Online Authenticated Encryption

Reza Reyhanitabar

EPFL Switzerland

ASK 2015 30 Sept - 3 Oct Singapore

- I. The Emergence of Online-AE (OAE)
- **II. Definitions of Security Notions**
- **III. Our New Security Definitions(s) and Construction(s)**
- **IV. Conclusion**

The emergence of online-AE (OAE)

Fleischmann, Forler, Lucks (FFL)

McOE: A Family of Almost Foolproof On-Line Authenticated Encryption Schemes. FSE 2012. (Full version, with Wenzel, retitled "McOE: A Foolproof On-line Authenticated Encryption Scheme." Cryptology ePrint report 2011/644 (Nov 2011; Dec 2013)

Promised an AE notion & scheme that was

- **online** ← **single pass** encryption with **O(1) memory** and
- **misuse resistant** ← retain security in the presence of **nonce-reuse**

The FFL definition ("OAE1") has several issues.

What does it say?
What's problematic with what it says?
What should a definition for online-AE say?
1) If we want it to be as nonce-reuse misuse-resistant as possible
2) If we don't care about nonce-reuse misuse resistance

This talk is based on the following paper:

Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, Damian Vizár: "Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance", CRYPTO 2015

Both being online and being nonce-reuse secure are good aims

nAE: Definition

All-in-one definition [Rogaway, Shrimpton 2006]. Builds on a sequence of work beginning with [Bellare-Rogaway 2000, Katz-Yung 2000]

\mathcal{A} may not

- Repeat an N in an Enc query
- Ask a Dec query (*N*, *A*, *C*) after *C* is returned by an (*N*, *A*, \cdot) Enc query

nAE: Assumptions

- 1. Atomicity of *M*
- 2. Atomicity of C
- 3. OK to demand non-repeating N

MRAE: Misuse-Resistant AE

 \mathcal{A} may not:

- Repeat an Enc(N, A, M) query
- Ask Dec(N, A, C) after *C* is returned by an $Enc(N, A, \cdot)$ query

If *N* repeats:

- : authenticity is **undamaged**
 - privacy is damaged to the extent that's **unavoidable**

MRAE schemes **can't** be online

MRAE

CAESAR candidates that satisfy **MRAE**:

- AES-CMCC
- HS1-SIV
- Joltik v1.3 (has an MRAE mode)
- **Deoxys v1.3** (has an MRAE mode)

RAE is a traditional AE notion, with atomic M and C.

What is new compared to MRAE is only that the user supplies τ , and it can be arbitrary.

Fix some *n*.

Let $B_n = \{0,1\}^n$ = all possible blocks. Let B_n^* = all strings of blocks.

A **multiple-of-***n* **cipher** is a map $\mathcal{E}: \mathcal{K} \times B_n^* \to B_n^*$ where $\mathcal{E}(K, \cdot)$ is a length-preserving permutation for each $K \in \mathcal{K}$.

OPerm[n] = all multiple-of-*n* ciphers π where the *i*-th block of $\pi(X)$ depends only on the first *i* blocks of *X*.

<u>Good online cipher</u>: multiple-of-*n* cipher \mathcal{E} where $\mathcal{E}(K, \cdot)$ is indistinguisable from $\pi \leftarrow \text{OPerm}[n]$

FFL's syntax for AE

Fix some *n*. A **multiple-of-***n* **AE scheme** is a triple $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ with $\mathcal{E}: \mathcal{K} \times \mathcal{H} \times \mathcal{M} \rightarrow \{0,1\}^*$ $\mathcal{D}: \mathcal{K} \times \mathcal{H} \times \{0,1\}^* \rightarrow \mathcal{M} \cup \{\bot\}$ with $\mathcal{M} = B_n^*$ and the decryptability condition.

Assume $|C| = |M| + \tau$

+Authenticity Unforgeability

FFL definition: OAE1

OAE1 is weak: the "trivial attack"

- LCP[*n*]: C_i only depends on *K*, *H*, $M_1 \cdots M_i$
- Want to decrypt

- $= \mathcal{E}(K, H, M)$
- Assume: an oracle that encrypts with *K*, *H*

C

- OAE1 is quite insecure for small *n*
- Crucial to identify *n* when speaking of security

Assume LCP[n] (say n=128)

chosen-prefix/secret-suffix
(any byte string) (want to learn it)

But the real problem isn't these attacks. It's a failure to capture the underlying goal.

- 1. Blocksize *n* should be a <u>user-selectable</u> value, not a scheme-dependent constant. It arises from a resource constraint of a user. It shouldn't be related to an implementing technology.
- 2. Security needs to be defined for strings of <u>all</u> lengths, not just multiples-of-*n*. *Saying one will pad begs the question.*
- **3. Decryption <u>too</u> should be online** How useful is it to have online-encryption if the receiver has to buffer the entire ciphertext?
- **4.** The reference object is <u>not</u> ideal. Why an online cipher followed by random bits? We could do better with a different reference object.

Towards OAE2 User-selectable segmentation

Towards OAE2 User-selectable segmentation

Towards OAE2 User-selectable segmentation

Def: A **segmented-AE scheme** is a tuple $\Pi = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ where

 $\ensuremath{\mathcal{K}}$ is a distribution on strings and

 $\mathcal{E} = (\mathcal{E}.init, \mathcal{E}.next, \mathcal{E}.last)$ and

 \mathcal{D} =(\mathcal{D} .init, \mathcal{D} .next, \mathcal{D} .last)

are triples of deterministic algorithms:

 $\mathcal{E}.init: \mathcal{K} \times \mathcal{N} \to \mathcal{S}$ $\mathcal{E}.next: \mathcal{S} \times \mathcal{A} \times \mathcal{M} \to \mathcal{C} \times \mathcal{S}$ $\mathcal{E}.last: \mathcal{S} \times \mathcal{A} \times \mathcal{M} \to \mathcal{C}$

 $\mathcal{D}.\text{init: } \mathcal{K} \times \mathcal{N} \to \mathcal{S}$ $\mathcal{D}.\text{next: } \mathcal{S} \times \mathcal{A} \times \mathcal{C} \to (\mathcal{M} \times \mathcal{S}) \cup \{\bot\}$ $\mathcal{D}.\text{last: } \mathcal{S} \times \mathcal{A} \times \mathcal{C} \to \mathcal{M} \cup \{\bot\}$

 $\mathcal{A} = \mathcal{M} = \mathcal{C} = \{0,1\}^* \qquad \mathcal{N} \subseteq \{0,1\}^*$

Formulating security

- **OAE2**: basic notion: best-possible security even if nonces get reused.
- **dOAE**: intermediate notion adapted from "Dupexing the Sponge" paper of [Bertoni, Daemen, Peeters, Van Assche 2010/2012]
- **nOAE**: weakening: equivalent in the cases that nonces are *not* reused.

	OAE2	Can ask anything of the encryption oracle except (<i>N</i> , <i>A</i> , <i>M</i>) then (<i>N</i> , <i>A</i> , <i>M</i>)
trength	dOAE	Can ask anything of the encryption oracle except (<i>N</i> , <i>A</i> , <i>M</i> <i>M</i>) then (<i>N</i> , <i>A</i> , <i>M</i> <i>M</i> ′)
S	nOAE	Can ask anything of the encryption oracle except (<i>N</i> , <i>A</i> , <i>M</i>) then (<i>N</i> , <i>A</i> ′, <i>M</i> ′)

Random τ-expanding injective function tweaked by the subscript

For AD: add in the A_i to each subscript

return F

Formalizing OAE2

$\begin{array}{l} \mathbf{proc\ initialize} \\ K \twoheadleftarrow \mathcal{K} \end{array}$	proc initialize $F \leftarrow \text{IdealOAE}(\tau)$
$\begin{array}{l} \mathbf{proc} \ \mathrm{Enc}(N, \boldsymbol{A}, \boldsymbol{M}) \\ \mathbf{if} \ N \not\in \mathcal{N} \ \mathbf{or} \ \boldsymbol{A} \neq \boldsymbol{M} \ \mathbf{then} \ \mathbf{return} \ \bot \\ \mathbf{return} \ \boldsymbol{\mathcal{E}}(K, N, \boldsymbol{A}, \boldsymbol{M}) \end{array}$	proc Enc(N, A, M) if $N \notin \mathcal{N}$ or $ A \neq M$ then return \perp return $F(N, A, M, 1)$
$ \begin{array}{l} \mathbf{proc} \ \mathrm{Dec}(N, \boldsymbol{A}, \boldsymbol{C}) \\ \mathbf{if} \ N \not\in \mathcal{N} \ \mathbf{or} \ \boldsymbol{A} \neq \boldsymbol{M} \ \mathbf{then} \ \mathbf{return} \ \bot \\ \mathbf{return} \ \mathcal{D}(K, N, \boldsymbol{A}, \boldsymbol{C}) \end{array} $	$\begin{array}{l} \mathbf{proc} \ \mathrm{Dec}(N, \boldsymbol{A}, \boldsymbol{C}) \\ \mathbf{if} \ N \not\in \mathcal{N} \ \mathbf{or} \ \boldsymbol{A} \neq \boldsymbol{M} \ \mathbf{then} \ \mathbf{return} \ \bot \\ \mathbf{if} \ \exists \boldsymbol{M} \ \mathrm{s.t.} \ F(N, \boldsymbol{A}, \boldsymbol{M}, 1) = \boldsymbol{C} \ \mathbf{then} \ \mathbf{return} \ \boldsymbol{M} \\ \boldsymbol{M} \leftarrow \mathrm{the} \ \mathrm{longest} \ \mathrm{vector} \ \mathrm{in} \\ \boldsymbol{M} \ \in \ F(N, \boldsymbol{A}, \boldsymbol{M}, 0)[i] = \boldsymbol{C}[i] \ \mathrm{for} \ i \in [1 \boldsymbol{M} - 1] \} \\ \mathbf{return} \ \boldsymbol{M} \end{array}$

The adversary \mathcal{A} should be unable to distinguish the green and blue games

Three formulations of OAE2

Why?

- Very different approaches \rightarrow *essentially equivalent* definitions
- Clarify the *extent* to which they are equivalent
- **OAE2a** The definition I just sketched..

Conceptually simplest. Meant to formalize best *possible security*: fix τ and ask how well can you do.

- OAE2b Tighter definition: model adversary's ability to ask incremental queries. Grow chains instead of asking vector-valued queries.
- OAE2c Easiest to work with, measures distance from random bits. Aspirational – only works for "large" τ. Illustrates why τ ought to be large.

Formalizing OAE2

proc initialize proc initialize $I, J \leftarrow 0; K \ll \mathcal{K}$ $I, J \leftarrow 0; F \leftarrow \text{IdealOAE}(\tau)$ **proc** Enc.init(N)**proc** Enc.init(N) if $N \notin \mathcal{N}$ then return \perp if $N \notin \mathcal{N}$ then return \perp $I \leftarrow I + 1; S_I \leftarrow \mathcal{E}.init(K, N)$ $I \leftarrow I + 1; N_I \leftarrow N; A_I \leftarrow \Lambda; M_I \leftarrow \Lambda$ return Ireturn I**proc** Enc.next(i, A, M)**proc** Enc.next(i, A, M)if $i \notin [1...I]$ or $M_i = \bot$ then return \bot if $i \notin [1..I]$ or $S_i = \bot$ then return \bot $A_i \leftarrow A_i \parallel A; \ M_i \leftarrow M_i \parallel M; \ m \leftarrow \mid M_i \mid$ $(C, S_i) \leftarrow \mathcal{E}.next(S_i, A, M)$ $C \leftarrow F(N_i, A_i, M_i, 0)$: return C[m]return C**proc** Enc.last(i, A, M)**proc** Enc.last(i, A, M)if $i \notin [1..I]$ or $M_i = \bot$ then return \bot if $i \notin [1..I]$ or $S_i = \bot$ then return \bot $A_i \leftarrow A_i \parallel A; \ M_i \leftarrow M_i \parallel M; \ m \leftarrow \mid M_i \mid$ $C \leftarrow \mathcal{E}.last(S_i, A, M)$ $C \leftarrow F(N_i, A_i, M_i, 1); M_i \leftarrow \bot;$ return C[m] $S_i \leftarrow \bot$: return C **proc** Dec.init(N)**proc** Dec.init(N)if $N \notin \mathcal{N}$ then return \perp $J \leftarrow J + 1; N'_I \leftarrow N; A'_i \leftarrow \Lambda; C_J \leftarrow \Lambda$ if $N \notin \mathcal{N}$ then return \perp return J $J \leftarrow J + 1; S'_I \leftarrow \mathcal{D}.init(K, N)$ return J**proc** Dec.next(i, A, C)if $j \notin [1..J]$ or $C_j = \bot$ then return \bot **proc** Dec.next(j, A, C) $A'_i \leftarrow A_i \parallel A; \ C_i \leftarrow C_j \parallel C; \ m \leftarrow |C_j|$ if $j \notin [1..J]$ or $S'_i = \bot$ then return \bot if $\exists M$ s.t. $F(N'_i, A'_i, M, 0) = C_i$ $(M, S'_i) \leftarrow \mathcal{D}.next(S'_i, A, C)$ then return M[m]return Melse $C_j \leftarrow \bot$; return \bot ; fi **proc** Dec.last(j, A, C)**proc** Dec.last(j, A, C)if $j \notin [1..J]$ or $C_j = \bot$ then return \bot if $j \notin [1..J]$ or $S'_i = \bot$ then return \bot $A'_i \leftarrow A \parallel A; \ C_i \leftarrow C_i \parallel C; \ m \leftarrow |C_i|$ $M \leftarrow \mathcal{D}.last(S'_i, A, C)$ if $\exists M$ s.t. $F(N'_i, A'_i, M_i, 1) = C_i$ $S'_i \leftarrow \bot$ then $C_i \leftarrow \bot$; return M[m]return Melse $C_i \leftarrow \bot$; return \bot fi

Formalizing OAE2

proc initialize $I \leftarrow 0; K \ll \mathcal{K}$ $\mathcal{Z} \leftarrow \emptyset$ **proc** Enc.init(N)if $N \notin \mathcal{N}$ then return \perp $I \leftarrow I + 1; S_I \leftarrow \mathcal{E}.init(K, N)$ $N_I \leftarrow N$: $A_I \leftarrow M_I \leftarrow C_I \leftarrow \Lambda$ return I**proc** Enc.next(i, A, M)if $i \notin [1..I]$ or $S_i = \bot$ then return \bot $(C, S_i) \leftarrow \mathcal{E}.next(S_i, A, M)$ $A_i \leftarrow A_i \parallel A; \ M_i \leftarrow M_i \parallel M; \ C_i \leftarrow C_i \parallel C$ $\mathcal{Z} \leftarrow \mathcal{Z} \cup \{(N_i, A_i, C_i, 0)\}$ return C**proc** Enc.last(i, A, M)if $i \notin [1..I]$ or $S_i = \bot$ then return \bot $C \leftarrow \mathcal{E}.last(S_i, A, M); S_i \leftarrow \bot$

 $A_i \leftarrow A_i \parallel A; \ M_i \leftarrow M_i \parallel M; \ C_i \leftarrow C_i \parallel C$

 $\mathcal{Z} \leftarrow \mathcal{Z} \cup \{(N_i, A_i, C_i, 1)\}$

return C

proc initialize $I \leftarrow 0$ $E(x) \leftarrow undef \text{ for all } x$

proc Enc.init(N) if $N \notin \mathcal{N}$ then return \perp $I \leftarrow I + 1$ $N_I \leftarrow N; A_i \leftarrow M_i \leftarrow \Lambda$ return I

 $\begin{array}{l} \mathbf{proc} \; \mathrm{Enc.next}(i,A,M) \\ \mathrm{if} \; i \not\in [1..I] \; \mathrm{or} \; N_i = \bot \; \mathrm{then} \; \mathrm{return} \; \bot \\ A_i \leftarrow A_i \parallel A; \; \; M_i \leftarrow M_i \parallel M \\ \mathrm{if} \; E(N_i,A_i,M_i,0) = \mathrm{undef} \\ \; \; \mathrm{then} \; E(N_i,A_i,M_i,0) \ll \{0,1\}^{|M|+\tau} \\ C \leftarrow E(N_i,A_i,M_i,0); \; \mathrm{return} \; C \end{array}$

 $\begin{array}{l} \mathbf{proc} \ \mathrm{Enc.last}(i,A,M) \\ \mathrm{if} \ i \not\in [1..I] \ \mathrm{or} \ N_i = \bot \ \mathrm{then} \ \mathrm{return} \ \bot \\ \mathbf{A}_i \leftarrow \mathbf{A}_i \parallel A; \ \ M_i \leftarrow M_i \parallel M \\ \mathrm{if} \ E(N_i, \mathbf{A}_i, \mathbf{M}_i, 1) = \mathrm{undef} \\ \ \ \mathrm{then} \ E(N_i, \mathbf{A}_i, \mathbf{M}_i, 1) \ll \{0,1\}^{|M| + \tau} \\ C \leftarrow E(N_i, \mathbf{A}_i, \mathbf{M}_i, 1); \ \ N_i \leftarrow \bot; \ \ \mathrm{return} \ C \end{array}$

proc finalize (N, A, C, b)if $|A| \neq |C|$ or |A| = 0 or $(N, A, C, b) \in \mathbb{Z}$ then return false $S \leftarrow \mathcal{D}.init(K, N); m \leftarrow |C|$ for $i \leftarrow 1$ to m - b do $(M, S) \leftarrow \mathcal{D}.next(S, A[i], C[i])$ if $M = \bot$ then return false if b = 1 and $\mathcal{D}.last(S, A[m], C[m]) = \bot$ then return false return true

Achieving OAE2 The CHAIN construction

An **MRAE** scheme for large τ ; an **RAE** scheme for general τ

Why can't one use an **nAE** scheme? OAE2 degenerates to **MRAE** when there's one segment and large τ ; and a **strong PRP** with one segment and $\tau=0$

Assume a large τ

Achieving nOAE2 The STREAM construction

Achieves the (weaker) nOAE notion. Roughly what's done in the Netflix protocol.

Conclusions, suggestions, puzzles

- > OAE should never have been about nonce-reuse MR. Historical artifact.
- Beware of the escalation of rhetoric. [FFL12] was circumspect in what they promised of OAE1. Soon morphed into claims as strong as OAE1 schemes being "nonce-free".
- How does an immature definition quickly become the definitional target for so much constructive work?