Recent Applications of Hellman's Time-Memory Tradeoff

Yu Sasaki

NTT Secure Platform Laboratories
Nanyang Technological University, Singapore 1/October/2015 @ ASK 2015, Singapore

Topics

This talk focuses on a cryptanalytic tool:
Hellman's time-memory tradeoff
Motivation
$>$ Low memory attack is a recent trend
$>$ Recently, I have found two applications:

1. NMAC/HMAC key recovery (CRYPTO'14)
2. Generalized birthday problem (Asiacrypt'15)

Hellman's Time-Memory Tradeoff

Introduction of Hellman's Tradeoff

"A Cryptanalytic Time-Memory Trade-Off." Martin E. Hellman, 1980.

Key Recovery against Block Cipher [Offline]
$>2^{n}$ precomp, $<2^{n}$ memory
[Online]
> Any key can be recovered with complexity less than 2^{n}

Chains with Key Values
$>$ Randomly choose a plaintext P
$>$ Randomly choose starting key value v_{0}.
$>$ Make chains of key values for X blocks.

$$
v_{0} \bullet \longrightarrow \bullet \rightarrow \stackrel{v}{1}_{\bullet}^{v_{2}} \longrightarrow_{v_{3}}^{\bullet} \rightarrow \cdots \underset{v_{X-1}}{\bullet} \boldsymbol{v}_{X}
$$

Many Chains with Saving Memory

$>M$ chains of length X s.t. $M \times X=2^{n}$
$>$ Only start and end points are stored in $T_{p r e}$
$v_{0}^{1} \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet v_{X}^{1}$
$v_{0}^{2} \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow \bullet v_{X}^{2}$
:
$v_{0}^{M} \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \rightarrow \bullet \rightarrow v_{X}^{M}$

$T_{\text {pre }}$
$\left(v_{0}^{1}, v_{X}^{1}\right)$
$\left(v_{0}^{2}, v_{X}^{2}\right)$
\vdots
$\left(v_{0}^{M}, v_{X}^{M}\right)$

Summary of Offline Phase

$>$ (Ideally) all key values appear in chains.

Online Phase

After user's key K is chosen:
Query P to obtain C.
Make a chain until it reaches one of end points $\left(v_{X}^{j}\right)$ in $T_{\text {pre }}$.

K is one of the values in the matched chain. (recovered with additional X steps)

Summary of Hellman's Tradeoff

Offline Phase:

$$
(\text { Time }, \text { Memory })=\left(2^{n}, M\right)
$$

Online Phase:

$$
(\text { Time }, \text { Memory })=(X, \text { negl })
$$

Tradeoff:

$$
\text { Time }=X=\frac{2^{n}}{\text { Memory }}
$$

Time \times Memory $=2^{n}$

Application to Key Recovery in HMAC/NMAC

A part of results in
Jian Guo, Thomas Peyrin, Yu Sasaki and Lei Wang, "Updates on Generic Attacks against HMAC and NMAC." CRYPTO 2014.

Hash Function based MAC

- NMAC (a base technique of HMAC)
$>$ Require 2 keys (inefficient)
$>$ Simple
- HMAC (widely used)
$>$ Require 1 key (practically efficient)
$>$ Complicated
For simplicity, NMAC is explained in this talk.

NMAC Specification

Two hash function calls by replacing $I V$ with two keys $K_{\text {in }}$ and $K_{\text {out }}$.

NMAC with Iterated Hash

Hash functions have some iterative structure, e.g. Merkle-Damgård structure

Straightforward Application

$>$ Regard NMAC as $2 n$-bit key primitive. $>$ Work in straightforward, but inefficient.

Divide-and-Conquer for $K_{\text {out }}$??

By focusing on outer function, $K_{\text {out }}$ may be attacked independently from $K_{\text {in }}$.

Divide-and-Conquer for $K_{\text {out }}$??

$K_{\text {in }}$ hides the input value to outer function. (simple application is impossible)

Internal State Recovery on NMAC

> [LPW14] recovers internal state P for some M. > [LPW14] requires online queries.
> Hellman's tradeoff is meaningless without offline.

M

Our Method (Offline)

$>$ Randomly choose v_{s}.
\Rightarrow Process v_{s} with $2^{n / 3}$ blocks message to get v_{e}.
$>$ Run Hellman's alg by assuming v_{e} is later obtained.

$T_{\text {pre }}$ with ordinary Hellman's method

Our Method (Online)

$>$ Recover internal state P with [LPW14].
$>$ Run 2nd pre attack [KSO5] from P to $2^{n / 3}$ targets.
$>$ Obtain T for v_{e}. Then, make a chain as usual.

Summary for Application to NMAC

> For MAC schemes, application of Hellman's tradeoff is non-trivial.
$>$ By combining several existing techniques, application is still possible.
$>$ For NMAC, we used

1. Internal state recovery
2. $2^{\text {nd }}$ preimage attack on Merkle-Damgård
3. Hellman's time-memory tradeoff

Generalized Birthday Problem

A part of results in
Ivica Nikolić and Yu Sasaki, "Refinements of the k-tree Algorithm for the Generalized Birthday Problem," Asiacrypt 2015, To appear.

$$
\begin{aligned}
& F_{1}:\{0,1\}^{*} \rightarrow\{0,1\}^{n} \\
& F_{2}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}
\end{aligned}
$$

Find input values $\left(x_{1}, x_{2}\right)$ such that

$$
F_{1}\left(x_{1}\right) \oplus F_{2}\left(x_{2}\right)=0
$$

$>$ can be defined for other group operations
$>$ can be defined for an identical function but different input values

Solving Birthday Problem

Suppose that

$>$ List L_{1} contains 2^{i} pairs of $\left(x_{i}, F_{1}\left(x_{i}\right)\right)$.
$>$ List L_{2} contains 2^{j} pairs of $\left(x_{j}, F_{2}\left(x_{j}\right)\right)$.
When $2^{i+j} \geq 2^{n}$, solutions of $F_{1}\left(x_{1}\right) \oplus$ $F_{2}\left(x_{2}\right)=0$ exists with high probability.

Efficient Algorithm for Birthday Problem

For the birthday problem, several efficient algorithms can solve it with a complexity of

$$
(\text { Time }, \text { Memory })=\left(2^{n / 2}, 2^{n / 2}\right)
$$

Moreover, with a cycle detection method:

$$
(\text { Time }, \text { Memory })=\left(O\left(2^{n / 2}\right), \text { negl }\right)
$$

Generalized Birthday Problem

$$
\begin{aligned}
& F_{1}:\{0,1\}^{*} \rightarrow\{0,1\}^{n} \\
& F_{2}:\{0,1\}^{*} \rightarrow\{0,1\}^{n} \\
& \ldots \\
& F_{k}:\{0,1\}^{*} \rightarrow\{0,1\}^{n}
\end{aligned}
$$

Find a k-tuple input values $\left(x_{1}, x_{2}, \ldots x_{k}\right)$ such that

$$
\bigoplus_{i=1}^{k} F_{i}\left(x_{i}\right)=0
$$

Solving Generalized Birthday Problem

List L_{i} contains pairs of $\left(x, F_{i}(x)\right)$.

When $\left|L_{1}\right| \times\left|L_{2}\right| \times \cdots \times\left|L_{k}\right| \geq 2^{n}$, a solution of generalized birthday problem exists with high probability.

It does not mean that the solution can be found with complexity $2^{n / k}$.

Wagner's k-Tree Algorithm [W02]
solves the problem for k with
Time $=$ Memory $=2^{\frac{n}{\lceil\log k\rceil+1}}$.
e.g.
>4 lists $\rightarrow k=4 \rightarrow T=M=2^{n / 3}$
>8 lists $\rightarrow k=8 \rightarrow T=M=2^{n / 4}$

Approach: divide-and-conquer

Example of k-Tree Algorithm $(k=4)$

2nd layer: Balance $2 n / 3$ bits

1st layer:
Balance $n / 3$ bits

Introducing Time-Memory Tradeoff

- Memory is more costly than Time.
- E.g. $n=160$ for SHA-1:
$>2^{53.3}$ SHA-1 computations are feasible
$>2^{53.3}$ memory seems hard (memory access is slow).

What's the best algorithm for the GBP with a small memory?

Previous Work

Not so many researches have been taken on the memory limited case of GBP
> D. J. Bernstein. "Better priceperformance ratios for generalized birthday attacks.", SHARCS'07
$>$ D. J. Bernstein, T. Lange, R. Niederhagen, C. Peters, and P. Schwabe. "FSBday.", Indocrypt 2009

How Does It Look Like?

Previous Method 1

Previous Method 2

Previous Method 3

Only works when $f_{1}=f_{2}, f_{3}=f_{4}, \cdots$

1. Run the k-tree algorithm for $f_{1}, f_{3}, f_{5}, \cdots$ with small M.
2. Run the k-tree algorithm for $f_{2}, f_{4}, f_{6}, \cdots$ with small M.
3. Run the memoryless collision search for the last merging phase.

Comparison of Previous Tradeoffs

- Prev. 1 and .2 are good when m is relatively large.
- Prev. 3 is opposite.

Our New Tradeoff

$>$ take advantages of both methods
$>$ only works when all f is identical

Hellman's Table for Public Functions

$>$ Domain is infinite, impossible to examine all the input values.
$>$ Identical idea, but different purpose.

$v_{0}^{2} \bullet \rightarrow \bullet v_{X}^{2}$
:
v_{0}^{M}

Offline
$\left(v_{0}^{1}, v_{X}^{1}\right)$
$\left(v_{0}^{2}, v_{X}^{2}\right)$
\vdots
$\left(v_{0}^{M}, v_{X}^{M}\right)$

Hellman's Table for Public Functions

> Online phase of Hellman's algorithm generates a collision to one of the chains.
$>$ Hellman's table is used for collision generation.

Hellman's Table for Public Functions

Fact 1 (Hellman's Table)

Once M chains of length X are computed, cost for generating collision is $O\left(\frac{N}{M X}\right)$ per collision.

Previous Application of Hellman's Table

3-collision finding problem [JLO9]

$>$ Well-known: $T=2^{2 n / 3}, M=2^{2 n / 3}$.
$>$ [JLO9]: $T=2^{2 n / 3}, M=2^{n / 3}$

Previous Application of Hellman's Table

1. Generate chains: $T=2^{2 n / 3}, M=2^{n / 3}$

Cost per collision becomes $O\left(2^{n / 3}\right)$.
2. Generate $2^{3 / n}$ collisions: $T=2^{2 n / 3}, M=2^{n / 3}$ 3. Generate $2^{2 n / 3}$ values : $T=2^{2 n / 3}, M=n e g l$

Hellman's Table Fits k-Tree

Reduction Function

> Ordinary Hellman's table detects collisions instead of partial collisions.
$>$ The k-tree alg finds partial collisions (otherwise divide-and-conquer doesn't work).
$>$ Reduction function f_{ℓ} discards $n-\ell$ MSBs and only uses ℓ LSBs for building chains.

Our Algorithm for k-Tree

1. Construct Hellman's table.

2. Generate $2^{\frac{n-\ell}{2}} \ell$-bit collisions for L_{12} and L_{34}.
3. Find a collision on $n-\ell$ bits between L_{12} and L_{34}.

Step 1: Time $=M X, \quad$ Memory $=M$
Step 2: Time $=2^{\frac{n+\ell}{2}} / M X, \quad$ Memory $=2^{\frac{n-\ell}{2}}$
Step 3: Time $=2^{\frac{n-\ell}{2}}$,
Memory $=n e g l$

Balance all the Steps:

$$
T^{2} M=N
$$

Our Algorithm for General k
> Partial collisions in the first layer are always generated with Hellman's table.

$$
T^{2} \cdot M^{\log k-1}=N
$$

> Example ($k=8$):
Method
Curve
M
T

Prev work 1	$T M^{3}=N$	$2^{n / 6}$	$2^{6 n / 12}$
Prev work 3	$T^{2} M=N$	$2^{n / 6}$	$2^{5 n / 12}$
Ours	$T^{2} M^{2}=N$	$2^{n / 6}$	$2^{4 n / 12}$

Our New Results

$>$ take advantages of both methods
$>$ only works when all f is identical

Concluding Remarks

Recent results using Hellman's tradeoff

- Secret function
$>$ Outside construction makes application non-trivial
$>K_{\text {out }}$ recovery in NMAC/HMAC
- Public function
$>$ Useful when many collisions are generated
> New time-memory tradeoff for GBP

Thank you for your attention !!

