N

i D by NTT

Recent Applications of Hellman’s
Time-Memory Tradeoff

Yu Sasaki

NTT Secure Platform Laboratories
Nanyang Technological University, Singapore
1/October/2015 @ ASK 2015, Singapore

Copyright©2014 NTT corp. All Rights Reserved.

Topics

This talk focuses on a cryptanalytic tool:

Hellman’s time-memory tradeoff

Motivation
» Low memory attack is a recent trend

» Recently, | have found two applications:
1. NMAC/HMAC key recovery (CRYPTO’14)
2. Generalized birthday problem (Asiacrypt’15)

® NTT Copyright©2014 NTT corp . All Rights Reserved .

2

Innovative R&D by NTT

Hellman’s Time-Memory Tradeoff

Copyright©2014 NTT corp. All Rights Reserved.

Introduction of Hellman’s Tradeoff

“A Cryptanalytic Time-Memory Trade-Off.”
Martin E. Hellman, 1980.

P
. . Ln

Key Recovery against Block Cipher
[Offline] % n

E
» 2™ precomp, < 2™ memory Bk
[Online] *n
» Any key can be recovered with C

complexity less than 2™

® NTT Copyright©2014 NTT corp . All Rights Reserved .

Chains with Key Values

» Randomly choose a plaintext P
» Randomly choose starting key value v,.
» Make chains of key values for X blocks.

P P P P
! ! ! !
Vg — F E FE /—> oo ./—> E
} } } }
4] (% %! Ux
Vpe—>e—>e—>0—> oo >e—>e Dy
V1 Vy V3 Vx—1

Many Chains with Saving Memory

» M chains of length X s.t. M X X = 2"

» Only start and end points are stored in T,

> @

> @

> @

> 0@

> e oo

> e oo

>0

> e oo

> 0

>0

>0 U)l(

>0

>e U)Z(

>0 U)Iy

>0

Tpre

-~ N
N— -

(vo, vx)

(v6, vx)

Copyright©2014 NTT corp. All Rights Reserved.

5

Summary of Offline Phase

» (ldeally) all key values appear in chains.

Time = MX = 2"

> @

> @

> @

—

Memory = M
1
>e—> oo >e—>e Uy
>0e—> oo >0 —>e U)Z(
>0e—> oo >0 —> 0 U)Iy

Copyright©2014 NTT corp. All Rights Reserved.

6

Online Phase

After user’s key K is chosen:

» Query P to obtain C.

» Make a chain until it reaches
one of end points (v){) in Ty

K e—e—e—>0e—>e—0e—>0—>0 Uj

C

U({' >0—> 0 —>0—>0—>0—>0—>0 —>0 —>0 —>0 ”U)](

K is one of the values in the matched chain.

(recovered with additional X steps)
® NTT Copyright©2014 NTT corp. All Rights Reserved. 7

Summary of Hellman’s Tradeoff

Offline Phase:
(Time, Memory) = (2™, M)
Online Phase:
(Time, Memory) = (X, negl)

Tradeoff:

27’1
Memory

Time = X =

Time X Memory = 2"

Copyright©2014 NTT corp. All Rights Reserved.

N

i D by NTT

Application to Key Recovery in
HMAC/NMAC

A part of results in

Jian Guo, Thomas Peyrin, Yu Sasaki and Lei
Wang, “Updates on Generic Attacks against
HMAC and NMAC.” CRYPTO 2014.

Copyright©2014 NTT corp. All Rights Reserved.

Hash Function based MAC

* NMAC (a base technique of HMAC)
» Require 2 keys (inefficient)
» Simple

e HMAC (widely used)

» Require 1 key (practically efficient)
» Complicated

For simplicity, NMAC is explained in this talk.

® NTT Copyright©2014 NTT corp . All Rights Reserved . 10

NMAC Specification

Two hash function calls by replacing IV
with two keys K;,, and K,,;;.

M

l

inner function

Hash

KOUt

\

outer function

Hash

—Tag

Copyright©2014 NTT corp. All Rights Reserved.

11

NMAC with Iterated Hash

Hash functions have some iterative structure,
e.g. Merkle-Damgard structure

Ml 1\42 ML inner function

SN N
Kin_\n_,CF _\n_,CF_>,,, __|CF _L)ou\ter
e

function

Straightforward Application

» Regard NMAC as 2n-bit key primitive.
» Work in straightforward, but inefficient.

M
Kin\ zn
-—\2 NMAC
KO‘LLtJ
I
Tag

Divide-and-Conquer for K+ ?? A

By focusing on outer function, K,,,; may be
attacked independently from K;,,.

CF
Kout — T

® NTT Copyright©2014 NTT corp. All Rights Reserved. 14

Divide-and-Conquer for K+ ??

nnnnnnnnnnnnnnnnnn

K;,, hides the input value to outer function.

(simple application is impossible)

P unknown

CF
Kout

— T

® NTT Copyright©2014 NTT corp. All Rights Reserved. 15

Internal State Recovery on NMAC .

nnnnnnnnnnnnnnnnnn

» [LPW14] recovers internal state P for some M.
» [LPW14] requires online queries.
» Hellman’s tradeoff is meaningless without offline.

M

cr| P Internal state recovery

CF
Kout — T

Our Method (Offline)

Randomly choose v.

V VYV VY

e

Vg

LN

CF

M

— 000 —>f

T

s+21/3

LN

CF

Kout

»re With ordinary Hellman’s method

nnnnnnnnnnnnnnnnnn

Drocess v, with 2™/3 blocks message to get v,,.
Run Hellman’s alg by assuming v, is later obtained.

ve

\

fL)

- J|CF

T

_/

Copyright©2014 NTT corp. All Rights Reserved. 17

Our Method (Online) 4

nnnnnnnnnnnnnnnnnn

» Recover internal state P with [LPW14].

> Run 2nd pre attack [KSO5] from P to 2™/3 targets.
» Obtain T for v,. Then, make a chain as usual.

M M Mg ons
LN NN

Kin =" > P —mmmn—{ vg—" e — " e |

n/3 d ~)
2"/ 2 targets for 29 pre. N
| JeF |,
Kowe T LI T

Summary for Application to NMAC

» For MAC schemes, application of
Hellman’s tradeoff is non-trivial.

» By combining several existing

techniques, application is still possible.

» For NMAC, we used

1. Internal state recovery
2. 2"d preimage attack on Merkle-Damgard
3. Hellman’s time-memory tradeoff

® NTT Copyright©2014 NTT corp. All Rights Reserve

N

i D by NTT

Generalized Birthday Problem

A part of results in

lvica Nikoli¢ and Yu Sasaki, “Refinements of the
k-tree Algorithm for the Generalized Birthday
Problem,” Asiacrypt 2015, To appear.

Copyright©2014 NTT corp. All Rights Reserved.

Birthday Problem

F,:{0,1}* - {0,1}"
F,:{0,1}* - {0,1}"

Find input values (x4, X5) such that
F1(x1) @ F2(x3) = 0.

> can
> can

ne defineo

ne defineo

for other group operations
for an identical function

but different input values

©®) NTT

Solving Birthday Problem

Suppose that
> List L, contains 2! pairs of (x;, F1(x;)).
> List L, contains 27 pairs of (x;, F5(x;)).

When 2!+ > 2", solutions of F; (x;) B
F,(x,) = 0 exists with high probability.

N N
L, L,
elements elements
SN— SN—_—~

® NTT Copyright©2014 NTT corp . All Rights Reserved .

Efficient Algorithm for Birthday Problem

For the birthday problem, several efficient
algorithms can solve it with a complexity of

(Time, Memory) = (2™/2,2™/2),

Moreover, with a cycle detection method:
(Time, Memory) = (0(2™?),negl)

® NTT Copyright©2014 NTT corp . All Rights Reserved . 23

Generalized Birthday Problem

F,:{0,1}* - {0,1}"
F,:{0,1}* - {0,1}"

F,: {0,1};; 0,1}"

Find a k-tuple input values (x4, x5, ... X)
such that

Solving Generalized Birthday Problem
List L; contains pairs of (x, F;(x)).

When |L1‘ X ‘Lzl X oo X |Lk| 2 Zn, d
solution of generalized birthday
problem exists with high probability.

It does not mean that the solution can
be found with complexity 2"/,

® NTT Copyright©2014 NTT corp . All Rights Reserved . 25

Wagner’s k-Tree Algorithm [W02]

solves the problem for k with
n

Time = Memory = 2/logk|+1’
e.g.
> Alists > k=4 - T=M =23
> 8lists > k=8 >T=M=2W*

Approach: divide-and-conquer

® NTT Copyright©2014 NTT corp . All Rights Reserved .

Example of k-Tree Algorithm (k = 4)

(1) L1234 }27’1/3 2nd layer:
Balance
"3 { 2n /3 bits
;/////at><k\\\\\\; _____________________________
(2™3) L,, (2"/3) L., .
Balance
n/3 4 n/3 4 .
l>a<l [>n<] n/3 bits
_/ _ _/ _ _____________________________

(Zn/B) (Zn/B) (Zn/S) (Zn/B)

® NTT Copyright©2014 NTT corp. All Rights Reserved. 27

Introducing Time-Memory Tradeoff

e Memory is more costly than Time.
e E.g. n = 160 for SHA-1:

> 2°3-3 SHA-1 computations are feasible

> 2°3-3 memory seems hard (memory access
is slow).

What's the best algorithm for the GBP
with a small memory?

® NTT Copyright©2014 NTT corp . All Rights Reserved . 28

Previous Work

Not so many researches have been taken
on the memory limited case of GBP

» D. J. Bernstein. “Better price-

performance ratios for generalized
birthday attacks.”, SHARCS'07

» D. J. Bernstein, T. Lange, R. Niederhagen,
C. Peters, and P. Schwabe. “FSBday.”,
Indocrypt 2009

® NTT Copyright©2014 NTT corp . All Rights Reserved . 29

How Does It Look Like?

(1) L1234
Time = M 2logM
logM {
e
(M) Ly, (M) L3,
logM{ [log M{ [§
B>< B><]
/ _ _/ _
Ly L, L3 Ly
o || oo |l e || e |

nnnnnnnnnnnnnnnnnn

2nd layer:

Cannot
reach n bits

1st layer:

Cramp at least
log M bits

Cannot
store 2M/3

Copyright©2014 NTT corp. All Rights Reserved. 30

Previous Method 1

(1) L1234
} 2logM
logM {

/N\

(M) Ly, (M) L3,

logM<[[>E<] logM{l>E<]
T~ 7~

Ly % L Ly
(M) (M) (M) (M)

Simple
teration:

terate until n
nits become 0.

Time:
M % 213 log M

Copyright©2014 NTT corp. All Rights Reserved. 3 1

Previous Method 2

logM{ log M-
>

Ly L, Ls

(M) (M) (M) (M)

©®) NTT

><
/\

nnnnnnnnnnnnnnnnnn

Prefilteration:

Spend some
computation to
prepare lists.

Time:
M % 213 log M

fixed to
some value

Copyright©2014 NTT corp. All Rights Reserved. 32

Previous Method 3

Only works when f; = f5, f3 = f4,

1. Run the k-tree algorithm for f4, f3, f5, -
with small M.

2. Run the k-tree algorithm for f,, f4, f6,
with small M.

3. Run the memoryless collision search for
the last merging phase.

® NTT Copyright©2014 NTT corp . All Rights Reserved . 33

Comparison of Previous Tradeoffs .

t

k=8
Prev.1 and .2
w2l _Prev.3

GBP

n/3+

n/4+

nI/S nl/4 n/l3 m

* Prev.1 and .2 are good when m is relatively large.
* Prev.3 is opposite.
® NTT Copyright©2014 NTT corp. All Rights Reserved. 34

Our New Tradeoff .

t

k=8
Prev.1 and .2
Prev.3
/2 e

GBP

n/3+

n/4+

nI/S nl/ﬁlu n/l3 m

» take advantages of both methods

» only works when all f is identical
® NTT Copyright©2014 NTT corp. All Rights Reserved. 35

Hellman’s Table for Public Functions

» Domain is infinite, impossible to
examine all the input values.

» |dentical idea, but different purpose.

-~ N
N— -

e—>0e—>e0e—>e—>e—>0e—>0—>0 U)l((U%,U)l()

e—>0—>0—>0—>0—>0—>0—>0 U)Z((vg,v)z()

Vg e—>e—>0e—>0—0—>0—>0 >0U)1\(/I (UO,UX)
©) NrT Offline

Copyright©2014 NTT corp. All Rights Reserved. 36

Hellman’s Table for Public Functions ;

» Online phase of Hellman’s algorithm generates
a collision to one of the chains.

» Hellman’s table is used for collision generation.

° — T~
~ —_ S
U% °o—>e—>0—>o °o—>o0o—>0—>0 U)l((U(%; U)l()
Ug °e—>e—>e—>e—>e—>e—>0—>0 U)Z((vg,v}z()
. collision !! . .
U(I)VIQ >0e—>0—>0—>0—> 0 —>0—>0 U)I\(/I (U(I)VI, U)Iy)
_ \ o N—— ———

® NTT X Copyright©2014 NTT corp. All Rights Reserved. 37

Hellman’s Table for Public Functions

Fact 1 (Hellman’s Table)
Once M chains of length X are computed, cost

. . N -
for generating collision is O(W) per collision.

U% o—>e0e—>0—>0 o—>e0—>0—>0 U)l(

Ug 0e—>0—>0—>0—>0—>0—>0—>0 U)Z(
M- . collision !! .

U(I)VIQ >0—>0—>0—>0—>0—>0—>0 U)I\(/I

J

-~ N
N— -

(vo, vx)

(v6, vx)

Copyright©2014 NTT corp. All Rights Reserved.

38

Previous Application of Hellman’s Table

3-collision finding problem [JLO9]
X1 e f
2 oL f(n) = F0) =)
X3 o f
> Well-known: T = 221/3 M = 221/3,
> [JLO9]: T = 22™/3 M = 21/3

® NTT Copyright©2014 NTT corp . All Rights Reserved . 39

Previous Application of Hellman’s Table .

1. Generate chains: T = 22%/3 M = 2M/3
Cost per collision becomes 0(2™/3).
2. Generate 23/™ collisions: T = 22"/3,M = 2""/3-

3. Generate 22"/3 values : T = 2?3, M = negl -

\ 4

coll
1 1
Vge—>e—>e—0—0e—>0—0—e Uy
M =2M3] = :

v00 >0e—>0—>0—>0—> 0 —>0 >0U)1¥1
J

Y
X =2"3
® NTT - Copyright©2014 NTT corp. All Rights Reserved. 40

Hellman’s Table Fits k-Tree

(1) L1234 }n S
£

/N\

(M)

(M) L3,

\

(M)

Al
>
Sl

o~

N\

Ly
(M)

\
l
/

- 1st layer of k-
tree algorithm
generates many
partial collisions.

- Suitable for
Hellman’s table.

Copyright©2014 NTT corp. All Rights Reserved. 41

Reduction Function

» Ordinary Hellman’s table detects collisions
instead of partial collisions.

» The k-tree alg finds partial collisions
(otherwise divide-and-conquer doesn’t work).

» Reduction function f, discards n — £ MSBs
and only uses € LSBs for building chains.

Vo %1 (%) Ux

fe fe fe fe

¢4 'l =l ¢4

i eserved.

Our Algorithm for k-Tree .

nnnnnnnnnnnnnnnnnn

HEE
1. Construct Hellman’s table.

n—~>

2. Generate 2 2 £-bit collisions for L1, and L3,.
3. Find a collision on n — ¥ bits between L, and L,.

Tpre

B)

A A K f 1
l {

M <]
. : n_tg' n—l

L ® ® 22 22
o WA lrl s f 11 1119)
._“%H e R e I =R =

@ NTT Copyright©2014 NTT corp. All Rights Reserved. 43

Complexity Evaluation

Step 1: Time = MX, Memory = M
n+<¢ n—~{

Step2: Time =2 2 /MX, Memory =2 2
n—+{

Step3: Time =2 2, Memory = negl

Balance all the Steps:

T“M =N

Our Algorithm for General k

» Partial collisions in the first layer are always
generated with Hellman’s table.

T2 . Mlog k—1 _ N

» Example (k=8):

Method Curve M T

Prevworkl TM3 =N AL 26m/12
Prevwork3 T2*M =N 2Mn/6 25n/12
Ours T°M? =N 2n/6 p4n/12

® NTT Copyright©2014 NTT corp . All Rights Reserved .

Our New Results .

t

k=8
Prev.1 and .2
Prev.3
/2 e

GBP

n/3+

n/4+

nI/S nl/ﬁlu n/l3 m

» take advantages of both methods

» only works when all f is identical
® NTT Copyright©2014 NTT corp. All Rights Reserved. 46

2

Innovative R&D by NTT

Concluding Remarks

Copyright©2014 NTT corp. All Rights Reserved.

Conclusion

Recent results using Hellman’s tradeoff
* Secret function

» Outside construction makes application
non-trivial

» K, recovery in NMAC/HMAC
* Public function

» Useful when many collisions are generated
» New time-memory tradeoff for GBP

® NTT Copyright©2014 NTT corp. All Rights Reserved.

nnnnnnnnnnnnnn

Thank you for your attention !!

