

Recent Applications of Hellman's Time-Memory Tradeoff

Yu Sasaki

NTT Secure Platform Laboratories Nanyang Technological University, Singapore 1/October/2015 @ ASK 2015, Singapore

Copyright©2014 NTT corp. All Rights Reserved.

This talk focuses on a cryptanalytic tool: Hellman's time-memory tradeoff

Motivation

- Low memory attack is a recent trend
- Recently, I have found two applications:
 - 1. NMAC/HMAC key recovery (CRYPTO'14)
 - 2. Generalized birthday problem (Asiacrypt'15)

Hellman's Time-Memory Tradeoff

Copyright©2014 NTT corp. All Rights Reserved.

"A Cryptanalytic Time-Memory Trade-Off." Martin E. Hellman, 1980.

Key Recovery against Block Cipher [Offline]

 \succ 2^{*n*} precomp, < 2^{*n*} memory

[Online]

Any key can be recovered with complexity less than 2ⁿ

3

- Randomly choose a plaintext P
- \succ Randomly choose starting key value v_0 .
- \succ Make chains of key values for X blocks.

- > M chains of length X s.t. $M \times X = 2^n$
- > Only start and end points are stored in T_{pre}

(Ideally) all key values appear in chains.

K is one of the values in the matched chain. (recovered with additional X steps) Offline Phase: $(Time, Memory) = (2^n, M)$ Online Phase: (Time, Memory) = (X, negl)Tradeoff:

$$Time = X = \frac{2^n}{Memory}$$

$$\Leftrightarrow Time \times Memory = 2^n$$

8

Innovative B&D by N

Application to Key Recovery in HMAC/NMAC

A part of results in

Jian Guo, Thomas Peyrin, Yu Sasaki and Lei Wang, "Updates on Generic Attacks against HMAC and NMAC." CRYPTO 2014.

Innovative R&D by NTT

- NMAC (a base technique of HMAC)
 - Require 2 keys (inefficient)
 - Simple
- HMAC (widely used)
 - Require 1 key (practically efficient)
 - Complicated

For simplicity, NMAC is explained in this talk.

Two hash function calls by replacing IV with two keys K_{in} and K_{out} .

Hash functions have some iterative structure, e.g. Merkle-Damgård structure

Innovative B&D by N

- \blacktriangleright Regard NMAC as 2n-bit key primitive.
- Work in straightforward, but inefficient.

Innovative R&D by NT

By focusing on outer function, K_{out} may be attacked independently from K_{in} .

Innovative R&D by NT

 K_{in} hides the input value to outer function. (simple application is impossible)

Innovative B&D by N

- \succ [LPW14] recovers internal state P for some M.
- [LPW14] requires online queries.
- > Hellman's tradeoff is meaningless without offline.

 \succ Randomly choose v_s .

- \succ Process v_s with $2^{n/3}$ blocks message to get v_e .
- \succ Run Hellman's alg by assuming v_e is later obtained.

- \succ Recover internal state *P* with [LPW14].
- > Run 2nd pre attack [KS05] from P to $2^{n/3}$ targets.
- \succ Obtain T for v_e . Then, make a chain as usual.

- For MAC schemes, application of Hellman's tradeoff is non-trivial.
- By combining several existing techniques, application is still possible.
- For NMAC, we used
 - 1. Internal state recovery
 - 2. 2nd preimage attack on Merkle-Damgård
 - 3. Hellman's time-memory tradeoff

Generalized Birthday Problem

A part of results in

Ivica Nikolić and Yu Sasaki, "*Refinements of the k-tree Algorithm for the Generalized Birthday Problem*," Asiacrypt 2015, To appear.

$$\begin{split} F_1 &: \{0,1\}^* \to \{0,1\}^n \\ F_2 &: \{0,1\}^* \to \{0,1\}^n \end{split}$$

Find input values (x_1, x_2) such that $F_1(x_1) \bigoplus F_2(x_2) = 0.$

- can be defined for other group operations
- can be defined for an identical function but different input values

Suppose that

- \succ List L_1 contains 2^i pairs of $(x_i, F_1(x_i))$.
- \succ List L_2 contains 2^j pairs of $(x_j, F_2(x_j))$.
- When $2^{i+j} \ge 2^n$, solutions of $F_1(x_1) \bigoplus$ $F_2(x_2) = 0$ exists with high probability.

Moreover, with a cycle detection method: $(Time, Memory) = (O(2^{n/2}), negl)$

Generalized Birthday Problem

$$F_1: \{0,1\}^* \to \{0,1\}^n$$

$$F_2: \{0,1\}^* \to \{0,1\}^n$$

$$F_k: \{0,1\}^* \to \{0,1\}^n$$

Find a k-tuple input values $(x_1, x_2, ..., x_k)$ such that

$$\bigoplus_{i=1}^k F_i(x_i) = 0.$$

Innovative R&D by NT

List L_i contains pairs of $(x, F_i(x))$.

When $|L_1| \times |L_2| \times \cdots \times |L_k| \ge 2^n$, a solution of generalized birthday problem exists with high probability.

It does not mean that the solution can be found with complexity $2^{n/k}$.

solves the problem for
$$k$$
 with

$$Time = Memory = 2^{\frac{n}{\lceil \log k \rceil + 1}}$$
e.g.

➤ 4 lists → k = 4 → T = M =
$$2^{n/3}$$

> 8 lists
$$\rightarrow k = 8 \rightarrow T = M = 2^{n/4}$$

Approach: divide-and-conquer

Innovative R&D by NT

Example of k-Tree Algorithm (k = 4)

27

Innovative R&D by NT

- Memory is more costly than Time.
- E.g. n = 160 for SHA-1:
 - $\geq 2^{53.3}$ SHA-1 computations are feasible
 - 2^{53.3} memory seems hard (memory access is slow).

What's the best algorithm for the GBP with a small memory?

Not so many researches have been taken on the memory limited case of GBP

- D. J. Bernstein. "Better priceperformance ratios for generalized birthday attacks.", SHARCS'07
- D. J. Bernstein, T. Lange, R. Niederhagen,
 C. Peters, and P. Schwabe. "FSBday.",
 Indocrypt 2009

How Does It Look Like?

Previous Method 1

Previous Method 2

Only works when $f_1 = f_2$, $f_3 = f_4$, ...

- 1. Run the *k*-tree algorithm for f_1, f_3, f_5, \cdots with small *M*.
- 2. Run the k-tree algorithm for f_2, f_4, f_6, \cdots with small M.
- 3. Run the memoryless collision search for the last merging phase.

Comparison of Previous Tradeoffs

- Prev.1 and .2 are good when *m* is relatively large.
- Prev.3 is opposite.

Innovative R&D by N

Our New Tradeoff

- Innovative R&D by NTT
- Domain is infinite, impossible to examine all the input values.
- Identical idea, but different purpose.

- Innovative R&D by NTT
- Online phase of Hellman's algorithm generates a collision to one of the chains.
- > Hellman's table is used for collision generation.

3-collision finding problem [JL09]

Well-known: $T = 2^{2n/3}$, $M = 2^{2n/3}$.
[JL09]: $T = 2^{2n/3}$, $M = 2^{n/3}$

Previous Application of Hellman's Table

Hellman's Table Fits k-Tree

1st layer of ktree algorithm
generates many *partial* collisions.

Suitable for
 Hellman's table.

- Ordinary Hellman's table detects collisions instead of partial collisions.
- The k-tree alg finds partial collisions (otherwise divide-and-conquer doesn't work).
- ➢ Reduction function f_ℓ discards $n \ell$ MSBs and only uses ℓ LSBs for building chains.

- Construct Hellman's table.
- $n-\ell$ 2. Generate 2^{-2} ℓ -bit collisions for L_{12} and L_{34} .
- Find a collision on $n \ell$ bits between L_{12} and L_{34} . 3.

Step 1: Time = MX,Memory = MStep 2: Time =
$$2^{\frac{n+\ell}{2}}/MX$$
,Memory = $2^{\frac{n-\ell}{2}}$ Step 3: Time = $2^{\frac{n-\ell}{2}}$,Memory = negl

Balance all the Steps: $T^2M = N$

Partial collisions in the first layer are always generated with Hellman's table.

$$T^2 \cdot M^{\log k - 1} = N$$

Example (
$$k=8$$
):

Method	Curve	М	Т
Prev work 1	$TM^3 = N$	$2^{n/6}$	$2^{6n/12}$
Prev work 3	$T^2M = N$	$2^{n/6}$	$2^{5n/12}$
Ours	$T^2 M^2 = N$	$2^{n/6}$	$2^{4n/12}$

Innovative B&D by N

Our New Results

Concluding Remarks

Copyright©2014 NTT corp. All Rights Reserved.

Recent results using Hellman's tradeoff

- Secret function
 - Outside construction makes application non-trivial
 - \succ *K*_{out} recovery in NMAC/HMAC
- Public function
 - Useful when many collisions are generated
 - New time-memory tradeoff for GBP

Thank you for your attention !!

Copyright©2014 NTT corp. All Rights Reserved. 49