
Copyright©2014 NTT corp. All Rights Reserved.

Recent Applications of Hellman’s
Time-Memory Tradeoff

Yu Sasaki

NTT Secure Platform Laboratories

Nanyang Technological University, Singapore

1/October/2015 @ ASK 2015, Singapore

1 Copyright©2014 NTT corp. All Rights Reserved.

Topics

This talk focuses on a cryptanalytic tool:

Hellman’s time-memory tradeoff

Motivation

 Low memory attack is a recent trend

 Recently, I have found two applications:

1. NMAC/HMAC key recovery (CRYPTO’14)

2. Generalized birthday problem (Asiacrypt’15)

Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Time-Memory Tradeoff

3 Copyright©2014 NTT corp. All Rights Reserved.

Introduction of Hellman’s Tradeoff

“A Cryptanalytic Time-Memory Trade-Off.”

Martin E. Hellman, 1980.

Key Recovery against Block Cipher

[Offline]

 2𝑛 precomp, < 2𝑛 memory

[Online]

 Any key can be recovered with
complexity less than 2𝑛

𝐸𝐾 𝐾

𝑃

𝐶

𝑛

𝑛

𝑛

4 Copyright©2014 NTT corp. All Rights Reserved.

Chains with Key Values

 Randomly choose a plaintext 𝑃

 Randomly choose starting key value 𝑣0.

 Make chains of key values for 𝑋 blocks.

𝐸 𝑣0

𝑃

𝑣1

𝐸

𝑃

𝐸

𝑃

𝑣2 𝑣3

𝐸

𝑃

𝑣𝑋

𝑣0
𝑣1 𝑣2 𝑣3 𝑣𝑋−1

𝑣𝑋

5 Copyright©2014 NTT corp. All Rights Reserved.

Many Chains with Saving Memory

 𝑀 chains of length 𝑋 s.t. 𝑀 × 𝑋 = 2𝑛

 Only start and end points are stored in 𝑇𝑝𝑟𝑒

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑇𝑝𝑟𝑒

6 Copyright©2014 NTT corp. All Rights Reserved.

Summary of Offline Phase

 (Ideally) all key values appear in chains.

𝑇𝑖𝑚𝑒 = 𝑀𝑋 = 2𝑛
𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑀

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑇𝑝𝑟𝑒

7 Copyright©2014 NTT corp. All Rights Reserved.

Online Phase

𝐾 is one of the values in the matched chain.

𝐸 𝐾

𝑃

𝐶

𝑣0
𝑗
 𝑣𝑋

𝑗

𝐶
𝑣𝑋

𝑗
 𝐾

After user’s key 𝐾 is chosen:

 Query 𝑃 to obtain 𝐶.

 Make a chain until it reaches

one of end points (𝑣𝑋
𝑗
) in 𝑇𝑝𝑟𝑒.

(recovered with additional 𝑋 steps)

8 Copyright©2014 NTT corp. All Rights Reserved.

Summary of Hellman’s Tradeoff

Offline Phase:
𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (2𝑛, 𝑀)

Online Phase:
𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑋, 𝑛𝑒𝑔𝑙)

Tradeoff:

𝑇𝑖𝑚𝑒 = 𝑋 =
2𝑛

𝑀𝑒𝑚𝑜𝑟𝑦

⟺ 𝑇𝑖𝑚𝑒 × 𝑀𝑒𝑚𝑜𝑟𝑦 = 2𝑛

Copyright©2014 NTT corp. All Rights Reserved.

Application to Key Recovery in
HMAC/NMAC

A part of results in

Jian Guo, Thomas Peyrin, Yu Sasaki and Lei
Wang, “Updates on Generic Attacks against
HMAC and NMAC.” CRYPTO 2014.

10 Copyright©2014 NTT corp. All Rights Reserved.

Hash Function based MAC

• NMAC (a base technique of HMAC)

 Require 2 keys (inefficient)

 Simple

• HMAC (widely used)

 Require 1 key (practically efficient)

 Complicated

For simplicity, NMAC is explained in this talk.

11 Copyright©2014 NTT corp. All Rights Reserved.

NMAC Specification

Two hash function calls by replacing 𝐼𝑉
with two keys 𝐾𝑖𝑛 and 𝐾𝑜𝑢𝑡.

𝐻𝑎𝑠ℎ

𝑀

𝐾𝑖𝑛

𝐻𝑎𝑠ℎ 𝐾𝑜𝑢𝑡 𝑇𝑎𝑔

inner function

outer function

12 Copyright©2014 NTT corp. All Rights Reserved.

NMAC with Iterated Hash

Hash functions have some iterative structure,
e.g. Merkle-Damgård structure

𝑀1

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝐶𝐹

𝑀2

𝐶𝐹

𝑀𝐿

𝐶𝐹

𝐶𝐹

𝑛 𝑛

𝑛 𝑛

inner function

outer function

13 Copyright©2014 NTT corp. All Rights Reserved.

Straightforward Application

 Regard NMAC as 2𝑛-bit key primitive.

 Work in straightforward, but inefficient.

𝑁𝑀𝐴𝐶

𝑀

𝑇𝑎𝑔

∗

𝑛

𝟐𝒏 𝐾𝑖𝑛
𝐾𝑜𝑢𝑡

14 Copyright©2014 NTT corp. All Rights Reserved.

Divide-and-Conquer for 𝐾𝑜𝑢𝑡??

By focusing on outer function, 𝐾𝑜𝑢𝑡 may be
attacked independently from 𝐾𝑖𝑛.

𝑀1

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝐶𝐹

𝑀2

𝐶𝐹

𝑀𝐿

𝐶𝐹

𝐶𝐹

15 Copyright©2014 NTT corp. All Rights Reserved.

Divide-and-Conquer for 𝐾𝑜𝑢𝑡??

𝐾𝑖𝑛 hides the input value to outer function.

(simple application is impossible)

𝑀1

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝐶𝐹

𝑀2

𝐶𝐹

𝑀𝐿

𝐶𝐹

𝐶𝐹

𝑃 unknown

16 Copyright©2014 NTT corp. All Rights Reserved.

Internal State Recovery on NMAC

 [LPW14] recovers internal state 𝑃 for some 𝑀.

 [LPW14] requires online queries.

 Hellman’s tradeoff is meaningless without offline.

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝑀

𝐶𝐹

𝐶𝐹

𝑃 Internal state recovery

17 Copyright©2014 NTT corp. All Rights Reserved.

Our Method (Offline)

Randomly choose 𝑣𝑠.

Process 𝑣𝑠 with 2𝑛/3 blocks message to get 𝑣𝑒.

Run Hellman’s alg by assuming 𝑣𝑒 is later obtained.

𝐾𝑜𝑢𝑡 𝑇

𝑀𝑠

𝐶𝐹

𝑀𝑠+2𝑛/3

𝐶𝐹

𝐶𝐹

𝑣𝑠 𝑣𝑒

𝑇𝑝𝑟𝑒 with ordinary Hellman’s method

18 Copyright©2014 NTT corp. All Rights Reserved.

Our Method (Online)

 Recover internal state 𝑃 with [LPW14].

 Run 2nd pre attack [KS05] from 𝑃 to 2𝑛/3 targets.

 Obtain 𝑇 for 𝑣𝑒. Then, make a chain as usual.

𝑀1

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝐶𝐹

𝑀𝑠

𝐶𝐹

𝑀𝑠+2𝑛/3

𝐶𝐹

𝐶𝐹

𝑣𝑠 𝑣𝑒

2𝑛/3 targets for 2nd pre.

𝑃

19 Copyright©2014 NTT corp. All Rights Reserved.

Summary for Application to NMAC

 For MAC schemes, application of
Hellman’s tradeoff is non-trivial.

 By combining several existing
techniques, application is still possible.

 For NMAC, we used

1. Internal state recovery

2. 2nd preimage attack on Merkle-Damgård

3. Hellman’s time-memory tradeoff

Copyright©2014 NTT corp. All Rights Reserved.

Generalized Birthday Problem

A part of results in

Ivica Nikolić and Yu Sasaki, “Refinements of the
k-tree Algorithm for the Generalized Birthday
Problem,” Asiacrypt 2015, To appear.

21 Copyright©2014 NTT corp. All Rights Reserved.

Birthday Problem

𝐹1: 0,1 ∗ → 0,1 𝑛
𝐹2: 0,1 ∗ → 0,1 𝑛

Find input values (𝑥1, 𝑥2) such that

𝐹1 𝑥1 ⊕ 𝐹2 𝑥2 = 0.

 can be defined for other group operations

 can be defined for an identical function
but different input values

22 Copyright©2014 NTT corp. All Rights Reserved.

Solving Birthday Problem

Suppose that

 List 𝐿1 contains 2𝑖 pairs of (𝑥𝑖 , 𝐹1(𝑥𝑖)).

 List 𝐿2 contains 2𝑗 pairs of (𝑥𝑗 , 𝐹2(𝑥𝑗)).

When 2𝑖+𝑗 ≥ 2𝑛, solutions of 𝐹1 𝑥1 ⊕
𝐹2 𝑥2 = 0 exists with high probability.

𝐿1 𝐿2
2𝑖

elements
2𝑗

elements

23 Copyright©2014 NTT corp. All Rights Reserved.

Efficient Algorithm for Birthday Problem

For the birthday problem, several efficient
algorithms can solve it with a complexity of

𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (2𝑛/2, 2𝑛/2).

Moreover, with a cycle detection method:

𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑂(2𝑛/2), 𝑛𝑒𝑔𝑙)

24 Copyright©2014 NTT corp. All Rights Reserved.

Generalized Birthday Problem

𝐹1: 0,1 ∗ → 0,1 𝑛
𝐹2: 0,1 ∗ → 0,1 𝑛

⋯
𝐹𝑘: 0,1 ∗ → 0,1 𝑛

Find a 𝑘-tuple input values (𝑥1, 𝑥2, … 𝑥𝑘)
such that

⊕𝑖=1
𝑘 𝐹𝑖 𝑥𝑖 = 0.

25 Copyright©2014 NTT corp. All Rights Reserved.

Solving Generalized Birthday Problem

List 𝐿𝑖 contains pairs of (𝑥, 𝐹𝑖(𝑥)).

When 𝐿1 × 𝐿2 × ⋯ × 𝐿𝑘 ≥ 2𝑛, a
solution of generalized birthday
problem exists with high probability.

It does not mean that the solution can

be found with complexity 2𝑛/𝑘.

26 Copyright©2014 NTT corp. All Rights Reserved.

Wagner’s 𝑘-Tree Algorithm [W02]

solves the problem for 𝑘 with

𝑇𝑖𝑚𝑒 = 𝑀𝑒𝑚𝑜𝑟𝑦 = 2
𝑛

⌈log 𝑘⌉+1
.

e.g.

 4 lists → 𝑘 = 4 → 𝑇 = 𝑀 = 2𝑛/3

 8 lists → 𝑘 = 8 → 𝑇 = 𝑀 = 2𝑛/4

Approach: divide-and-conquer

27 Copyright©2014 NTT corp. All Rights Reserved.

Example of 𝑘-Tree Algorithm (𝑘 = 4)

𝐿1 𝐿2 𝐿3 𝐿4

(2𝑛/3) (2𝑛/3) (2𝑛/3) (2𝑛/3)

𝐿12 (2𝑛/3)

0 𝑛/3 0 𝑛/3

𝐿34 (2𝑛/3)

𝐿1234 (1)

0 𝑛/3

2𝑛/3

1st layer:

Balance
𝑛/3 bits

2nd layer:

Balance
2𝑛/3 bits

28 Copyright©2014 NTT corp. All Rights Reserved.

Introducing Time-Memory Tradeoff

• Memory is more costly than Time.

• E.g. 𝑛 = 160 for SHA-1:

 253.3 SHA-1 computations are feasible

 253.3 memory seems hard (memory access
is slow).

What’s the best algorithm for the GBP
with a small memory?

29 Copyright©2014 NTT corp. All Rights Reserved.

Previous Work

Not so many researches have been taken
on the memory limited case of GBP

 D. J. Bernstein. “Better price-
performance ratios for generalized
birthday attacks.”, SHARCS'07

 D. J. Bernstein, T. Lange, R. Niederhagen,
C. Peters, and P. Schwabe. “FSBday.“,
Indocrypt 2009

30 Copyright©2014 NTT corp. All Rights Reserved.

How Does It Look Like?

𝐿1 𝐿2 𝐿3 𝐿4

(𝑀) (𝑀) (𝑀) (𝑀)

𝐿12 (𝑀)

0 log 𝑀 0 log 𝑀

𝐿34 (𝑀)

𝐿1234 (1)

0 log 𝑀

2 log 𝑀

1st layer:

Cannot

store 2𝑛/3

2nd layer:

Cannot
reach 𝑛 bits

Cramp at least
log 𝑀 bits

0 𝑇𝑖𝑚𝑒 = 𝑀

31 Copyright©2014 NTT corp. All Rights Reserved.

Previous Method 1

Simple
Iteration:

Iterate until 𝑛
bits become 0.

Time:

𝑀 ∗ 2𝑛−3 log 𝑀

𝐿1 𝐿2 𝐿3 𝐿4

(𝑀) (𝑀) (𝑀) (𝑀)

𝐿12 (𝑀)

0 log 𝑀 0 log 𝑀

𝐿34 (𝑀)

𝐿1234 (1)

0 log 𝑀

2 log 𝑀 0

32 Copyright©2014 NTT corp. All Rights Reserved.

Previous Method 2

Prefilteration:

Spend some
computation to
prepare lists.

Time:

𝑀 ∗ 2𝑛−3 log 𝑀

𝐿1 𝐿2 𝐿3 𝐿4

(𝑀) (𝑀) (𝑀) (𝑀)

𝐿12 (𝑀)

0 log 𝑀 0 log 𝑀

𝐿34 (𝑀)

𝐿1234
(1)

0 log 𝑀

2 log 𝑀 0

fixed to
some value

33 Copyright©2014 NTT corp. All Rights Reserved.

Previous Method 3

Only works when 𝑓1 = 𝑓2, 𝑓3 = 𝑓4, ⋯

1. Run the 𝑘-tree algorithm for 𝑓1, 𝑓3, 𝑓5, ⋯
with small 𝑀.

2. Run the 𝑘-tree algorithm for 𝑓2, 𝑓4, 𝑓6, ⋯
with small 𝑀.

3. Run the memoryless collision search for
the last merging phase.

34 Copyright©2014 NTT corp. All Rights Reserved.

Comparison of Previous Tradeoffs

Prev.1 and .2

Prev.3

GBP

𝑘 = 8

𝑚

𝑡

• Prev.1 and .2 are good when 𝑚 is relatively large.
• Prev.3 is opposite.

35 Copyright©2014 NTT corp. All Rights Reserved.

Our New Tradeoff

 take advantages of both methods

 only works when all 𝑓 is identical

Prev.1 and .2

Prev.3

GBP

𝑘 = 8

𝑚

𝑡

Ours

36 Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Table for Public Functions

 Domain is infinite, impossible to
examine all the input values.

 Identical idea, but different purpose.

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

Offline

37 Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Table for Public Functions

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑀

𝑋

collision !!

 Online phase of Hellman’s algorithm generates
a collision to one of the chains.

 Hellman’s table is used for collision generation.

38 Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Table for Public Functions

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑀

𝑋

Fact 1 (Hellman’s Table)

Once 𝑀 chains of length 𝑋 are computed, cost

for generating collision is 𝑂(
𝑁

𝑀𝑋
) per collision.

collision !!

39 Copyright©2014 NTT corp. All Rights Reserved.

Previous Application of Hellman’s Table

3-collision finding problem [JL09]

 Well-known: 𝑇 = 22𝑛/3, 𝑀 = 22𝑛/3.

 [JL09]: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3

𝑥1

𝑥2

𝑥3

𝑓

𝑓

𝑓

𝑓(𝑥1) = 𝑓 𝑥2 = 𝑓(𝑥3)

40 Copyright©2014 NTT corp. All Rights Reserved.

Previous Application of Hellman’s Table

1. Generate chains: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3

 Cost per collision becomes 𝑂(2𝑛/3).

2. Generate 23/𝑛 collisions: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3

3. Generate 22𝑛/3 values : 𝑇 = 22𝑛/3, 𝑀 = 𝑛𝑒𝑔𝑙

𝑣0
1 𝑣𝑋

1

𝑣0
𝑀 𝑣𝑋

𝑀

𝑀 = 2𝑛/3

𝑋 = 2𝑛/3

coll

41 Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Table Fits 𝑘-Tree

𝐿1 𝐿2 𝐿3 𝐿4

(𝑀) (𝑀) (𝑀) (𝑀)

𝐿12 (𝑀)

0 ℓ 0 ℓ

𝐿34 (𝑀)

𝐿1234 (1)

0 ℓ

𝑛 − ℓ - 1st layer of 𝑘-
tree algorithm
generates many
partial collisions.

- Suitable for
Hellman’s table.

42 Copyright©2014 NTT corp. All Rights Reserved.

Reduction Function

 Ordinary Hellman’s table detects collisions
instead of partial collisions.

 The 𝑘-tree alg finds partial collisions
(otherwise divide-and-conquer doesn’t work).

 Reduction function 𝑓ℓ discards 𝑛 − ℓ MSBs
and only uses ℓ LSBs for building chains.

0 ℓ

𝑣0

0 ℓ

𝑣1

𝑓ℓ

0 ℓ

𝑣2

𝑓ℓ 𝑓ℓ

0 ℓ

𝑣𝑋

𝑓ℓ

43 Copyright©2014 NTT corp. All Rights Reserved.

Our Algorithm for 𝑘-Tree

1. Construct Hellman’s table.

2. Generate 2
𝑛−ℓ

2 ℓ-bit collisions for 𝐿12 and 𝐿34.

3. Find a collision on 𝑛 − ℓ bits between 𝐿12 and 𝐿34.

44 Copyright©2014 NTT corp. All Rights Reserved.

Complexity Evaluation

Step 1: 𝑇𝑖𝑚𝑒 = 𝑀𝑋, 𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑀

Step 2: 𝑇𝑖𝑚𝑒 = 2
𝑛+ℓ

2 /𝑀𝑋, 𝑀𝑒𝑚𝑜𝑟𝑦 = 2
𝑛−ℓ

2

Step 3: 𝑇𝑖𝑚𝑒 = 2
𝑛−ℓ

2 , 𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑛𝑒𝑔𝑙

Balance all the Steps:

𝑇2𝑀 = 𝑁

45 Copyright©2014 NTT corp. All Rights Reserved.

Our Algorithm for General 𝑘

 Partial collisions in the first layer are always
generated with Hellman’s table.

𝑇2 ⋅ 𝑀log 𝑘−1 = 𝑁
 Example (𝑘=8):

Prev work 1 𝑇𝑀3 = 𝑁 2𝑛/6 26𝑛/12

Prev work 3 𝑇2𝑀 = 𝑁 2𝑛/6 25𝑛/12

Ours 𝑇2𝑀2 = 𝑁 2𝑛/6 24𝑛/12

Method Curve 𝑀 𝑇

46 Copyright©2014 NTT corp. All Rights Reserved.

Our New Results

Prev.1 and .2

Prev.3

GBP

𝑘 = 8

𝑚

𝑡

Ours

 take advantages of both methods

 only works when all 𝑓 is identical

Copyright©2014 NTT corp. All Rights Reserved.

Concluding Remarks

48 Copyright©2014 NTT corp. All Rights Reserved.

Conclusion

Recent results using Hellman’s tradeoff

• Secret function

 Outside construction makes application
non-trivial

 𝐾𝑜𝑢𝑡 recovery in NMAC/HMAC

• Public function

 Useful when many collisions are generated

 New time-memory tradeoff for GBP

49 Copyright©2014 NTT corp. All Rights Reserved.

Thank you for your attention !!

