
Copyright©2014 NTT corp. All Rights Reserved.

Recent Applications of Hellman’s
Time-Memory Tradeoff

Yu Sasaki

NTT Secure Platform Laboratories

Nanyang Technological University, Singapore

1/October/2015 @ ASK 2015, Singapore

1 Copyright©2014 NTT corp. All Rights Reserved.

Topics

This talk focuses on a cryptanalytic tool:

Hellman’s time-memory tradeoff

Motivation

 Low memory attack is a recent trend

 Recently, I have found two applications:

1. NMAC/HMAC key recovery (CRYPTO’14)

2. Generalized birthday problem (Asiacrypt’15)

Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Time-Memory Tradeoff

3 Copyright©2014 NTT corp. All Rights Reserved.

Introduction of Hellman’s Tradeoff

“A Cryptanalytic Time-Memory Trade-Off.”

Martin E. Hellman, 1980.

Key Recovery against Block Cipher

[Offline]

 2𝑛 precomp, < 2𝑛 memory

[Online]

 Any key can be recovered with
complexity less than 2𝑛

𝐸𝐾 𝐾

𝑃

𝐶

𝑛

𝑛

𝑛

4 Copyright©2014 NTT corp. All Rights Reserved.

Chains with Key Values

 Randomly choose a plaintext 𝑃

 Randomly choose starting key value 𝑣0.

 Make chains of key values for 𝑋 blocks.

𝐸 𝑣0

𝑃

𝑣1

𝐸

𝑃

𝐸

𝑃

𝑣2 𝑣3

𝐸

𝑃

𝑣𝑋

𝑣0
𝑣1 𝑣2 𝑣3 𝑣𝑋−1

𝑣𝑋

5 Copyright©2014 NTT corp. All Rights Reserved.

Many Chains with Saving Memory

 𝑀 chains of length 𝑋 s.t. 𝑀 × 𝑋 = 2𝑛

 Only start and end points are stored in 𝑇𝑝𝑟𝑒

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑇𝑝𝑟𝑒

6 Copyright©2014 NTT corp. All Rights Reserved.

Summary of Offline Phase

 (Ideally) all key values appear in chains.

𝑇𝑖𝑚𝑒 = 𝑀𝑋 = 2𝑛
𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑀

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑇𝑝𝑟𝑒

7 Copyright©2014 NTT corp. All Rights Reserved.

Online Phase

𝐾 is one of the values in the matched chain.

𝐸 𝐾

𝑃

𝐶

𝑣0
𝑗
 𝑣𝑋

𝑗

𝐶
𝑣𝑋

𝑗
 𝐾

After user’s key 𝐾 is chosen:

 Query 𝑃 to obtain 𝐶.

 Make a chain until it reaches

one of end points (𝑣𝑋
𝑗
) in 𝑇𝑝𝑟𝑒.

(recovered with additional 𝑋 steps)

8 Copyright©2014 NTT corp. All Rights Reserved.

Summary of Hellman’s Tradeoff

Offline Phase:
𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (2𝑛, 𝑀)

Online Phase:
𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑋, 𝑛𝑒𝑔𝑙)

Tradeoff:

𝑇𝑖𝑚𝑒 = 𝑋 =
2𝑛

𝑀𝑒𝑚𝑜𝑟𝑦

⟺ 𝑇𝑖𝑚𝑒 × 𝑀𝑒𝑚𝑜𝑟𝑦 = 2𝑛

Copyright©2014 NTT corp. All Rights Reserved.

Application to Key Recovery in
HMAC/NMAC

A part of results in

Jian Guo, Thomas Peyrin, Yu Sasaki and Lei
Wang, “Updates on Generic Attacks against
HMAC and NMAC.” CRYPTO 2014.

10 Copyright©2014 NTT corp. All Rights Reserved.

Hash Function based MAC

• NMAC (a base technique of HMAC)

 Require 2 keys (inefficient)

 Simple

• HMAC (widely used)

 Require 1 key (practically efficient)

 Complicated

For simplicity, NMAC is explained in this talk.

11 Copyright©2014 NTT corp. All Rights Reserved.

NMAC Specification

Two hash function calls by replacing 𝐼𝑉
with two keys 𝐾𝑖𝑛 and 𝐾𝑜𝑢𝑡.

𝐻𝑎𝑠ℎ

𝑀

𝐾𝑖𝑛

𝐻𝑎𝑠ℎ 𝐾𝑜𝑢𝑡 𝑇𝑎𝑔

inner function

outer function

12 Copyright©2014 NTT corp. All Rights Reserved.

NMAC with Iterated Hash

Hash functions have some iterative structure,
e.g. Merkle-Damgård structure

𝑀1

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝐶𝐹

𝑀2

𝐶𝐹

𝑀𝐿

𝐶𝐹

𝐶𝐹

𝑛 𝑛

𝑛 𝑛

inner function

outer function

13 Copyright©2014 NTT corp. All Rights Reserved.

Straightforward Application

 Regard NMAC as 2𝑛-bit key primitive.

 Work in straightforward, but inefficient.

𝑁𝑀𝐴𝐶

𝑀

𝑇𝑎𝑔

∗

𝑛

𝟐𝒏 𝐾𝑖𝑛
𝐾𝑜𝑢𝑡

14 Copyright©2014 NTT corp. All Rights Reserved.

Divide-and-Conquer for 𝐾𝑜𝑢𝑡??

By focusing on outer function, 𝐾𝑜𝑢𝑡 may be
attacked independently from 𝐾𝑖𝑛.

𝑀1

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝐶𝐹

𝑀2

𝐶𝐹

𝑀𝐿

𝐶𝐹

𝐶𝐹

15 Copyright©2014 NTT corp. All Rights Reserved.

Divide-and-Conquer for 𝐾𝑜𝑢𝑡??

𝐾𝑖𝑛 hides the input value to outer function.

(simple application is impossible)

𝑀1

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝐶𝐹

𝑀2

𝐶𝐹

𝑀𝐿

𝐶𝐹

𝐶𝐹

𝑃 unknown

16 Copyright©2014 NTT corp. All Rights Reserved.

Internal State Recovery on NMAC

 [LPW14] recovers internal state 𝑃 for some 𝑀.

 [LPW14] requires online queries.

 Hellman’s tradeoff is meaningless without offline.

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝑀

𝐶𝐹

𝐶𝐹

𝑃 Internal state recovery

17 Copyright©2014 NTT corp. All Rights Reserved.

Our Method (Offline)

Randomly choose 𝑣𝑠.

Process 𝑣𝑠 with 2𝑛/3 blocks message to get 𝑣𝑒.

Run Hellman’s alg by assuming 𝑣𝑒 is later obtained.

𝐾𝑜𝑢𝑡 𝑇

𝑀𝑠

𝐶𝐹

𝑀𝑠+2𝑛/3

𝐶𝐹

𝐶𝐹

𝑣𝑠 𝑣𝑒

𝑇𝑝𝑟𝑒 with ordinary Hellman’s method

18 Copyright©2014 NTT corp. All Rights Reserved.

Our Method (Online)

 Recover internal state 𝑃 with [LPW14].

 Run 2nd pre attack [KS05] from 𝑃 to 2𝑛/3 targets.

 Obtain 𝑇 for 𝑣𝑒. Then, make a chain as usual.

𝑀1

𝐾𝑖𝑛

𝐾𝑜𝑢𝑡 𝑇

𝐶𝐹

𝑀𝑠

𝐶𝐹

𝑀𝑠+2𝑛/3

𝐶𝐹

𝐶𝐹

𝑣𝑠 𝑣𝑒

2𝑛/3 targets for 2nd pre.

𝑃

19 Copyright©2014 NTT corp. All Rights Reserved.

Summary for Application to NMAC

 For MAC schemes, application of
Hellman’s tradeoff is non-trivial.

 By combining several existing
techniques, application is still possible.

 For NMAC, we used

1. Internal state recovery

2. 2nd preimage attack on Merkle-Damgård

3. Hellman’s time-memory tradeoff

Copyright©2014 NTT corp. All Rights Reserved.

Generalized Birthday Problem

A part of results in

Ivica Nikolić and Yu Sasaki, “Refinements of the
k-tree Algorithm for the Generalized Birthday
Problem,” Asiacrypt 2015, To appear.

21 Copyright©2014 NTT corp. All Rights Reserved.

Birthday Problem

𝐹1: 0,1 ∗ → 0,1 𝑛
𝐹2: 0,1 ∗ → 0,1 𝑛

Find input values (𝑥1, 𝑥2) such that

𝐹1 𝑥1 ⊕ 𝐹2 𝑥2 = 0.

 can be defined for other group operations

 can be defined for an identical function
but different input values

22 Copyright©2014 NTT corp. All Rights Reserved.

Solving Birthday Problem

Suppose that

 List 𝐿1 contains 2𝑖 pairs of (𝑥𝑖 , 𝐹1(𝑥𝑖)).

 List 𝐿2 contains 2𝑗 pairs of (𝑥𝑗 , 𝐹2(𝑥𝑗)).

When 2𝑖+𝑗 ≥ 2𝑛, solutions of 𝐹1 𝑥1 ⊕
𝐹2 𝑥2 = 0 exists with high probability.

𝐿1 𝐿2
2𝑖

elements
2𝑗

elements

23 Copyright©2014 NTT corp. All Rights Reserved.

Efficient Algorithm for Birthday Problem

For the birthday problem, several efficient
algorithms can solve it with a complexity of

𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (2𝑛/2, 2𝑛/2).

Moreover, with a cycle detection method:

𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑂(2𝑛/2), 𝑛𝑒𝑔𝑙)

24 Copyright©2014 NTT corp. All Rights Reserved.

Generalized Birthday Problem

𝐹1: 0,1 ∗ → 0,1 𝑛
𝐹2: 0,1 ∗ → 0,1 𝑛

⋯
𝐹𝑘: 0,1 ∗ → 0,1 𝑛

Find a 𝑘-tuple input values (𝑥1, 𝑥2, … 𝑥𝑘)
such that

⊕𝑖=1
𝑘 𝐹𝑖 𝑥𝑖 = 0.

25 Copyright©2014 NTT corp. All Rights Reserved.

Solving Generalized Birthday Problem

List 𝐿𝑖 contains pairs of (𝑥, 𝐹𝑖(𝑥)).

When 𝐿1 × 𝐿2 × ⋯ × 𝐿𝑘 ≥ 2𝑛, a
solution of generalized birthday
problem exists with high probability.

It does not mean that the solution can

be found with complexity 2𝑛/𝑘.

26 Copyright©2014 NTT corp. All Rights Reserved.

Wagner’s 𝑘-Tree Algorithm [W02]

solves the problem for 𝑘 with

𝑇𝑖𝑚𝑒 = 𝑀𝑒𝑚𝑜𝑟𝑦 = 2
𝑛

⌈log 𝑘⌉+1
.

e.g.

 4 lists → 𝑘 = 4 → 𝑇 = 𝑀 = 2𝑛/3

 8 lists → 𝑘 = 8 → 𝑇 = 𝑀 = 2𝑛/4

Approach: divide-and-conquer

27 Copyright©2014 NTT corp. All Rights Reserved.

Example of 𝑘-Tree Algorithm (𝑘 = 4)

𝐿1 𝐿2 𝐿3 𝐿4

(2𝑛/3) (2𝑛/3) (2𝑛/3) (2𝑛/3)

𝐿12 (2𝑛/3)

0 𝑛/3 0 𝑛/3

𝐿34 (2𝑛/3)

𝐿1234 (1)

0 𝑛/3

2𝑛/3

1st layer:

Balance
𝑛/3 bits

2nd layer:

Balance
2𝑛/3 bits

28 Copyright©2014 NTT corp. All Rights Reserved.

Introducing Time-Memory Tradeoff

• Memory is more costly than Time.

• E.g. 𝑛 = 160 for SHA-1:

 253.3 SHA-1 computations are feasible

 253.3 memory seems hard (memory access
is slow).

What’s the best algorithm for the GBP
with a small memory?

29 Copyright©2014 NTT corp. All Rights Reserved.

Previous Work

Not so many researches have been taken
on the memory limited case of GBP

 D. J. Bernstein. “Better price-
performance ratios for generalized
birthday attacks.”, SHARCS'07

 D. J. Bernstein, T. Lange, R. Niederhagen,
C. Peters, and P. Schwabe. “FSBday.“,
Indocrypt 2009

30 Copyright©2014 NTT corp. All Rights Reserved.

How Does It Look Like?

𝐿1 𝐿2 𝐿3 𝐿4

(𝑀) (𝑀) (𝑀) (𝑀)

𝐿12 (𝑀)

0 log 𝑀 0 log 𝑀

𝐿34 (𝑀)

𝐿1234 (1)

0 log 𝑀

2 log 𝑀

1st layer:

Cannot

store 2𝑛/3

2nd layer:

Cannot
reach 𝑛 bits

Cramp at least
log 𝑀 bits

0 𝑇𝑖𝑚𝑒 = 𝑀

31 Copyright©2014 NTT corp. All Rights Reserved.

Previous Method 1

Simple
Iteration:

Iterate until 𝑛
bits become 0.

Time:

𝑀 ∗ 2𝑛−3 log 𝑀

𝐿1 𝐿2 𝐿3 𝐿4

(𝑀) (𝑀) (𝑀) (𝑀)

𝐿12 (𝑀)

0 log 𝑀 0 log 𝑀

𝐿34 (𝑀)

𝐿1234 (1)

0 log 𝑀

2 log 𝑀 0

32 Copyright©2014 NTT corp. All Rights Reserved.

Previous Method 2

Prefilteration:

Spend some
computation to
prepare lists.

Time:

𝑀 ∗ 2𝑛−3 log 𝑀

𝐿1 𝐿2 𝐿3 𝐿4

(𝑀) (𝑀) (𝑀) (𝑀)

𝐿12 (𝑀)

0 log 𝑀 0 log 𝑀

𝐿34 (𝑀)

𝐿1234
(1)

0 log 𝑀

2 log 𝑀 0

fixed to
some value

33 Copyright©2014 NTT corp. All Rights Reserved.

Previous Method 3

Only works when 𝑓1 = 𝑓2, 𝑓3 = 𝑓4, ⋯

1. Run the 𝑘-tree algorithm for 𝑓1, 𝑓3, 𝑓5, ⋯
with small 𝑀.

2. Run the 𝑘-tree algorithm for 𝑓2, 𝑓4, 𝑓6, ⋯
with small 𝑀.

3. Run the memoryless collision search for
the last merging phase.

34 Copyright©2014 NTT corp. All Rights Reserved.

Comparison of Previous Tradeoffs

Prev.1 and .2

Prev.3

GBP

𝑘 = 8

𝑚

𝑡

• Prev.1 and .2 are good when 𝑚 is relatively large.
• Prev.3 is opposite.

35 Copyright©2014 NTT corp. All Rights Reserved.

Our New Tradeoff

 take advantages of both methods

 only works when all 𝑓 is identical

Prev.1 and .2

Prev.3

GBP

𝑘 = 8

𝑚

𝑡

Ours

36 Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Table for Public Functions

 Domain is infinite, impossible to
examine all the input values.

 Identical idea, but different purpose.

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

Offline

37 Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Table for Public Functions

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑀

𝑋

collision !!

 Online phase of Hellman’s algorithm generates
a collision to one of the chains.

 Hellman’s table is used for collision generation.

38 Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Table for Public Functions

𝑣0
1 𝑣𝑋

1

𝑣0
2 𝑣𝑋

2

𝑣0
𝑀 𝑣𝑋

𝑀

(𝑣0
1, 𝑣𝑋

1)

(𝑣0
2, 𝑣𝑋

2)

(𝑣0
𝑀, 𝑣𝑋

𝑀)

𝑀

𝑋

Fact 1 (Hellman’s Table)

Once 𝑀 chains of length 𝑋 are computed, cost

for generating collision is 𝑂(
𝑁

𝑀𝑋
) per collision.

collision !!

39 Copyright©2014 NTT corp. All Rights Reserved.

Previous Application of Hellman’s Table

3-collision finding problem [JL09]

 Well-known: 𝑇 = 22𝑛/3, 𝑀 = 22𝑛/3.

 [JL09]: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3

𝑥1

𝑥2

𝑥3

𝑓

𝑓

𝑓

𝑓(𝑥1) = 𝑓 𝑥2 = 𝑓(𝑥3)

40 Copyright©2014 NTT corp. All Rights Reserved.

Previous Application of Hellman’s Table

1. Generate chains: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3

 Cost per collision becomes 𝑂(2𝑛/3).

2. Generate 23/𝑛 collisions: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3

3. Generate 22𝑛/3 values : 𝑇 = 22𝑛/3, 𝑀 = 𝑛𝑒𝑔𝑙

𝑣0
1 𝑣𝑋

1

𝑣0
𝑀 𝑣𝑋

𝑀

𝑀 = 2𝑛/3

𝑋 = 2𝑛/3

coll

41 Copyright©2014 NTT corp. All Rights Reserved.

Hellman’s Table Fits 𝑘-Tree

𝐿1 𝐿2 𝐿3 𝐿4

(𝑀) (𝑀) (𝑀) (𝑀)

𝐿12 (𝑀)

0 ℓ 0 ℓ

𝐿34 (𝑀)

𝐿1234 (1)

0 ℓ

𝑛 − ℓ - 1st layer of 𝑘-
tree algorithm
generates many
partial collisions.

- Suitable for
Hellman’s table.

42 Copyright©2014 NTT corp. All Rights Reserved.

Reduction Function

 Ordinary Hellman’s table detects collisions
instead of partial collisions.

 The 𝑘-tree alg finds partial collisions
(otherwise divide-and-conquer doesn’t work).

 Reduction function 𝑓ℓ discards 𝑛 − ℓ MSBs
and only uses ℓ LSBs for building chains.

0 ℓ

𝑣0

0 ℓ

𝑣1

𝑓ℓ

0 ℓ

𝑣2

𝑓ℓ 𝑓ℓ

0 ℓ

𝑣𝑋

𝑓ℓ

43 Copyright©2014 NTT corp. All Rights Reserved.

Our Algorithm for 𝑘-Tree

1. Construct Hellman’s table.

2. Generate 2
𝑛−ℓ

2 ℓ-bit collisions for 𝐿12 and 𝐿34.

3. Find a collision on 𝑛 − ℓ bits between 𝐿12 and 𝐿34.

44 Copyright©2014 NTT corp. All Rights Reserved.

Complexity Evaluation

Step 1: 𝑇𝑖𝑚𝑒 = 𝑀𝑋, 𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑀

Step 2: 𝑇𝑖𝑚𝑒 = 2
𝑛+ℓ

2 /𝑀𝑋, 𝑀𝑒𝑚𝑜𝑟𝑦 = 2
𝑛−ℓ

2

Step 3: 𝑇𝑖𝑚𝑒 = 2
𝑛−ℓ

2 , 𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑛𝑒𝑔𝑙

Balance all the Steps:

𝑇2𝑀 = 𝑁

45 Copyright©2014 NTT corp. All Rights Reserved.

Our Algorithm for General 𝑘

 Partial collisions in the first layer are always
generated with Hellman’s table.

𝑇2 ⋅ 𝑀log 𝑘−1 = 𝑁
 Example (𝑘=8):

Prev work 1 𝑇𝑀3 = 𝑁 2𝑛/6 26𝑛/12

Prev work 3 𝑇2𝑀 = 𝑁 2𝑛/6 25𝑛/12

Ours 𝑇2𝑀2 = 𝑁 2𝑛/6 24𝑛/12

Method Curve 𝑀 𝑇

46 Copyright©2014 NTT corp. All Rights Reserved.

Our New Results

Prev.1 and .2

Prev.3

GBP

𝑘 = 8

𝑚

𝑡

Ours

 take advantages of both methods

 only works when all 𝑓 is identical

Copyright©2014 NTT corp. All Rights Reserved.

Concluding Remarks

48 Copyright©2014 NTT corp. All Rights Reserved.

Conclusion

Recent results using Hellman’s tradeoff

• Secret function

 Outside construction makes application
non-trivial

 𝐾𝑜𝑢𝑡 recovery in NMAC/HMAC

• Public function

 Useful when many collisions are generated

 New time-memory tradeoff for GBP

49 Copyright©2014 NTT corp. All Rights Reserved.

Thank you for your attention !!

