

Optimal Constructions of Universal One-way Hash Functions from Special One-way Functions

Yu Yu¹, Dawu Gu¹, Xiangxue Li², Jian Weng³

¹Shanghai Jiao Tong University, China

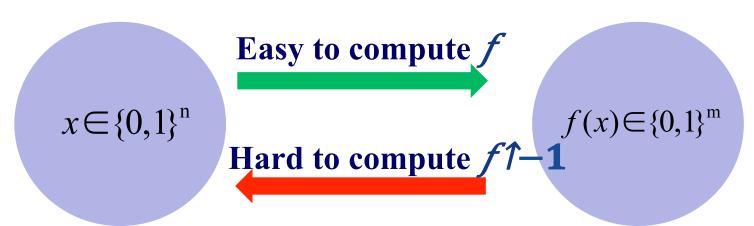
²East China Normal University, China

³Jinan University, China

October 1, 2015

One-way Functions

 $f:\{0,1\} \uparrow n \rightarrow \{0,1\} \uparrow m$ is a one-way function if



 $\forall PPTA: \Pr \downarrow x \leftarrow U \downarrow n$ [f(A(f(x))) = f(x)] = negl(n)

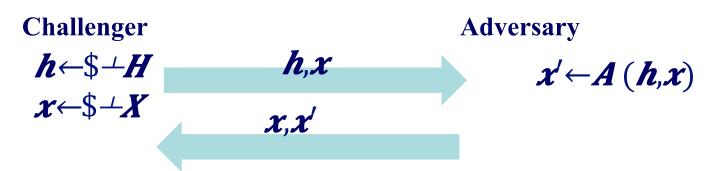
Simplifying assumption: m=n.

(Target) Collision Resistance

© Collision Resistance (CR)

 $\mathbf{CR} \downarrow A, H$ outputs 1 iff $\mathbf{x} \neq \mathbf{x} \uparrow \land \mathbf{h}(\mathbf{x}) = \mathbf{h}(\mathbf{x}')$

Target Collision Resistance (TCR)



TCR $\downarrow A$,H outputs 1 iff $x \neq x \uparrow \land h(x) = h(x')$

CRHFs vs. UOWHFs

- *H* is a family of Collision Resistant Hash Functions (CRHFs) if \forall PPT *A*:Pr[CR\$\dagger\$A,H (1\bar{\gamma}n\))=1]=negl(n)
- *H* is a family of Universal One-Way Hash Functions
 (UOWHFs) if \forall PPT *A*:Pr/TCR\$\dagger\(A,H\) (1\)\(\hat{n}\))=1]=negl(n)
- Note: *H* is a family of functions (not a single one)
- UOWHFs are believed strictly weaker than CRHI
 - > CRHFs are UOWHFs
 - > OWFs imply UOWHFs but not CRHFs
- Yet, UOWHFs suffice for many applications
 - Basing digital signatures on one-way functions alone!
 - Cramer-Shoup PKE Schemes
 - Statistical hiding

One-way Functions (OWFs)

A building block of many crypto applications

Many crypto applications

Pseudorandom functions permutations

Pseudorandom generators

Digital

Stat ZK

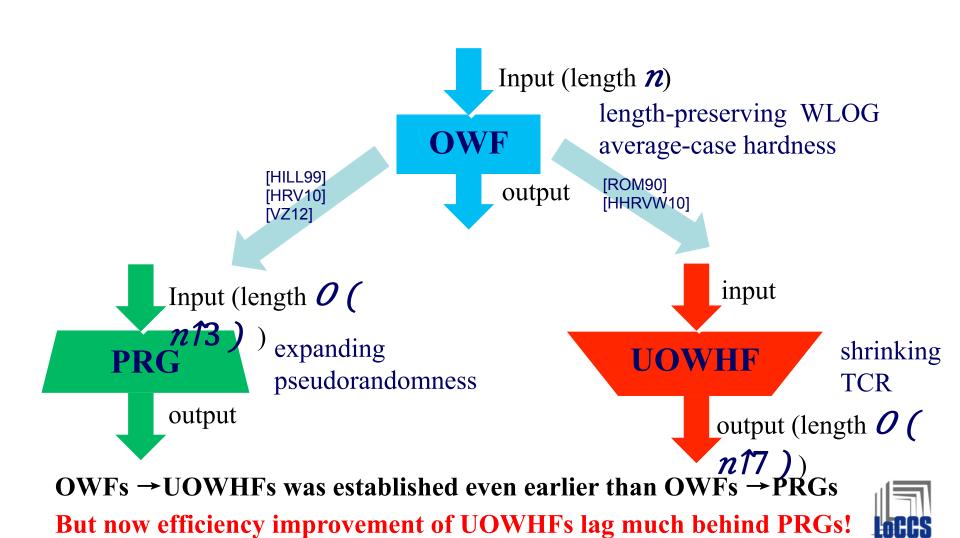
NaorYung89,HHRVW10

UOWHFs

Stat hiding commitment

One-way functions

Duality between PRGs and UOWHFs



An overview of literature and our work: UOWHFs from special one-way functions

underlying	black-box construction of UOWHFs			
primitive	Work	Output length	Key length	# of calls
one-way permutation	[NY89]	$\Theta(n)$	$\Theta(n)$	I
1-to-1	[NY89]	$\Theta(n)$	$O(n \cdot \omega(\log n))$	I
one-way function (a	rguably)	more close	$\Theta(n)$	I
	arbitrar nctions	y one-way	$O(n \cdot \omega(\log 12 n))$	$O(\omega(\log n))$ adaptive
	{BM12}	$O(n \cdot \omega(\log n))$	$O(n \cdot \omega(\log n))$	$O(\omega(\log n))$
	work	$O(n\cdot\omega(1))$	$O(n\cdot\omega(1))$	$O(n\cdot\omega(1))$
+ known hardnes	Our work	$\Theta(n)$	$\Theta(n)$	I
unknown-regular one-way function	[AGV12]	$\Theta(n)$	$O(n \cdot \log n)$	0 (n)
weakly-regular	Our	$\Theta(n)$	$O(n \log n)$	<i>n</i> ↑0(1)

Universal Hashing

- Universal hash functions: H:{ h:{0,1} $\uparrow n \rightarrow$ {0,1} $\uparrow m$ } ($n \ge m$) is universal if $\forall x \not\downarrow 1 \ne x \not\downarrow 2$: Pr $\downarrow h \leftarrow H[h(x \not\downarrow 1) = h(x \not\downarrow 1)] \le 2 \uparrow$
- E.g., H:{ $h \downarrow a$:{0,1} $\uparrow n \rightarrow$ {0,1} $\uparrow m$, $h \downarrow a$ (x)= $trunc(a \cdot x)$, a,h 2 $\uparrow n$)}
 - trunc: $\{0,1\} \uparrow n \rightarrow \{0,1\} \uparrow m$ outputs only the first m bits
- Well-known hashing properties (informal):
- > (leftover hash lemma, unconditional indistinguishability

For any $X \in \{0,1\}$ $\uparrow n$ with $H \downarrow \infty$ $(X) \ge m + d$, we have h(X) is $2 \uparrow - \Omega$ close to uniform (conditioned on a random $h \leftarrow H$).

> (injective hash lemma, unconditional TCR):

 \mathbf{F}_{-} \mathbf{F}_{-}

Definition: Max-entropy of X, denoted by $H \downarrow 0$ (X),= log|Supp(X)

OWPs > UOWHFs [NY89]

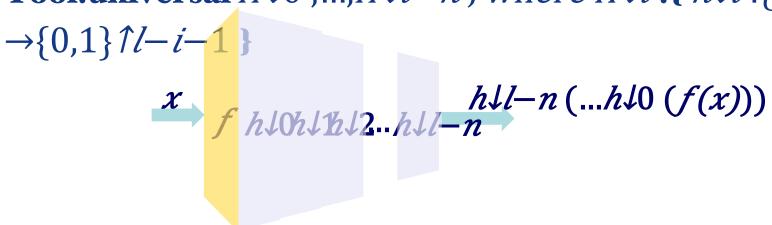
- Assumption: (t, \mathcal{E}) -one-way permutation $f:\{0,1\} \uparrow n \rightarrow \{0,1\}$
- Tool: universal $H:\{h:\{0,1\} \uparrow n \rightarrow \{0,1\} \uparrow n \}$ truncating f = f(x) n + h(f(x)) truin + touns(h(f(x)))

• Statement: G:{ $trunc \circ h \circ f \mid h \in H$ } is a family of $(t-n \uparrow O(1), 2 \uparrow s \cdot \varepsilon)$ -universal one-way hash functions.

Reduction didn't generalize to 1-to-1 one-way functions

1-to-1 OWFs → UOWHFs {NY89,DY90}

- Assumption: (t,ε) -1-to-1 OWF $f:\{0,1\} \uparrow n \rightarrow \{0,1\} \uparrow l \ (l>n)$
- **Tool:universal** $H \downarrow 0$,..., $H \downarrow l n$, where $H \downarrow i$: { $h \downarrow i$: { 0,1} $\uparrow l l$



• Statement: $G:\{h\downarrow l-n\circ\cdots\circ h\downarrow 1\circ h\downarrow 0\circ f\mid h\downarrow 0\in H\downarrow 0,\cdots,h\downarrow l$ $-n\in H\downarrow l-n\}$

is a family of $(t-n \uparrow O(1), O(\varepsilon))$ -UOWHFs.

Construction #1: 1-to-1 OWFs → UOWHFs

- Assumption: (t,ε) -1-to-1 OWF $f:\{0,1\} \uparrow n \rightarrow \{0,1\} \uparrow l \ (l>n)$
- Tool:universal $H = \{h: \{0,1\} \uparrow l \rightarrow \{0,1\} \uparrow l \}$

truncating function $trunc:\{0,1\} \uparrow l \rightarrow \{0,1\} \uparrow n-s$

$$x$$
 f
 $h\downarrow trunc(h(f(x)))$

• Statement: G:{ $trunc \circ h \circ f \mid h \in H$ } is a family of $(t-n \uparrow O(1), 2 \uparrow s+1 \varepsilon)$ -UOWHFs.

Construction #1: proof sket $\{f(x)\}$ in (0.1) $\{f(x)\}$ in

• Assumption (equivalent to (t,ε) -OWF $f:\{0,1\}$ $\stackrel{\text{\{0,1\}}}{\cap}$ $\stackrel{\text{\{0,1\}}}{\rightarrow}$ $\stackrel{\text{\{0,1\}}}{\cap}$ $\stackrel{\text{\{0,1\}}}{\rightarrow}$ $\stackrel{\text{\{0,1\}}}{\cap}$ $\stackrel{\text{\{0,1\}}}{\rightarrow}$

$$∀$$
 A of running time \pounds : $\Pr ↓ y \uparrow * ← \{0,1\} \uparrow l$ [Inv \uparrow A \ Need to y \ ↑* \)]<2 \ ↑−(l−n) ε show this

• Lemma: Any A that 2 \ ↑s ε - breaks the TCR of \ {truncohof} \

implies $Inv \uparrow A$ (-same efficiency as A) such that $\Pr \downarrow y \uparrow * \leftarrow \{0,1\} \uparrow l \ [Inv \uparrow A \ (y \uparrow *) \in f \uparrow -1 \ (y \uparrow *)] \ge 2 \uparrow -(l-n)$

 $Inv\uparrow A(v\uparrow *)$ works as follows:

1. Sample $y \uparrow * \leftarrow \{0,1\} \uparrow l$, $x \leftarrow \{0,1\} \uparrow n$, $\uparrow h \leftarrow \{h: h(f(x)) \oplus h(f(x)$

Construction #1: proof sketch (cont'd)

 $Inv \uparrow A(y \uparrow *)$ works as follows:

1. Sample
$$y \uparrow * \leftarrow \{0,1\} \uparrow l$$
, $x \leftarrow \{0,1\} \uparrow n$, $\uparrow h \leftarrow \{h: h(f(x)) \oplus h(y \uparrow *) = 0 \cdots 0 + n - s v \leftarrow \{0,1\} \downarrow \uparrow l - n + s \downarrow + l - n + s$

(assume WLOG
$$f(x) \neq y \uparrow *$$
)

Claim: above sampling is equivalent to
$$(x,h,v) \leftarrow \{0,1\} \uparrow n \times H \times \{0,1\}$$

$$\downarrow \uparrow l - n + s$$

then determine
$$y \uparrow *$$
 from (x, h, v)

2. Invoke $\chi' \leftarrow A(\chi,h)$ and returns χ' .

Construction #2:

known-regular OWFs (with known hardness) \rightarrow

- Assumption: (t,ε) -(2 $\uparrow r$ -to-1) OWF f:{0,1} $\uparrow n \rightarrow$ {0,1} $\uparrow n$ with known r and ε
- Tool:universal $H = \{h: \{0,1\} \uparrow n \rightarrow \{0,1\} \uparrow n r s'\}$ $H \downarrow 1 = \{h \downarrow 1: \{0,1\} \uparrow n \rightarrow \{0,1\} \uparrow r + s \uparrow' - s\}$ (value of $s \uparrow'$ to determined later)
- Theorem: $G = \{g: \{0,1\} \uparrow n \to \{0,1\} \uparrow n s \mid g(x) = (h(f(x)), h \downarrow 1(x))\}$

is a family of $(t-n\hat{1}O(1), 2\hat{1}S-S) = 3\sqrt{t^2+1} \varepsilon$ UOWHFs. $= 3\sqrt{t^2+1} \varepsilon$

Set
$$s' = (s + \log(1/\varepsilon))/2$$

Construction #2:

known-regular OWFs (with known hardness) →

• Theorem: $G = \{g: \{0,1\} \uparrow n \to \{0,1\} \uparrow n - s \mid g(x) = (h(f(x)), h \downarrow 1(x))\}$

is a family of $(t-n\hat{1}O(1),2\hat{1}s-s\hat{1}'+2\hat{1}s\hat{1}'+1\varepsilon)$ -**UOWHFs.**

Proof sketch.

$$\forall \mathbf{PPTA} : \Pr \downarrow x \leftarrow \{0,1\} \uparrow n, h \leftarrow H, h \downarrow 1 \leftarrow H \downarrow 1 \quad [x' \leftarrow A(x,h,h \downarrow 1) : x \uparrow x \land g(x \uparrow') = g(x)\}$$

Construction #3: known-regular OWFs → UOWHFs

- Assumption: (t, ε) -(2 fr-to-1) OWF f with known r, unknown ε
- $G = \{g: \{0,1\} \uparrow n \to \{0,1\} \uparrow n s \mid g(x) = (h(f(x)), h \downarrow 1 \mid (x))\}$ with $h: \{0,1\} \uparrow n \to \{0,1\} \uparrow n - r - s \uparrow', h \downarrow 1 : \{0,1\} \uparrow n \to \{0,1\} \uparrow r + s \downarrow n$

-s are

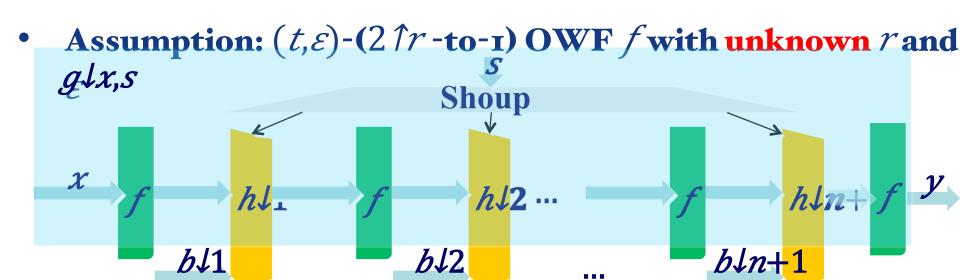
$$(t-n \uparrow O(1), 2 \uparrow s-s \uparrow' + 2 \uparrow s \uparrow' + 1 \varepsilon)$$
-UOWHFs.

NOT work any more! (need ε to decide s^{\uparrow})

• Remedy:Run $q=\omega(1)$ copies of f. Then $G'=\{g:\{0,1\} \uparrow qn \rightarrow \{0,1\} \uparrow q(n-\log n) \mid g(x)=(h(f(x)),h \downarrow 1(x))\}$

where
$$h(f(x))=(h(f(x\downarrow 1)),...,h(f(x\downarrow q)))\in\{0,1\}$$
 $\uparrow q(n-r-2)$

Construction by [AGV12]: unknown-regular OWFs → UOWHFs



- $\{g \downarrow x, s : \{0,1\} \uparrow n + 1 \rightarrow \{0,1\} \uparrow n\}$ is a family of UOWHFs keyed by $(x,s) \in \{0,1\} \uparrow O(n \cdot \log n)$ with input $b \downarrow 1 \dots b \downarrow n + 1$, output $v \in \{0,1\} \uparrow n$.
- Denomptons Output length O(n) box length O(n)

WEAKLY REGULAR OWFS[YGLW15]

• $f:\{0,1\} \uparrow n \rightarrow Y \downarrow 1 \cup Y \downarrow 2 \cup \dots \cup Y \downarrow n$ ($Y \downarrow j \stackrel{\text{def}}{=} \{y:2 \uparrow j-1 \leq |f \uparrow -1 (y)| < 2 \uparrow j\}$)

[AGV12] assumes f is regular or at least almost-regular

- ① **Def** (regular): $\exists \max Pr \downarrow [f(U \downarrow n) \in Y \downarrow \max]=1$
- ② **Def(almost-regular)**: $\exists \max, \exists d = O(\log n)$: $\Pr[f(U \downarrow n) \in (Y \downarrow \max d \cup Y \downarrow \max d + 1 \cup \cdots \cup Y \downarrow \max)] = 1 \operatorname{negl}(n)$
- Construction #4 assumes (much) less: 3 or even 4
- ③ **Def (weakly-regular):**∃c≥0, ∃max:

$$\Pr[f(U \downarrow n) \in Y \downarrow \max] \ge n \hat{1} - c$$
 & $\Pr[f(U \downarrow n) \in (Y \downarrow \max + 1 \downarrow I)] = 0$

Construction #4: weakly-regular OWFs → UOWHFs

Assumption: weakly regular OWF $f:\{0,1\} \uparrow n \rightarrow Y \downarrow 1 \cup Y \downarrow 2 \cup \cdots \cup Y \downarrow n$, i.e. $\exists c \geq 0$, $\exists \max: \Pr[f(U \downarrow n) \in Y \downarrow \max] \geq n \uparrow - c$ & $\Pr[f(U \downarrow n) \in Y \downarrow \max] = 0$

Construction:

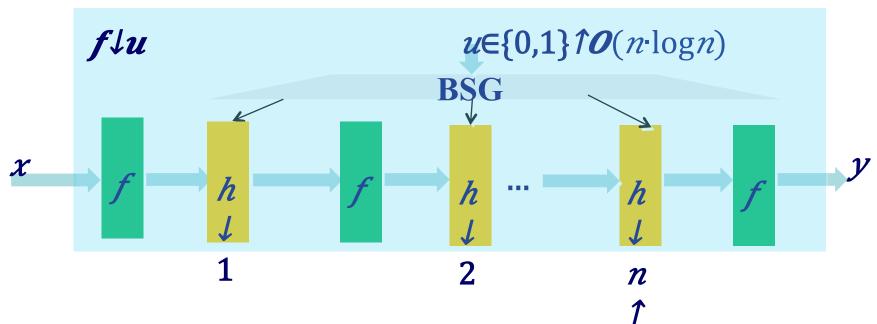
- Step 1: Construct a family of almost-regular OWFs $F = \{ f \downarrow u : \{0,1\} \uparrow n \rightarrow \{0,1\} \uparrow n \mid u \in \{0,1\} \uparrow O(n \cdot \log n) \}$ from f
- Step 2. Plug $f \downarrow u \leftarrow F$ into [AGV12].

Parameters:

- \triangleright key length $O(n \cdot \log n)$
- \triangleright output length O(n)

 ~ 100

Constructing almost-regular one-way functions from weakly one-way functions



One-wayness: $\forall PPT A: Pr \downarrow u \leftarrow \{0,1\} \uparrow O(n \cdot \log n), y \leftarrow f \downarrow u (U \downarrow n) [A(u,y) \in f \downarrow u \uparrow \uparrow -1 (y)] = negl(n)$ Proof adapted from [YGLW15]

Almost-regularity:

 $\forall B > 0: \Pr \downarrow u \leftarrow U, \quad x \leftarrow \{0,1\} \uparrow n \quad [2 \uparrow max / B < | f \downarrow u \uparrow \uparrow -1 \ (x)) | < 2 \uparrow max \cdot B \quad l = 1 - O(1) / B - neal(n)$

Open problem

How to construct UOWHFs with key and output $o(n\uparrow 7)$ from any one-way function?

- The currently best [HHRVW10]-UOWHF is dual to the PRG (from any OWF) by [HILL99, Holensteino6].
- However, PRGs have been significantly improved recently ([HRV10,VZ12]) via "next-bit pseudoentropy".
- Can more efficiently UOWHFs be constructed in a symmetric fashion to [HRV10, VZ12]?

Thank you!

