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Topics 

This talk focuses on a cryptanalytic tool: 

Hellman’s time-memory tradeoff 
 

Motivation 

 Low memory attack is a recent trend 

 Recently, I have found two applications: 

1. NMAC/HMAC key recovery (CRYPTO’14) 

2. Generalized birthday problem (Asiacrypt’15) 
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Hellman’s Time-Memory Tradeoff 
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Introduction of Hellman’s Tradeoff 

“A Cryptanalytic Time-Memory Trade-Off.” 

Martin E. Hellman, 1980. 

 

Key Recovery against Block Cipher 

[Offline] 

 2𝑛 precomp, < 2𝑛 memory 

[Online] 

 Any key can be recovered with 
complexity less than 2𝑛 

𝐸𝐾 𝐾 

𝑃 

𝐶 

𝑛 

𝑛 

𝑛 
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Chains with Key Values 

 Randomly choose a plaintext 𝑃 

 Randomly choose starting key value 𝑣0. 

 Make chains of key values for 𝑋 blocks. 

𝐸 𝑣0 

𝑃 

𝑣1 

𝐸 

𝑃 

𝐸 

𝑃 

𝑣2 𝑣3 

𝐸 

𝑃 

𝑣𝑋 

𝑣0 
𝑣1 𝑣2 𝑣3 𝑣𝑋−1 

𝑣𝑋 
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Many Chains with Saving Memory 

 𝑀 chains of length 𝑋 s.t. 𝑀 × 𝑋 = 2𝑛 

 Only start and end points are stored in 𝑇𝑝𝑟𝑒 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑇𝑝𝑟𝑒 
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Summary of Offline Phase 

 (Ideally) all key values appear in chains. 
 

𝑇𝑖𝑚𝑒 = 𝑀𝑋 = 2𝑛 
𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑀 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑇𝑝𝑟𝑒 
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Online Phase 

𝐾 is one of the values in the matched chain. 

𝐸 𝐾 

𝑃 

𝐶 

𝑣0
𝑗
 𝑣𝑋

𝑗
 

𝐶 
𝑣𝑋

𝑗
 𝐾 

After user’s key 𝐾 is chosen: 

 Query 𝑃 to obtain 𝐶. 

 Make a chain until it reaches 

one of end points (𝑣𝑋
𝑗
) in 𝑇𝑝𝑟𝑒. 

(recovered with additional 𝑋 steps) 
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Summary of Hellman’s Tradeoff 

Offline Phase: 
𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (2𝑛, 𝑀) 

Online Phase: 
𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑋, 𝑛𝑒𝑔𝑙) 

Tradeoff: 

𝑇𝑖𝑚𝑒 = 𝑋 =
2𝑛

𝑀𝑒𝑚𝑜𝑟𝑦
 

 

⟺   𝑇𝑖𝑚𝑒 × 𝑀𝑒𝑚𝑜𝑟𝑦 = 2𝑛 
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Application to Key Recovery in 
HMAC/NMAC 

A part of results in  

Jian Guo, Thomas Peyrin, Yu Sasaki and Lei 
Wang, “Updates on Generic Attacks against 
HMAC and NMAC.” CRYPTO 2014. 
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Hash Function based MAC 

• NMAC (a base technique of HMAC) 

 Require 2 keys (inefficient) 

 Simple 

• HMAC (widely used) 

 Require 1 key (practically efficient) 

 Complicated 
 

For simplicity, NMAC is explained in this talk. 
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NMAC Specification 

Two hash function calls by replacing 𝐼𝑉 
with two keys 𝐾𝑖𝑛 and 𝐾𝑜𝑢𝑡. 

𝐻𝑎𝑠ℎ 

𝑀 

𝐾𝑖𝑛 

𝐻𝑎𝑠ℎ 𝐾𝑜𝑢𝑡 𝑇𝑎𝑔 

inner function 

outer function 
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NMAC with Iterated Hash 

Hash functions have some iterative structure, 
e.g. Merkle-Damgård structure 

𝑀1 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝐶𝐹 

𝑀2 

𝐶𝐹 

𝑀𝐿 

𝐶𝐹 

𝐶𝐹 

𝑛 𝑛 

𝑛 𝑛 

inner function 

outer function 
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Straightforward Application 

 Regard NMAC as 2𝑛-bit key primitive. 

 Work in straightforward, but inefficient. 

𝑁𝑀𝐴𝐶 

𝑀 

𝑇𝑎𝑔 

∗ 

𝑛 

𝟐𝒏 𝐾𝑖𝑛 
𝐾𝑜𝑢𝑡 
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Divide-and-Conquer for 𝐾𝑜𝑢𝑡?? 

By focusing on outer function, 𝐾𝑜𝑢𝑡 may be 
attacked independently from 𝐾𝑖𝑛. 

𝑀1 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝐶𝐹 

𝑀2 

𝐶𝐹 

𝑀𝐿 

𝐶𝐹 

𝐶𝐹 
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Divide-and-Conquer for 𝐾𝑜𝑢𝑡?? 

𝐾𝑖𝑛 hides the input value to outer function. 

(simple application is impossible) 

𝑀1 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝐶𝐹 

𝑀2 

𝐶𝐹 

𝑀𝐿 

𝐶𝐹 

𝐶𝐹 

𝑃 unknown 
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Internal State Recovery on NMAC 

 [LPW14] recovers internal state 𝑃 for some 𝑀. 

 [LPW14] requires online queries. 

 Hellman’s tradeoff is meaningless without offline. 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝑀 

𝐶𝐹 

𝐶𝐹 

𝑃 Internal state recovery 
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Our Method (Offline) 

Randomly choose 𝑣𝑠. 

Process 𝑣𝑠 with 2𝑛/3 blocks message to get 𝑣𝑒. 

Run Hellman’s alg by assuming 𝑣𝑒  is later obtained. 

𝐾𝑜𝑢𝑡 𝑇 

𝑀𝑠 

𝐶𝐹 

𝑀𝑠+2𝑛/3  

𝐶𝐹 

𝐶𝐹 

𝑣𝑠 𝑣𝑒 

𝑇𝑝𝑟𝑒  with ordinary Hellman’s method 
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Our Method (Online) 

 Recover internal state 𝑃 with [LPW14]. 

 Run 2nd pre attack [KS05] from 𝑃  to 2𝑛/3  targets. 

 Obtain 𝑇 for 𝑣𝑒. Then, make a chain as usual. 

𝑀1 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝐶𝐹 

𝑀𝑠 

𝐶𝐹 

𝑀𝑠+2𝑛/3  

𝐶𝐹 

𝐶𝐹 

𝑣𝑠 𝑣𝑒 

2𝑛/3 targets for 2nd pre. 

𝑃 
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Summary for Application to NMAC 

 For MAC schemes, application of 
Hellman’s tradeoff is non-trivial. 

 By combining several existing 
techniques, application is still possible. 

 For NMAC, we used 

1. Internal state recovery 

2. 2nd preimage attack on Merkle-Damgård 

3. Hellman’s time-memory tradeoff 
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Generalized Birthday Problem 

A part of results in 

Ivica Nikolić and Yu Sasaki, “Refinements of the 
k-tree Algorithm for the Generalized Birthday 
Problem,” Asiacrypt 2015, To appear. 
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Birthday Problem 

𝐹1: 0,1 ∗ → 0,1 𝑛 
𝐹2: 0,1 ∗ → 0,1 𝑛 

 

Find input values (𝑥1, 𝑥2) such that  

𝐹1 𝑥1 ⊕ 𝐹2 𝑥2 = 0. 
 

 can be defined for other group operations 

 can be defined for an identical function 
but different input values 
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Solving Birthday Problem 

Suppose that 

 List 𝐿1 contains 2𝑖  pairs of (𝑥𝑖 , 𝐹1(𝑥𝑖)). 

 List 𝐿2 contains 2𝑗 pairs of (𝑥𝑗 , 𝐹2(𝑥𝑗)). 
 

When 2𝑖+𝑗 ≥ 2𝑛, solutions of 𝐹1 𝑥1 ⊕
𝐹2 𝑥2 = 0 exists with high probability. 

𝐿1 𝐿2 
2𝑖 

elements 
2𝑗  

elements 
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Efficient Algorithm for Birthday Problem 

For the birthday problem, several efficient 
algorithms can solve it with a complexity of 

𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (2𝑛/2, 2𝑛/2). 

 

Moreover, with a cycle detection method: 

𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑂(2𝑛/2), 𝑛𝑒𝑔𝑙) 
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Generalized Birthday Problem 

𝐹1: 0,1 ∗ → 0,1 𝑛 
𝐹2: 0,1 ∗ → 0,1 𝑛 

⋯ 
𝐹𝑘: 0,1 ∗ → 0,1 𝑛 

 

Find a 𝑘-tuple input values (𝑥1, 𝑥2, … 𝑥𝑘) 
such that  

⊕𝑖=1
𝑘 𝐹𝑖 𝑥𝑖 = 0. 
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Solving Generalized Birthday Problem 

List 𝐿𝑖  contains pairs of (𝑥, 𝐹𝑖(𝑥)). 
 

When 𝐿1 × 𝐿2 × ⋯ × 𝐿𝑘 ≥ 2𝑛, a 
solution of generalized birthday 
problem exists with high probability. 
 

It does not mean that the solution can 

be found with complexity 2𝑛/𝑘. 
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Wagner’s 𝑘-Tree Algorithm [W02] 

solves the problem for 𝑘 with 

𝑇𝑖𝑚𝑒 = 𝑀𝑒𝑚𝑜𝑟𝑦 = 2
𝑛

⌈log 𝑘⌉+1
. 
 

e.g.  

 4 lists  →  𝑘 = 4  →  𝑇 = 𝑀 = 2𝑛/3   

 8 lists  →  𝑘 = 8  →  𝑇 = 𝑀 = 2𝑛/4   
 

Approach: divide-and-conquer 
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Example of 𝑘-Tree Algorithm (𝑘 = 4) 

𝐿1 𝐿2 𝐿3 𝐿4 

(2𝑛/3) (2𝑛/3) (2𝑛/3) (2𝑛/3) 

𝐿12 (2𝑛/3) 

0 𝑛/3 0 𝑛/3 

𝐿34 (2𝑛/3) 

𝐿1234 (1) 

0 𝑛/3 

2𝑛/3 

1st layer: 

Balance 
𝑛/3 bits  

2nd layer: 

Balance 
2𝑛/3 bits  
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Introducing Time-Memory Tradeoff 

• Memory is more costly than Time. 

• E.g. 𝑛 = 160 for SHA-1: 

 253.3 SHA-1 computations are feasible 

 253.3 memory seems hard (memory access 
is slow). 

 

What’s the best algorithm for the GBP 
with a small memory? 
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Previous Work 

Not so many researches have been taken 
on the memory limited case of GBP 

 D. J. Bernstein. “Better price-
performance ratios for generalized 
birthday attacks.”, SHARCS'07 

 D. J. Bernstein, T. Lange, R. Niederhagen, 
C. Peters, and P. Schwabe. “FSBday.“, 
Indocrypt 2009 
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How Does It Look Like? 

𝐿1 𝐿2 𝐿3 𝐿4 

(𝑀) (𝑀) (𝑀) (𝑀) 

𝐿12 (𝑀) 

0 log 𝑀 0 log 𝑀 

𝐿34 (𝑀) 

𝐿1234 (1) 

0 log 𝑀 

2 log 𝑀 

1st layer: 

Cannot 

store 2𝑛/3 

2nd layer: 

Cannot 
reach 𝑛 bits 

Cramp at least 
log 𝑀 bits 

0 𝑇𝑖𝑚𝑒 = 𝑀 
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Previous Method 1 

Simple 
Iteration: 

Iterate until 𝑛 
bits become 0. 

Time: 

𝑀 ∗ 2𝑛−3 log 𝑀 

𝐿1 𝐿2 𝐿3 𝐿4 

(𝑀) (𝑀) (𝑀) (𝑀) 

𝐿12 (𝑀) 

0 log 𝑀 0 log 𝑀 

𝐿34 (𝑀) 

𝐿1234 (1) 

0 log 𝑀 

2 log 𝑀 0 
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Previous Method 2 

Prefilteration: 

Spend some 
computation to 
prepare lists. 

Time: 

𝑀 ∗ 2𝑛−3 log 𝑀 

𝐿1 𝐿2 𝐿3 𝐿4 

(𝑀) (𝑀) (𝑀) (𝑀) 

𝐿12 (𝑀) 

0 log 𝑀 0 log 𝑀 

𝐿34 (𝑀) 

𝐿1234 
(1) 

0 log 𝑀 

2 log 𝑀 0 

fixed to 
some value 
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Previous Method 3 

Only works when 𝑓1 = 𝑓2, 𝑓3 = 𝑓4, ⋯ 

1. Run the 𝑘-tree algorithm for 𝑓1, 𝑓3, 𝑓5, ⋯ 
with small 𝑀. 

2. Run the 𝑘-tree algorithm for 𝑓2, 𝑓4, 𝑓6, ⋯ 
with small 𝑀. 

3. Run the memoryless collision search for 
the last merging phase. 
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Comparison of Previous Tradeoffs 

Prev.1 and .2 

Prev.3 

GBP 

𝑘 = 8 

𝑚 

𝑡 

• Prev.1 and .2 are good when 𝑚 is relatively large.  
• Prev.3 is opposite. 
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Our New Tradeoff 

 take advantages of both methods 

 only works when all 𝑓 is identical 

Prev.1 and .2 

Prev.3 

GBP 

𝑘 = 8 

𝑚 

𝑡 

Ours 
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Hellman’s Table for Public Functions 

 Domain is infinite, impossible to 
examine all the input values. 

 Identical idea, but different purpose. 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

Offline 
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Hellman’s Table for Public Functions 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑀 

𝑋 

collision !! 

 Online phase of Hellman’s algorithm generates 
a collision to one of the chains. 

 Hellman’s table is used for collision generation. 
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Hellman’s Table for Public Functions 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑀 

𝑋 

Fact 1 (Hellman’s Table) 

Once 𝑀 chains of length 𝑋 are computed, cost 

for generating collision is 𝑂(
𝑁

𝑀𝑋
) per collision. 

collision !! 
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Previous Application of Hellman’s Table 

3-collision finding problem [JL09] 

 

 

 

 Well-known: 𝑇 = 22𝑛/3, 𝑀 = 22𝑛/3. 

 [JL09]: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3 

𝑥1 

𝑥2 

𝑥3 

𝑓 

𝑓 

𝑓 

𝑓(𝑥1) = 𝑓 𝑥2 = 𝑓(𝑥3) 
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Previous Application of Hellman’s Table 

1. Generate chains: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3 

 Cost per collision becomes 𝑂(2𝑛/3). 

2. Generate 23/𝑛 collisions: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3 

3. Generate 22𝑛/3 values : 𝑇 = 22𝑛/3, 𝑀 = 𝑛𝑒𝑔𝑙 

 

𝑣0
1 𝑣𝑋

1  

𝑣0
𝑀 𝑣𝑋

𝑀 

𝑀 = 2𝑛/3 

𝑋 = 2𝑛/3 

coll 
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Hellman’s Table Fits 𝑘-Tree 

𝐿1 𝐿2 𝐿3 𝐿4 

(𝑀) (𝑀) (𝑀) (𝑀) 

𝐿12 (𝑀) 

0 ℓ 0 ℓ 

𝐿34 (𝑀) 

𝐿1234 (1) 

0 ℓ 

𝑛 − ℓ - 1st layer of 𝑘-
tree algorithm 
generates many 
partial collisions. 

- Suitable for 
Hellman’s table. 
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Reduction Function 

 Ordinary Hellman’s table detects collisions 
instead of partial collisions. 

 The 𝑘-tree alg finds partial collisions 
(otherwise divide-and-conquer doesn’t work). 

 Reduction function 𝑓ℓ discards 𝑛 − ℓ MSBs 
and only uses ℓ LSBs for building chains. 

0 ℓ 

𝑣0 

0 ℓ 

𝑣1 

𝑓ℓ 

0 ℓ 

𝑣2 

𝑓ℓ 𝑓ℓ 

0 ℓ 

𝑣𝑋 

𝑓ℓ 
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Our Algorithm for 𝑘-Tree 

1. Construct Hellman’s table. 

2. Generate 2
𝑛−ℓ

2  ℓ-bit collisions for 𝐿12 and 𝐿34. 

3. Find a collision on 𝑛 − ℓ bits between 𝐿12 and 𝐿34. 
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Complexity Evaluation 

Step 1: 𝑇𝑖𝑚𝑒 = 𝑀𝑋,            𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑀 

Step 2: 𝑇𝑖𝑚𝑒 = 2
𝑛+ℓ

2 /𝑀𝑋,   𝑀𝑒𝑚𝑜𝑟𝑦 = 2
𝑛−ℓ

2  

Step 3: 𝑇𝑖𝑚𝑒 = 2
𝑛−ℓ

2 ,            𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑛𝑒𝑔𝑙 

 

Balance all the Steps: 

𝑇2𝑀 = 𝑁 
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Our Algorithm for General 𝑘 

 Partial collisions in the first layer are always 
generated with Hellman’s table. 

 

𝑇2 ⋅ 𝑀log 𝑘−1 = 𝑁 
 Example (𝑘=8): 

Prev work 1 𝑇𝑀3 = 𝑁 2𝑛/6 26𝑛/12 

Prev work 3 𝑇2𝑀 = 𝑁 2𝑛/6 25𝑛/12 

Ours 𝑇2𝑀2 = 𝑁 2𝑛/6 24𝑛/12 

Method Curve 𝑀 𝑇 
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Our New Results 

Prev.1 and .2 

Prev.3 

GBP 

𝑘 = 8 

𝑚 

𝑡 

Ours 

 take advantages of both methods 

 only works when all 𝑓 is identical 
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Concluding Remarks 
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Conclusion 

Recent results using Hellman’s tradeoff 

• Secret function 

 Outside construction makes application 
non-trivial 

 𝐾𝑜𝑢𝑡 recovery in NMAC/HMAC 

• Public function 

 Useful when many collisions are generated 

 New time-memory tradeoff for GBP 
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Thank you for your attention !! 


