintext
- ② Card shuffle is a Markov process
 - Mixing time=number of rounds
- Should be oblivious: one should be able to trace the trajectory of a card without attending to lots of other cards

Thorp Shuffle

- 3-bit values represent the positions of the cards
- The cards at 0 * * and 1 * * are matched
- They come together, while swapped or not according to the evaluation of a round function at "* *"
- This process is a single round of a blockcipher structure
- Secure up to $2^n/n$ queries (Crypto 2009) for $O(n^2)$ rounds

Thorp Shuffle

- 3-bit values represent the positions of the cards
- The cards at 0 * * and 1 * * are matched
- They come together, while swapped or not according to the evaluation of a round function at "* *"
- This process is a single round of a blockcipher structure
- Secure up to $2^n/n$ queries (Crypto 2009) for $O(n^2)$ rounds

Swap-or-Not Shuffle (Crypto 2012)

- A round key $K(\neq 0)$ is chosen uniformly at random from $\{0, 1\}^3$
- The cards at positions x and $x \oplus K$ are matched
- They are swapped or not according to the evaluation of a round function at "max{x, x ⊕ K}"
- Secure up to $(1 \epsilon)2^n$ queries for any $\epsilon > 0$ for O(n) rounds

Another View of the SN Shuffle

- For each element, a distinct element is chosen uniformly at random.
 - A single pairing might determine all the other pairings.
- A random permutation is applied to the pair of size two.
 - The random permutations applied to the pairs are all independent.

New Construction: Partition-and-Mix

- For each element, D 1 distinct elements are chosen uniformly at random $(D \ge 2)$.
 - A single block might determine all the other blocks.
- A random permutation is applied to the set of size D.
 - The random permutations applied to the blocks are all independent.

New Construction: Partition-and-Mix

Definition

Let N, $D \ge 2$ be integers such that D|N, $\varepsilon > 0$ and let

$$\mathcal{B}_{\mathcal{K}} = \{ \boldsymbol{B}_{\mathcal{K}}^{i} \}_{i=1,\ldots,\frac{N}{D}}$$

be a keyed partition of $[N] = \{0, 1, ..., N - 1\}$ into blocks of size D. Then $\mathcal{B}_{\mathcal{K}}$ is called ε -almost D-uniform if for any set U of size D

$$\Pr\left[K \leftarrow_{\$} \mathcal{K} : U \in \mathcal{B}_{K}\right] \leq \frac{1 + \varepsilon}{\binom{N-1}{D-1}}.$$

Remark

If a partition of [N] into blocks of size D is chosen uniformly at random from the set of all possible partitions, then for any set U of size D

$$\Pr\left[U \in \mathcal{B}_{\mathcal{K}}\right] = \frac{1}{\binom{N-1}{D-1}}.$$

Theorem

Let PM^r be the *r*-round partition-and-mix shuffle on [N] defined by an ε -almost D-uniform keyed partition. Then

$$\mathsf{Adv}_{\mathsf{PM}'}^{\operatorname{cca}}(q) \leq \frac{4\,(1+\varepsilon)^{\frac{r}{4}}\,N^{\frac{r}{4}+\frac{1}{2}}}{(r-4)D^{\frac{r}{4}}(N-q)^{\frac{r}{4}-1}}.$$

Result

The number of rounds is reduced by a factor of $\log_2 \frac{D}{1+\varepsilon}$ for a same level of security.

Problem

How to implement a (almost) *D*-uniform random partition for a given *D*?

Definition

A family of permutations on *N* elements is perfect *D*-wise independent if it acts uniformly on tuples of *D* elements.

Example

A keyed permutation family *g* such that $g_{K_1,K_2}(v) = K_1 \cdot v + K_2$ is perfect 2-wise independent.

• multiplication and addition are done in *GF*(2^{*n*}) and *K*₁ is nonzero

- Each element *u* is mapped by g^{-1} , where *g* is (implicitly keyed) *D*-wise independent permutation.
- 2 $g^{-1}(u)$ is contained in a certain block V in a fixed partition of $\{0, 1\}^n$.
- (a) U = g(V) is defined as a random block containing u.

- Each element *u* is mapped by g^{-1} , where *g* is (implicitly keyed) *D*-wise independent permutation.
- 2 $g^{-1}(u)$ is contained in a certain block V in a fixed partition of $\{0, 1\}^n$.
- (1) U = g(V) is defined as a random block containing u.

- Each element *u* is mapped by g^{-1} , where *g* is (implicitly keyed) *D*-wise independent permutation.
- 2 $g^{-1}(u)$ is contained in a certain block V in a fixed partition of $\{0, 1\}^n$.
- If U = g(V) is defined as a random block containing u.

- Each element *u* is mapped by g^{-1} , where *g* is (implicitly keyed) *D*-wise independent permutation.
- 2 $g^{-1}(u)$ is contained in a certain block V in a fixed partition of $\{0, 1\}^n$.
- U = g(V) is defined as a random block containing *u*.

Example: 2-wise Independent Permutation Family

Suppse that the fixed partition is

$$\mathcal{V} = \{\{v, v+1\} : v \in \{0, 1\}^n\}$$

A random permutation is defined as

$$g_{K_1,K_2}(v)=K_1\cdot v+K_2$$

- Given $u \in \{0,1\}^n$, $g_{K_1,K_2}^{-1}(u) = K_1^{-1} \cdot (u + K_2)$
- Then u is paired with

$$g\left(g_{K_1,K_2}^{-1}(u)+1\right) = K_1 \cdot \left(K_1^{-1} \cdot (u+K_2)+1\right) + K_2 = u + K_1$$

- Same as used in the swap-or-not shuffle
- Negative result: no nontrivial subgroups of S_n (n ≥ 25) which are 4-wise independent

- For each round, linearly independent round keys K_1 , K_2 , K_3 are chosen uniformly at random
- 2 Set $\{0,1\}^n$ is decomposed into the cosets of $\langle K_1, K_2, K_3 \rangle$
- Two vertices on a diagonal line are randomly chosen for each coset
- Each coset is again decomposed into two blocks around the vertices

- For each round, linearly independent round keys K_1 , K_2 , K_3 are chosen uniformly at random
- 2 Set $\{0,1\}^n$ is decomposed into the cosets of $\langle K_1, K_2, K_3 \rangle$
- Two vertices on a diagonal line are randomly chosen for each coset
- Each coset is again decomposed into two blocks around the vertices

- For each round, linearly independent round keys K_1 , K_2 , K_3 are chosen uniformly at random
- 2 Set $\{0,1\}^n$ is decomposed into the cosets of $\langle K_1, K_2, K_3 \rangle$
- Two vertices on a diagonal line are randomly chosen for each coset
- Each coset is again decomposed into two blocks around the vertices

- For each round, linearly independent round keys K_1 , K_2 , K_3 are chosen uniformly at random
- 2 Set $\{0,1\}^n$ is decomposed into the cosets of $\langle K_1, K_2, K_3 \rangle$
- Two vertices on a diagonal line are randomly chosen for each coset
- Each coset is again decomposed into two blocks around the vertices

This approach is extended to the use of binary perfect $[2^{s} - 1, 2^{s} - s - 1, 3]$ -Hamming codes (for $D = 2^{s}$)

- Choose uniformly at random a set of linearly independent keys $K_1, \ldots, K_{D-1} \in \{0, 1\}^n$.
 - The entire domain $\{0, 1\}^n$ is partitioned into the cosets of $V = \langle K_1, \dots, K_{D-1} \rangle$.
- Choose a random representative a for each coset, and define a bijection from {0, 1}^{D-1} to the coset by mapping

$$(e_1,\ldots,e_{D-1}) \in \{0,1\}^{D-1} \mapsto \mathbf{a} + e_1 K_1 + \cdots + e_{D-1} K_{D-1}.$$

$$\{0,1\}^{D-1} = \bigcup_{c \in \mathcal{C}_s} \{c + e : wt(e) \le 1\}.$$

This approach is extended to the use of binary perfect $[2^{s} - 1, 2^{s} - s - 1, 3]$ -Hamming codes (for $D = 2^{s}$)

- Choose uniformly at random a set of linearly independent keys $K_1, \ldots, K_{D-1} \in \{0, 1\}^n$.
 - The entire domain $\{0, 1\}^n$ is partitioned into the cosets of $V = \langle K_1, \dots, K_{D-1} \rangle$.
- Choose a random representative a for each coset, and define a bijection from {0, 1}^{D-1} to the coset by mapping

$$(e_1,\ldots,e_{D-1}) \in \{0,1\}^{D-1} \mapsto \mathbf{a} + e_1 K_1 + \cdots + e_{D-1} K_{D-1}.$$

$$\{0,1\}^{D-1} = \bigcup_{c \in \mathcal{C}_s} \{c + e : wt(e) \le 1\}.$$

This approach is extended to the use of binary perfect $[2^{s} - 1, 2^{s} - s - 1, 3]$ -Hamming codes (for $D = 2^{s}$)

- Choose uniformly at random a set of linearly independent keys $K_1, \ldots, K_{D-1} \in \{0, 1\}^n$.
 - The entire domain $\{0, 1\}^n$ is partitioned into the cosets of $V = \langle K_1, \dots, K_{D-1} \rangle$.
- Choose a random representative a for each coset, and define a bijection from {0, 1}^{D-1} to the coset by mapping

$$(e_1, \ldots, e_{D-1}) \in \{0, 1\}^{D-1} \mapsto \mathbf{a} + e_1 K_1 + \cdots + e_{D-1} K_{D-1}.$$

$$\{0,1\}^{D-1} = \bigcup_{c \in \mathcal{C}_s} \{c+e : \operatorname{wt}(e) \le 1\}.$$

This approach is extended to the use of binary perfect $[2^{s} - 1, 2^{s} - s - 1, 3]$ -Hamming codes (for $D = 2^{s}$)

- Choose uniformly at random a set of linearly independent keys $K_1, \ldots, K_{D-1} \in \{0, 1\}^n$.
 - The entire domain $\{0, 1\}^n$ is partitioned into the cosets of $V = \langle K_1, \dots, K_{D-1} \rangle$.
- Choose a random representative a for each coset, and define a bijection from {0, 1}^{D-1} to the coset by mapping

$$(e_1,\ldots,e_{D-1}) \in \{0,1\}^{D-1} \mapsto \mathbf{a} + e_1 K_1 + \cdots + e_{D-1} K_{D-1}.$$

$$\{0,1\}^{D-1} = \bigcup_{c\in\mathcal{C}_s} \{c+e: \operatorname{wt}(e)\leq 1\}.$$

• The resulting keyed partition is $\frac{2^{D}}{2^{n}}$ -almost *D*-uniform

 This example of the partition-and-mix uses a keyed 4-bit S-boxes

Results

- Generalized the swap-or-not shuffle
- Number of rounds reduced
- Can be viewed as a new block cipher structure
- Particularly useful for format preserving encryption

Future Research Problems

- Finding (almost) uniform keyed partitions that allow efficient implementation
- Efficient construction of very small permutations (operating on a small number of bits)

Thank You!