Fault-based Cryptanalysis on Block Ciphers ASK 2015

Victor LOMNE ANSSI (French Network and Information Security Agency) Friday, October 2^{nd} , 2015 - Singapore

Agenda

1 Introduction

- a. Physical Cryptanalysis
- b. Fault-based Cryptanalysis

2 Fault Injection Means

- a. Global Faults
- b. Local Faults
- c. Other Tools

3 Cryptanalysis methods

- a. Fault Model
- b. Safe Error Attack
- c. DFA
- d. Statistical Fault Attack

4 Countermeasures

- a. Analog Level
- b. Digital Level
- c. Application to Crypto

Agenda

1 Introduction

- a. Physical Cryptanalysis
- b. Fault-based Cryptanalysis

2 Fault Injection Means

- a. Global Faults
- b. Local Faults
- c. Other Tools

3 Cryptanalysis methods

- a. Fault Model
- b. Safe Error Attack
- c. DFA
- d. Statistical Fault Attack

4 Countermeasures

- a. Analog Level
- b. Digital Level
- c. Application to Crypto

Context

■ Since the 90's, increasing use of secure embedded devices

▶ 9G smartcard ICs sold in 2013 (SIM cards, credit cards ...)

Strong cryptography from a mathematical point of view used to manage sensitive data

▶ 3DES, AES, RSA, ECC, SHA-2-3 ...

Classical Cryptanalysis

Black-Box Model assumed in classical cryptanalysis:

- key(s) stored in the device
- cryptographic operations computed inside the device

The attacker has only access to pairs of plaintexts / ciphertexts.

Secure Cipher - Unsecure Implementation (1/2)

• [Kocher + 1996] \Rightarrow exploitation of physical leakages

- cryptosystems integrated in CMOS technology
- physical leakages correlated with computed data

The attacker has also access to physical leakages
 New class of attacks ⇒ Side-Channel Attacks (SCA)

Secure Cipher - Unsecure Implementation (2/2)

■ $[Boneh + 1997] \Rightarrow$ exploitation of faulty encryptions

▶ the attacker can generate faulty encryptions

the attacker has access to correct & faulty ciphertexts
 New class of attacks ⇒ Fault Attacks (FA)

Physical Cryptanalysis| Fault-based Cryptanalysis

Agenda

1 Introduction

- a. Physical Cryptanalysis
- b. Fault-based Cryptanalysis

2 Fault Injection Means

- a. Global Faults
- b. Local Faults
- c. Other Tools

3 Cryptanalysis methods

- a. Fault Model
- b. Safe Error Attack
- c. DFA
- d. Statistical Fault Attack

4 Countermeasures

- a. Analog Level
- b. Digital Level
- c. Application to Crypto

Fault based Cryptanalysis

- FA consist in perturbing the execution of the cryptographic operation in order to get faulty results leaking information on the secret
- Hypotheses are made on:
 - the targeted intermediate value
 - ▶ the effect of the injection on the intermediate value
- The attacker can then apply algorithmic methods to extract the secret from the obtained (correct and/or faulty) results

Fault Zoology (1/2)

- Different ways to generate a fault:
 - ▶ electrical glitch on pins (VCC, CLK, I/O, ...)
 - electrical glitch on the die (FBBI)
 - light injection
 - ElectroMagnetic (EM) field injection
- The duration of the fault can be:
 - transient
 - permanent

Fault Zoology (2/2)

- Different effects:
 - modification of operation flow
 - modification of operands

Different goals:

- Bypassing a security mechanism
 e.g. PIN verification, file access right control, secure bootchain, ...
- ▶ Generating faulty encryptions/signatures ⇒ fault-based cryptanalysis
- Combined Attacks JavaCard based, FA + SCA

Agenda

1 Introduction

- a. Physical Cryptanalysis
- b. Fault-based Cryptanalysis

2 Fault Injection Means

- a. Global Faults
- b. Local Faults
- c. Other Tools

3 Cryptanalysis methods

- a. Fault Model
- b. Safe Error Attack
- c. DFA
- d. Statistical Fault Attack

4 Countermeasures

- a. Analog Level
- b. Digital Level
- c. Application to Crypto

Electrical glitch on Power Supply (1/3)

Principle:

under/over-power a device during a very short time

Over-powering cause unexpected electrical phenomenoms inside the IC e.g. local shortcuts, ...

Under-powering slows down the processing of the IC e.g. bad memory read/write, ...

Low/medium-cost attack ex. of equipment: custom electronic board, pulse generator, ...

Electrical glitch on Power Supply (2/3)

Adversary can control:

- Amplitude of the glitch
- Duration of the glitch
- Shape of the glitch
- Generally no control of the fault precision:
 - On a microcontroller running code, modification of the current executed opcode and/or operand(s)
 - On a hardware coprocessor, modification of (some of) the current processed words (e.g. registers)

Electrical glitch on Power Supply (3/3)

- Recent variant [Tobich+ 2012]: FBBI: Forward Body Bias Injection
- Consist in putting a needle in contact with the IC silicon through its backside

Tamper the clock (1/2)

Principle:

reduce one or several clock period(s)

slows down the processing of the IC e.g. DFF sampling before correct computation of current instruction/combinational logic ...

Low/medium-cost attack ex. of equipment: custom electronic board, signal generator, ...

Tamper the clock (2/2)

- Adversary can control:
 - Duration of the reduced clock period
 - Number of reduced clock period(s)
- Generally no control of the fault precision:
 - On a microcontroller running code, modification of the current executed opcode and/or operand(s)
 - On a hardware coprocessor, modification of (some of) the current processed words (e.g. registers)

Agenda

1 Introduction

- a. Physical Cryptanalysis
- b. Fault-based Cryptanalysis

2 Fault Injection Means

- a. Global Faults
- b. Local Faults
- c. Other Tools

3 Cryptanalysis methods

- a. Fault Model
- b. Safe Error Attack
- c. DFA
- d. Statistical Fault Attack

4 Countermeasures

- a. Analog Level
- b. Digital Level
- c. Application to Crypto

Light attacks (1/2)

- Principle: inject a light beam into the device to disturb it
- Old school setups were using flash lamp
- Modern setups are based on laser modules
- It requires to open the package of the IC in order the light beam can be injected into the frontside or the backside of the die

Light attacks (2/2)

- A photoelectric phenomenom transforms light energy into electrical energy, provoking unexpected behaviour of transistors
- On complex ICs with many metal layers, or on secure ICs with a shield, it can be difficult to inject light on the frontside of the IC
- As silicon is transparent to infrared light, backside light injection uses infrared light e.g. NIR laser diodes

Medium/high cost attack

Laser Setup example 1 (1/2)

Victor LOMNE - ANSSI / Fault-based Cryptanalysis on Block Ciphers

Laser Setup example 1 (2/2)

Victor LOMNE - ANSSI / Fault-based Cryptanalysis on Block Ciphers

EMI attacks

Principle:

inject an electromagnetic field inside the device to disturb it

- Can be done without removing the package of the IC
- In practice, a glitch of high power is injected into an EM sensor put above the IC ex. of equipment: high power pulse generator + EM sensor

Medium/high cost attack

ElectroMagnetic Injection Setup example

ElectroMagnetic Injection Setup example

Victor LOMNE - ANSSI / Fault-based Cryptanalysis on Block Ciphers

ElectroMagnetic Injection Setup example

Victor LOMNE - ANSSI / Fault-based Cryptanalysis on Block Ciphers

Introduction | Fault Injection Means Cryptanalysis methods | Countermeasures | Conclusion |

Global Faults| Local Faults| Other Tools

Agenda

1 Introduction

- a. Physical Cryptanalysis
- b. Fault-based Cryptanalysis

2 Fault Injection Means

- a. Global Faults
- b. Local Faults
- c. Other Tools

3 Cryptanalysis methods

- a. Fault Model
- b. Safe Error Attack
- c. DFA
- d. Statistical Fault Attack

4 Countermeasures

- a. Analog Level
- b. Digital Level
- c. Application to Crypto

Synchronization Mean

- In many cases, need of a synchronization mean to trig the fault at the right instant
- A classical way consists in monitoring the power consumption/EM activity of the IC such that finding the side-channel signature of the event one wants disturb
- Several solutions:
 - Using the triggering capabilities of oscilloscopes
 - Using a custom synchronization board, with real-time pattern matching mechanism

Agenda

1 Introduction

Fault Injection Means

3 Cryptanalysis methods

- a. Fault Model

4 Countermeasures

Classification of Fault Models

One can define a Fault Model as a function f such that:

$$f: x \to x \star e \tag{1}$$

x target variable, e fault logical effect and \star a logical operation

- Any Fault-based Cryptanalysis requires an Invariant \Rightarrow new classification of FA based on the Invariant:
 - FA based on a Fixed Fault Diffusion Pattern Differential Fault Analysis [Biham+ 1997], [Piret+ 2003]
 - FA based on a Fixed Fault Logical Effect Safe Error Attacks [Biham+ 1997], Statistical Fault Attacks [Fuhr+ 2013]

Fault Model | Safe Error Attack

Countermeasures| Conclusion|

Agenda

1 Introduction

Fault Injection Means

3 Cryptanalysis methods

- b. Safe Error Attack

4 Countermeasures

Safe Error Attack (SEA) [Biham+ 1997]

- SEA requires two copies of the target device:
 - ▶ a first copy that the adversary can fully control
 - a second copy set at an unknown secret
- SEA requires the ability to encrypt several times the same plaintext
- SEA does not require any faulty ciphertext
- SEA requires two phases:
 - a profiling phase
 - an attack phase

Safe Error Attack (SEA) - Sketch

- 1. Profiling phase
 - Use the device the adversary can fully control
 - For every bit of the master key, find the fault parameters allowing to reset this bit
- 2. Attack phase
 - Use the device set at an unknown secret
 - Encrypt a plaintext and keep the ciphertext
 - ▶ For every bit of the key, encrypt once again the same plaintext, while injecting a fault with parameters of profiling phase for the current bit
 - If both ciphertexts are equal, the current bit is equal to 0. otherwise equal to 1

Agenda

1 Introduction

Fault Injection Means

3 Cryptanalysis methods

- c. DFA

4 Countermeasures

Differential Fault Analysis (DFA) [Piret+ 2003]

- DFA requires the ability to encrypt two times the same plaintext
- DFA requires to have one or several pairs of correct and wrong ciphertexts corresponding to the same plaintext $P_1 \rightarrow (C_1, \widetilde{C_1})$ $P_2 \rightarrow (C_2, \widetilde{C}_2)$. . . $P_N \rightarrow (C_N, \widetilde{C_N})$
- DFA requires to be able to fault only a part of the State at a particular position in the encryption e.g. one byte of the AES State before the last MixColumns

Countermeasures| Conclusion|

Fault Modell Safe Error Attack | DFA

Differential Fault Analysis (DFA) - Sketch (1/2)

- 1. Assuming a one byte difference between the two States before the last MixColumns, compute the list D of the 16×255 possible differences after last MixColumns
- Consider two pairs of correct and faulty ciphertexts $(C_1, \widetilde{C_1})$ and $(C_2, \widetilde{C_2})$
- 3. Make an hypothesis on the 2 left most bytes of K, Kh^1 , Kh^2 . For each of the 2¹⁶ candidates, compute: $\delta_{C_1} = S^{-1}(C_1^1 \oplus Kh^1, C_1^2 \oplus Kh^2) \oplus S^{-1}(\widetilde{C_1^1} \oplus Kh^1, \widetilde{C_1^2} \oplus Kh^2)$ $\delta_{C_2} = S^{-1}(C_2^1 \oplus Kh^1, C_2^2 \oplus Kh^2) \oplus S^{-1}(\widetilde{C_2^1} \oplus Kh^1, \widetilde{C_2^2} \oplus Kh^2)$

Differential Fault Analysis (DFA) - Sketch (2/2)

- 4. Compare the results with the 2 left-most bytes of the differences in D. The (Kh^1, Kh^2) for which a match is found for both ciphertext pairs are stored in a list L
- 5. For each candidate of L, try to extend it by one byte (computing both differences to check)
- 6. Keep extending candidates in L until they are 16-bytes long. At this stage, only the right key is remaining

Agenda

1 Introduction

Fault Injection Means

3 Cryptanalysis methods

- d. Statistical Fault Attack

4 Countermeasures

Statistical Fault Attack (SFA) [Fuhr+ 2013]

- SFA has the property to work even with a set of faulty ciphertexts corresponding to different unknown plaintexts $P_1 \rightarrow \widetilde{C}_1$ $P_2 \rightarrow \widetilde{C}_2$
- Nevertheless it requires a Fixed Fault Logical Effect e.g. stuck-at a fixed value a **State** byte with a good probability
- SFA cannot be thwarted at the protocol level !!!

Statistical Fault Attack (SFA) - Sketch (1/2)

- 1. Collect a set of faulty AES ciphertexts $\widetilde{C}_1, \widetilde{C}_2, \ldots, \widetilde{C}_N$, by injecting a fault on one byte of the **State** after the penultimate AddRoundKey. We assume that the fault has a stuck-at effect to an unknown value e: $\widetilde{S_{ak}^1} = S_{ak}^1 AND e, e \in [0, 255]$
- 2. A collection of correct ciphertext bytes C_1, C_2, \ldots, C_N would have an uniform distribution Here, due to the stuck-at fault, the collection of faulted ciphertext bytes $\widetilde{C}_1, \widetilde{C}_2, \ldots, \widetilde{C}_N$ has a biaised distribution

Statistical Fault Attack (SFA) - Sketch (2/2)

- 3. We can express $\tilde{S}ak_{0}^{i}$ as a function of \tilde{C}^{i} and an hypothesis on one byte of K_{10} : $\tilde{S}ak_{0}^{i} = SB^{-1} \circ SR^{-1} (\tilde{C}^{i} \oplus K_{10})$
- 4. Use a distinguisher to discriminate the correct key hypothesis. For instance, use the Minimal mean Hamming weight: $h(\hat{K}) = \frac{1}{n} \sum_{i=1}^{n} HW(\hat{S}ak_{r}^{i}).$

al Levell Application to Cryptol

Agenda

1 Introduction

- a. Physical Cryptanalysis
- b. Fault-based Cryptanalysis

2 Fault Injection Means

- a. Global Faults
- b. Local Faults
- c. Other Tools

3 Cryptanalysis methods

- a. Fault Model
- b. Safe Error Attack
- c. DFA
- d. Statistical Fault Attack

4 Countermeasures

- a. Analog Level
- b. Digital Level
- c. Application to Crypto

Analog Level Digital Level Application to Crypto

(De)synchronization

- A fault injection requires a precise timing to be effective
- Adding temporal randomness makes the timing of the fault harder to set
- Classical ways to add temporal randomness:
 - jittered clock
 - dummy instructions
 - randomize operation flow

▶ ...

IC Package as Countermeasure

- Several kind of fault injection techniques require to expose the die of the IC to perform the attack FBBI, laser, ...
- Depending on the type of package, it can be more or less easy to expose the die:
 - smartcard packages are easy to open
 - metallic packages can be mechanically opened
 - epoxy packages require a chemical attack
 - Package-on-Package or 3D IC technology make the chip opening a nightmare

Digital Level | Application to Crypto

IC Package as Countermeasure: example 1

$\ensuremath{\operatorname{Figure}}$: Epoxy package opened with fuming nitric acid

Victor LOMNE - ANSSI / Fault-based Cryptanalysis on Block Ciphers

Digital Level | Application to Crypto

IC Package as Countermeasure: example 2

Figure : Application processor with RAM stacked above

al Level| Application to Crypto|

IC Package as Countermeasure: example 2

Figure : Application processor with RAM stacked above - X-ray view

Analog Level Digital Level Application to Cryptol

Glitch Detectors

- The historical way to inject a fault in an IC is to under/over-power it during a short time
- Some IC manufacturers add glitch detectors after IC pads, checking that the current signal voltage stays in a defined range

■ If a signal voltage goes outside from the defined range, a mechanism triggers an alarm e.g. flag set, interruption, reset, ...

Analog Level Digital Level Application to Crypto

Laser Detectors (1/2)

- Laser injection often requires to only disturb a small area of the IC
- It requires to perform a spatial cartography to find hot spots CPU/co-processor registers, memory cells or decoders, ...
- Laser detectors that are small dedicated blocks are placed among the other IC cells

evell Application to Cryptol

Laser Detectors (2/2)

- Different kind of Laser detectors:
 - analog based laser detectors e.g. based on photodiodes
 - digital based laser detectors
 e.g. based on custom logic cells
- Laser detectors do not cover the whole suface of the IC, but make the job of the adversary harder

Analog Level | Digital Level

Conclusion

Agenda

1 Introduction

Fault Injection Means

3 Cryptanalysis methods

4 Countermeasures

- b. Digital Level

Analog Level | Digital Level Application to Crypto |

Redundancy

- Redundancy consists in:
 - performing two times an operation
 - comparing results of both operation executions
 - \Rightarrow require a conditionnal test

From a code theory point-of-view, it corresponds to the most obvious code one can construct \Rightarrow duplication code

A variant consists in performing the operation and the inverse operation, then checking that the obtained result is equal to the initial data

Examples of Redundancy

Redundancy can be used in different ways:

- Sequential redundancy for a software function
- ▶ Sequential or Parallel redundancy for a hardware function
- \blacktriangleright Use of redundant logics (Dual Rail logic \rightarrow SABL, WDDL, STTL, ...)
- Securization of special registers by duplication or by storing a value and its inverse
 2 flip-flops are necessary to store one bit

Analog Level | Digital Level

IUSION

Error Detection Codes

- Error Detection Codes are efficient tools to check the integrity of data
- ECC can protect linear operations (they are based on linear applications)

ECC cannot protect non-linear operations in particular they are not well suited to protect cryptographic primitives

Analog Level | Digital Level Application to Crypto |

Examples of Error Detection Codes

Error Correcting Codes can be used in different ways:

- ▶ Ensure the integrity of a secret data stored in NVM
- ▶ Protect a memory decoder → ensure the integrity of opcodes
- Protect linear parts of cryptographic algorithms

Analog Level | Digital Level | Application to Crypto |

Infection

- Infection consists in mixing a diffusion scheme with the operation to protect such that:
 - if the processed data are not modified by a fault, the diffusion scheme has no effect on the final result
 - if the processed data are modified by a fault, the diffusion scheme expands the erroenous data such that the final result is no more exploitable by the adversary

Analog Level | Digital Level Application to Crypto |

Memory Protection Unit (MPU)

- Some microcontrollers have a Memory Protection Unit can be seen as a HW co-processor
- MPU works similarly to a MMU (Memory Management Unit):
 - For a given function to protect, the progammer defines a memory address range
 - The MPU ensures that the instructions of the function will be located in the defined memory address range
 - ▶ If a fault induces a code jump outside the defined memory address range, the MPU triggers an alarm

Analog Level | Digital Level Application to Crypto |

Code Signature

- Some microcontrollers have a Code Signature feature can be seen as a HW co-processor
- Code Signature works as follows:
 - ▶ For a given function to protect, the progammer computes a digest and stores it in NVM
 - ▶ Every time the function is executed, the code signature feature computes the current digest and compares it to the reference one
 - If they are different, an alarm is triggered

Analog Level | Digital Level | Application to Crypto

Agenda

1 Introduction

Fault Injection Means

3 Cryptanalysis methods

4 Countermeasures

- c. Application to Crypto

Analog Level | Digital Level | Application to Crypto

Classical Detection Schemes For Block Ciphers

Figure : Three classical detection countermeasures. From left to right : Full Duplication, Encrypt/Decrypt, and Partial Duplication

Analog Level | Digital Level | Application to Crypto

Classical Infection Schemes For Block Ciphers

■ Generic sketch exhibiting the Infection CM:

- \triangleright S, S' the two States
- \mathcal{D} the diffusion function (such as $\mathcal{D}(0) = 0$)

Agenda

1 Introduction

- a. Physical Cryptanalysis
- b. Fault-based Cryptanalysis

2 Fault Injection Means

- a. Global Faults
- b. Local Faults
- c. Other Tools

3 Cryptanalysis methods

- a. Fault Model
- b. Safe Error Attack
- c. DFA
- d. Statistical Fault Attack

4 Countermeasures

- a. Analog Level
- b. Digital Level
- c. Application to Crypto

Conclusion (1/2)

■ Fault Attacks are a very powerful attack path:

- they allow to modify the normal behaviour of a HW or SW function
- they allow to extract cryptographic secrets

- Nevertheless FA require several skills:
 - knowledge of computer science, electronics, optics, ...
 - knowledge of IC architecture
 - knowledge of fault-based cryptanalysis

Conclusion (2/2)

- A lot of Fault Attack Countermeasures have been proposed in the litterature
- They are generally mixed to increase the security level of the product
 - \Rightarrow principle of defense in depth
- No countermeasure is perfect !
- A developper has firstly to define the level of the adversary he wants to thwart, and then choose the adequate tradeoff between efficiency and security

Certification Schemes

Procedure to evaluate the security level of a product

- Three actors: the developper / the security lab / the scheme
- Some certification schemes:
 - Common Critera
 - EMVCo
 - ▶ ...

To go further

book Fault Analysis in Cryptography Marc Joye and Michael Tunstall - SPRINGER

Questions ?

contact: victor.lomne@ssi.gouv.fr

Bonus 1: Bug Attack

- Pentium FDIV bug was a bug in the Intel P5 Pentium floating point unit (FPU)
- Because of the bug, the processor would return incorrect results for many calculations
- Nevertheless, bug is hard to detect 1 in 9 billion floating point divides with random parameters would produce inaccurate results
- Shamir proposed a modified version of the Bellcore attack which exploits this bug to retrieve a RSA private key
- More dangerous than a classical fault attack because can be perfomed remotely

Bonus 2: PS3 Hack

- George Hotz (a.k.a. Geohot) published in 2009 a hack of the Sony PS3
- The otherOS functionnality of the PS3 allowed to boot a Linux OS
- \blacksquare A bus glitch allowed him to gain control of the hypervisor \Rightarrow ring 0 access
 - \Rightarrow full memory access
 - \Rightarrow control gain of the OS bootchain
- In consequence Sony took George Hotz to court
- Sony and Hotz had settled the lawsuit out of court, on the condition that Hotz would never again resume any hacking work on Sony products

 $\overline{\mathbf{O}}$