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Topics 

This talk focuses on a cryptanalytic tool: 

Hellman’s time-memory tradeoff 
 

Motivation 

 Low memory attack is a recent trend 

 Recently, I have found two applications: 

1. NMAC/HMAC key recovery (CRYPTO’14) 

2. Generalized birthday problem (Asiacrypt’15) 
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Hellman’s Time-Memory Tradeoff 
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Introduction of Hellman’s Tradeoff 

“A Cryptanalytic Time-Memory Trade-Off.” 

Martin E. Hellman, 1980. 

 

Key Recovery against Block Cipher 

[Offline] 

 2𝑛 precomp, < 2𝑛 memory 

[Online] 

 Any key can be recovered with 
complexity less than 2𝑛 

𝐸𝐾 𝐾 

𝑃 

𝐶 

𝑛 

𝑛 

𝑛 
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Chains with Key Values 

 Randomly choose a plaintext 𝑃 

 Randomly choose starting key value 𝑣0. 

 Make chains of key values for 𝑋 blocks. 

𝐸 𝑣0 

𝑃 

𝑣1 

𝐸 

𝑃 

𝐸 

𝑃 

𝑣2 𝑣3 

𝐸 

𝑃 

𝑣𝑋 

𝑣0 
𝑣1 𝑣2 𝑣3 𝑣𝑋−1 

𝑣𝑋 
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Many Chains with Saving Memory 

 𝑀 chains of length 𝑋 s.t. 𝑀 × 𝑋 = 2𝑛 

 Only start and end points are stored in 𝑇𝑝𝑟𝑒 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑇𝑝𝑟𝑒 
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Summary of Offline Phase 

 (Ideally) all key values appear in chains. 
 

𝑇𝑖𝑚𝑒 = 𝑀𝑋 = 2𝑛 
𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑀 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑇𝑝𝑟𝑒 
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Online Phase 

𝐾 is one of the values in the matched chain. 

𝐸 𝐾 

𝑃 

𝐶 

𝑣0
𝑗
 𝑣𝑋

𝑗
 

𝐶 
𝑣𝑋

𝑗
 𝐾 

After user’s key 𝐾 is chosen: 

 Query 𝑃 to obtain 𝐶. 

 Make a chain until it reaches 

one of end points (𝑣𝑋
𝑗
) in 𝑇𝑝𝑟𝑒. 

(recovered with additional 𝑋 steps) 
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Summary of Hellman’s Tradeoff 

Offline Phase: 
𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (2𝑛, 𝑀) 

Online Phase: 
𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑋, 𝑛𝑒𝑔𝑙) 

Tradeoff: 

𝑇𝑖𝑚𝑒 = 𝑋 =
2𝑛

𝑀𝑒𝑚𝑜𝑟𝑦
 

 

⟺   𝑇𝑖𝑚𝑒 × 𝑀𝑒𝑚𝑜𝑟𝑦 = 2𝑛 
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Application to Key Recovery in 
HMAC/NMAC 

A part of results in  

Jian Guo, Thomas Peyrin, Yu Sasaki and Lei 
Wang, “Updates on Generic Attacks against 
HMAC and NMAC.” CRYPTO 2014. 
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Hash Function based MAC 

• NMAC (a base technique of HMAC) 

 Require 2 keys (inefficient) 

 Simple 

• HMAC (widely used) 

 Require 1 key (practically efficient) 

 Complicated 
 

For simplicity, NMAC is explained in this talk. 
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NMAC Specification 

Two hash function calls by replacing 𝐼𝑉 
with two keys 𝐾𝑖𝑛 and 𝐾𝑜𝑢𝑡. 

𝐻𝑎𝑠ℎ 

𝑀 

𝐾𝑖𝑛 

𝐻𝑎𝑠ℎ 𝐾𝑜𝑢𝑡 𝑇𝑎𝑔 

inner function 

outer function 
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NMAC with Iterated Hash 

Hash functions have some iterative structure, 
e.g. Merkle-Damgård structure 

𝑀1 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝐶𝐹 

𝑀2 

𝐶𝐹 

𝑀𝐿 

𝐶𝐹 

𝐶𝐹 

𝑛 𝑛 

𝑛 𝑛 

inner function 

outer function 
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Straightforward Application 

 Regard NMAC as 2𝑛-bit key primitive. 

 Work in straightforward, but inefficient. 

𝑁𝑀𝐴𝐶 

𝑀 

𝑇𝑎𝑔 

∗ 

𝑛 

𝟐𝒏 𝐾𝑖𝑛 
𝐾𝑜𝑢𝑡 
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Divide-and-Conquer for 𝐾𝑜𝑢𝑡?? 

By focusing on outer function, 𝐾𝑜𝑢𝑡 may be 
attacked independently from 𝐾𝑖𝑛. 

𝑀1 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝐶𝐹 

𝑀2 

𝐶𝐹 

𝑀𝐿 

𝐶𝐹 

𝐶𝐹 



15 Copyright©2014  NTT corp. All Rights Reserved. 

Divide-and-Conquer for 𝐾𝑜𝑢𝑡?? 

𝐾𝑖𝑛 hides the input value to outer function. 

(simple application is impossible) 

𝑀1 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝐶𝐹 

𝑀2 

𝐶𝐹 

𝑀𝐿 

𝐶𝐹 

𝐶𝐹 

𝑃 unknown 
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Internal State Recovery on NMAC 

 [LPW14] recovers internal state 𝑃 for some 𝑀. 

 [LPW14] requires online queries. 

 Hellman’s tradeoff is meaningless without offline. 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝑀 

𝐶𝐹 

𝐶𝐹 

𝑃 Internal state recovery 
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Our Method (Offline) 

Randomly choose 𝑣𝑠. 

Process 𝑣𝑠 with 2𝑛/3 blocks message to get 𝑣𝑒. 

Run Hellman’s alg by assuming 𝑣𝑒  is later obtained. 

𝐾𝑜𝑢𝑡 𝑇 

𝑀𝑠 

𝐶𝐹 

𝑀𝑠+2𝑛/3  

𝐶𝐹 

𝐶𝐹 

𝑣𝑠 𝑣𝑒 

𝑇𝑝𝑟𝑒  with ordinary Hellman’s method 
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Our Method (Online) 

 Recover internal state 𝑃 with [LPW14]. 

 Run 2nd pre attack [KS05] from 𝑃  to 2𝑛/3  targets. 

 Obtain 𝑇 for 𝑣𝑒. Then, make a chain as usual. 

𝑀1 

𝐾𝑖𝑛 

𝐾𝑜𝑢𝑡 𝑇 

𝐶𝐹 

𝑀𝑠 

𝐶𝐹 

𝑀𝑠+2𝑛/3  

𝐶𝐹 

𝐶𝐹 

𝑣𝑠 𝑣𝑒 

2𝑛/3 targets for 2nd pre. 

𝑃 
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Summary for Application to NMAC 

 For MAC schemes, application of 
Hellman’s tradeoff is non-trivial. 

 By combining several existing 
techniques, application is still possible. 

 For NMAC, we used 

1. Internal state recovery 

2. 2nd preimage attack on Merkle-Damgård 

3. Hellman’s time-memory tradeoff 
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Generalized Birthday Problem 

A part of results in 

Ivica Nikolić and Yu Sasaki, “Refinements of the 
k-tree Algorithm for the Generalized Birthday 
Problem,” Asiacrypt 2015, To appear. 
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Birthday Problem 

𝐹1: 0,1 ∗ → 0,1 𝑛 
𝐹2: 0,1 ∗ → 0,1 𝑛 

 

Find input values (𝑥1, 𝑥2) such that  

𝐹1 𝑥1 ⊕ 𝐹2 𝑥2 = 0. 
 

 can be defined for other group operations 

 can be defined for an identical function 
but different input values 
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Solving Birthday Problem 

Suppose that 

 List 𝐿1 contains 2𝑖  pairs of (𝑥𝑖 , 𝐹1(𝑥𝑖)). 

 List 𝐿2 contains 2𝑗 pairs of (𝑥𝑗 , 𝐹2(𝑥𝑗)). 
 

When 2𝑖+𝑗 ≥ 2𝑛, solutions of 𝐹1 𝑥1 ⊕
𝐹2 𝑥2 = 0 exists with high probability. 

𝐿1 𝐿2 
2𝑖 

elements 
2𝑗  

elements 
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Efficient Algorithm for Birthday Problem 

For the birthday problem, several efficient 
algorithms can solve it with a complexity of 

𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (2𝑛/2, 2𝑛/2). 

 

Moreover, with a cycle detection method: 

𝑇𝑖𝑚𝑒, 𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑂(2𝑛/2), 𝑛𝑒𝑔𝑙) 
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Generalized Birthday Problem 

𝐹1: 0,1 ∗ → 0,1 𝑛 
𝐹2: 0,1 ∗ → 0,1 𝑛 

⋯ 
𝐹𝑘: 0,1 ∗ → 0,1 𝑛 

 

Find a 𝑘-tuple input values (𝑥1, 𝑥2, … 𝑥𝑘) 
such that  

⊕𝑖=1
𝑘 𝐹𝑖 𝑥𝑖 = 0. 



25 Copyright©2014  NTT corp. All Rights Reserved. 

Solving Generalized Birthday Problem 

List 𝐿𝑖  contains pairs of (𝑥, 𝐹𝑖(𝑥)). 
 

When 𝐿1 × 𝐿2 × ⋯ × 𝐿𝑘 ≥ 2𝑛, a 
solution of generalized birthday 
problem exists with high probability. 
 

It does not mean that the solution can 

be found with complexity 2𝑛/𝑘. 
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Wagner’s 𝑘-Tree Algorithm [W02] 

solves the problem for 𝑘 with 

𝑇𝑖𝑚𝑒 = 𝑀𝑒𝑚𝑜𝑟𝑦 = 2
𝑛

⌈log 𝑘⌉+1
. 
 

e.g.  

 4 lists  →  𝑘 = 4  →  𝑇 = 𝑀 = 2𝑛/3   

 8 lists  →  𝑘 = 8  →  𝑇 = 𝑀 = 2𝑛/4   
 

Approach: divide-and-conquer 
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Example of 𝑘-Tree Algorithm (𝑘 = 4) 

𝐿1 𝐿2 𝐿3 𝐿4 

(2𝑛/3) (2𝑛/3) (2𝑛/3) (2𝑛/3) 

𝐿12 (2𝑛/3) 

0 𝑛/3 0 𝑛/3 

𝐿34 (2𝑛/3) 

𝐿1234 (1) 

0 𝑛/3 

2𝑛/3 

1st layer: 

Balance 
𝑛/3 bits  

2nd layer: 

Balance 
2𝑛/3 bits  
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Introducing Time-Memory Tradeoff 

• Memory is more costly than Time. 

• E.g. 𝑛 = 160 for SHA-1: 

 253.3 SHA-1 computations are feasible 

 253.3 memory seems hard (memory access 
is slow). 

 

What’s the best algorithm for the GBP 
with a small memory? 
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Previous Work 

Not so many researches have been taken 
on the memory limited case of GBP 

 D. J. Bernstein. “Better price-
performance ratios for generalized 
birthday attacks.”, SHARCS'07 

 D. J. Bernstein, T. Lange, R. Niederhagen, 
C. Peters, and P. Schwabe. “FSBday.“, 
Indocrypt 2009 
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How Does It Look Like? 

𝐿1 𝐿2 𝐿3 𝐿4 

(𝑀) (𝑀) (𝑀) (𝑀) 

𝐿12 (𝑀) 

0 log 𝑀 0 log 𝑀 

𝐿34 (𝑀) 

𝐿1234 (1) 

0 log 𝑀 

2 log 𝑀 

1st layer: 

Cannot 

store 2𝑛/3 

2nd layer: 

Cannot 
reach 𝑛 bits 

Cramp at least 
log 𝑀 bits 

0 𝑇𝑖𝑚𝑒 = 𝑀 
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Previous Method 1 

Simple 
Iteration: 

Iterate until 𝑛 
bits become 0. 

Time: 

𝑀 ∗ 2𝑛−3 log 𝑀 

𝐿1 𝐿2 𝐿3 𝐿4 

(𝑀) (𝑀) (𝑀) (𝑀) 

𝐿12 (𝑀) 

0 log 𝑀 0 log 𝑀 

𝐿34 (𝑀) 

𝐿1234 (1) 

0 log 𝑀 

2 log 𝑀 0 
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Previous Method 2 

Prefilteration: 

Spend some 
computation to 
prepare lists. 

Time: 

𝑀 ∗ 2𝑛−3 log 𝑀 

𝐿1 𝐿2 𝐿3 𝐿4 

(𝑀) (𝑀) (𝑀) (𝑀) 

𝐿12 (𝑀) 

0 log 𝑀 0 log 𝑀 

𝐿34 (𝑀) 

𝐿1234 
(1) 

0 log 𝑀 

2 log 𝑀 0 

fixed to 
some value 
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Previous Method 3 

Only works when 𝑓1 = 𝑓2, 𝑓3 = 𝑓4, ⋯ 

1. Run the 𝑘-tree algorithm for 𝑓1, 𝑓3, 𝑓5, ⋯ 
with small 𝑀. 

2. Run the 𝑘-tree algorithm for 𝑓2, 𝑓4, 𝑓6, ⋯ 
with small 𝑀. 

3. Run the memoryless collision search for 
the last merging phase. 
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Comparison of Previous Tradeoffs 

Prev.1 and .2 

Prev.3 

GBP 

𝑘 = 8 

𝑚 

𝑡 

• Prev.1 and .2 are good when 𝑚 is relatively large.  
• Prev.3 is opposite. 
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Our New Tradeoff 

 take advantages of both methods 

 only works when all 𝑓 is identical 

Prev.1 and .2 

Prev.3 

GBP 

𝑘 = 8 

𝑚 

𝑡 

Ours 
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Hellman’s Table for Public Functions 

 Domain is infinite, impossible to 
examine all the input values. 

 Identical idea, but different purpose. 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

Offline 
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Hellman’s Table for Public Functions 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑀 

𝑋 

collision !! 

 Online phase of Hellman’s algorithm generates 
a collision to one of the chains. 

 Hellman’s table is used for collision generation. 
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Hellman’s Table for Public Functions 

𝑣0
1 𝑣𝑋

1  

𝑣0
2 𝑣𝑋

2 

𝑣0
𝑀 𝑣𝑋

𝑀 

(𝑣0
1, 𝑣𝑋

1) 

(𝑣0
2, 𝑣𝑋

2) 

(𝑣0
𝑀, 𝑣𝑋

𝑀) 

𝑀 

𝑋 

Fact 1 (Hellman’s Table) 

Once 𝑀 chains of length 𝑋 are computed, cost 

for generating collision is 𝑂(
𝑁

𝑀𝑋
) per collision. 

collision !! 
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Previous Application of Hellman’s Table 

3-collision finding problem [JL09] 

 

 

 

 Well-known: 𝑇 = 22𝑛/3, 𝑀 = 22𝑛/3. 

 [JL09]: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3 

𝑥1 

𝑥2 

𝑥3 

𝑓 

𝑓 

𝑓 

𝑓(𝑥1) = 𝑓 𝑥2 = 𝑓(𝑥3) 
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Previous Application of Hellman’s Table 

1. Generate chains: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3 

 Cost per collision becomes 𝑂(2𝑛/3). 

2. Generate 23/𝑛 collisions: 𝑇 = 22𝑛/3, 𝑀 = 2𝑛/3 

3. Generate 22𝑛/3 values : 𝑇 = 22𝑛/3, 𝑀 = 𝑛𝑒𝑔𝑙 

 

𝑣0
1 𝑣𝑋

1  

𝑣0
𝑀 𝑣𝑋

𝑀 

𝑀 = 2𝑛/3 

𝑋 = 2𝑛/3 

coll 
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Hellman’s Table Fits 𝑘-Tree 

𝐿1 𝐿2 𝐿3 𝐿4 

(𝑀) (𝑀) (𝑀) (𝑀) 

𝐿12 (𝑀) 

0 ℓ 0 ℓ 

𝐿34 (𝑀) 

𝐿1234 (1) 

0 ℓ 

𝑛 − ℓ - 1st layer of 𝑘-
tree algorithm 
generates many 
partial collisions. 

- Suitable for 
Hellman’s table. 
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Reduction Function 

 Ordinary Hellman’s table detects collisions 
instead of partial collisions. 

 The 𝑘-tree alg finds partial collisions 
(otherwise divide-and-conquer doesn’t work). 

 Reduction function 𝑓ℓ discards 𝑛 − ℓ MSBs 
and only uses ℓ LSBs for building chains. 

0 ℓ 

𝑣0 

0 ℓ 

𝑣1 

𝑓ℓ 

0 ℓ 

𝑣2 

𝑓ℓ 𝑓ℓ 

0 ℓ 

𝑣𝑋 

𝑓ℓ 
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Our Algorithm for 𝑘-Tree 

1. Construct Hellman’s table. 

2. Generate 2
𝑛−ℓ

2  ℓ-bit collisions for 𝐿12 and 𝐿34. 

3. Find a collision on 𝑛 − ℓ bits between 𝐿12 and 𝐿34. 
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Complexity Evaluation 

Step 1: 𝑇𝑖𝑚𝑒 = 𝑀𝑋,            𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑀 

Step 2: 𝑇𝑖𝑚𝑒 = 2
𝑛+ℓ

2 /𝑀𝑋,   𝑀𝑒𝑚𝑜𝑟𝑦 = 2
𝑛−ℓ

2  

Step 3: 𝑇𝑖𝑚𝑒 = 2
𝑛−ℓ

2 ,            𝑀𝑒𝑚𝑜𝑟𝑦 = 𝑛𝑒𝑔𝑙 

 

Balance all the Steps: 

𝑇2𝑀 = 𝑁 
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Our Algorithm for General 𝑘 

 Partial collisions in the first layer are always 
generated with Hellman’s table. 

 

𝑇2 ⋅ 𝑀log 𝑘−1 = 𝑁 
 Example (𝑘=8): 

Prev work 1 𝑇𝑀3 = 𝑁 2𝑛/6 26𝑛/12 

Prev work 3 𝑇2𝑀 = 𝑁 2𝑛/6 25𝑛/12 

Ours 𝑇2𝑀2 = 𝑁 2𝑛/6 24𝑛/12 

Method Curve 𝑀 𝑇 
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Our New Results 

Prev.1 and .2 

Prev.3 

GBP 

𝑘 = 8 

𝑚 

𝑡 

Ours 

 take advantages of both methods 

 only works when all 𝑓 is identical 
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Concluding Remarks 
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Conclusion 

Recent results using Hellman’s tradeoff 

• Secret function 

 Outside construction makes application 
non-trivial 

 𝐾𝑜𝑢𝑡 recovery in NMAC/HMAC 

• Public function 

 Useful when many collisions are generated 

 New time-memory tradeoff for GBP 
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Thank you for your attention !! 


