Introduction	Hash-based MACs	State recovery	Universal forgery	Key-recovery	Conclu

Generic Attacks against MAC algorithms

Gaëtan Leurent

Inria Rocquencourt, France

ASK 2015

G. Leurent (Inria)

Conclusion

Confidentiality and authenticity

 Cryptography has two main objectives:
 Confidentiality keeping the message secret Authenticity making sure the message is authentic

Authenticity is often more important than confidentiality

- Email signature
- Software update
- Credit cards
- Sensor networks
- Remote control (e.g. garage door, car)
- Remote access (e.g. password authentication)
- Authenticity achieved with signatures (asymmetric), or MACs (symmetric)

G. Leurent (Inria)

Message Authentication Codes

- Alice sends a message to Bob
- Bob wants to authenticate the message.
- Alice uses a key k to compute a tag: ►
- Bob verifies the tag with the same key k:

 $t = MAC_{k}(M)$ $t \stackrel{?}{=} MAC_{k}(M)$

Introduction Hash-based MACs State recovery Universal forgery Key-recovery Conclusion

Security notions

Key-recovery: given access to a MAC oracle, extract the key

- Forgery: given access to a MAC oracle, forge a valid pair
 - For a message chosen by the adversary: existential forgery
 - For a challenge given to the adversary: universal forgery

Distinguishing games:

- ► Distinguish MAC^{*H*} from a PRF: distinguishing-R *e.g.* distinguish HMAC from a PRF
- Distinguish $MAC_k^{\mathcal{H}}$ from MAC_k^{PRF} : distinguishing-H *e.g.* distinguish HMAC-SHA1 from HMAC-PRF

Hash-based MACs 000

Universal forgery 0000000 Key-recovery 0000 Conclusion

One of the first MAC

[NIST, ANSI, ISO, '85?]

- Designed by practitioners, to be used with DES
- Based on CBC encryption mode
- Security proof

[Bellare, Kilian & Rogaway '94]

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 5 / 59

Conclusion

Security of modes of operations

- Initially, security of CBC-MAC-DES was an assumption
- To reduce the number of assumptions, study the block cipher and the mode independently

Security proof for the mode

- Assume that the block cipher is good, prove that the MAC is good
- Lower bound on the security of the mode

2 Cryptanalysis of the block cipher

Try to show non-random behavior

- Attack that work for any choice of the block cipher
- Upper bound on the security of the mode

Security of modes of operations

- Initially, security of CBC-MAC-DES was an assumption
- To reduce the number of assumptions, study the block cipher and the mode independently

Security proof for the mode

- Assume that the block cipher is good, prove that the MAC is good
- Lower bound on the security of the mode
- 2 Cryptanalysis of the block cipher
 - Try to show non-random behavior

- Attack that work for any choice of the block cipher
- Upper bound on the security of the mode

Security of modes of operations

- Initially, security of CBC-MAC-DES was an assumption
- To reduce the number of assumptions, study the block cipher and the mode independently

Security proof for the mode

- Assume that the block cipher is good, prove that the MAC is good
- Lower bound on the security of the mode

2 Cryptanalysis of the block cipher

Try to show non-random behavior

- Attack that work for any choice of the block cipher
- Upper bound on the security of the mode

Security of modes of operations

- Initially, security of CBC-MAC-DES was an assumption
- To reduce the number of assumptions, study the block cipher and the mode independently

Security proof for the mode

- Assume that the block cipher is good, prove that the MAC is good
- Lower bound on the security of the mode
- 2 Cryptanalysis of the block cipher
 - Try to show non-random behavior

- Attack that work for any choice of the block cipher
- Upper bound on the security of the mode

Conclusion

Generic Attack against Iterated Deterministic MACs

1 Find internal collisions

[Preneel & van Oorschot '95]

- Query 2^{n/2} random short messages
- 1 internal collision expected, detected in the output

2 Query
$$t = MAC(x \parallel m)$$

 $3 (y \parallel m, t) \text{ is a forgery}$

Generic Attack against Iterated Deterministic MACs

1 Find internal collisions

[Preneel & van Oorschot '95]

- Query 2^{n/2} random short messages
- 1 internal collision expected, detected in the output
- 2 Query $t = MAC(x \parallel m)$
- $3 (y \parallel m, t) \text{ is a forgery}$

Generic Attack against Iterated Deterministic MACs

1 Find internal collisions

[Preneel & van Oorschot '95]

- Query 2^{n/2} random short messages
- 1 internal collision expected, detected in the output

2 Query
$$t = MAC(x \parallel m)$$

3 $(y \parallel m, t)$ is a forgery

Generic Attack against Iterated Deterministic MACs

1 Find internal collisions

[Preneel & van Oorschot '95]

- Query 2^{n/2} random short messages
- 1 internal collision expected, detected in the output

2 Query
$$t = MAC(x \parallel m)$$

3 $(y \parallel m, t)$ is a forgery

Problem

CBC-MAC with DES is unsafe after 2³² queries

Hash-based MACs

Universal forgery

Key-recovery 0000 Conclusion

Security Proofs

What's a security proof?

- ► $\operatorname{Adv}_{\operatorname{CBC}-F}^{\operatorname{prf}}(q,t) \le \operatorname{Adv}_{F}^{\operatorname{prp}}(mq,t+O(mqn)) + \frac{q^2m^2}{2^{n-1}}$
- Bound on the success probability of an adversary against the MAC
 - q number of queries
 - t time
 - m max query length
- "If DES is a secure PRF, then CBC-MAC-DES is a secure PRF"

Limitations

- Birthday-bound security
 - Bound meaningless when $mq \approx 2^{n/2}$
- No information on security degradation after the birthday bound
 - Usually assumed that key-recovery attacks require more...

G. Leurent (Inria)

Hash-based MACs 000 State recovery

Universal forgery 0000000 Key-recovery 0000 Conclusion

Remaining of this talk

MAC security is well understood

- Good MAC constructions have birthday bound security proof
- We have a generic existential forgery attack with birthday complexity

Or is it?

- Different MACs have different security loss after the birthday bound!
- We need to study generic attack to understand the security of modes

Key-recovery

Conclusion

PMAC

PMAC: parallelisable block-cipher based MAC

[Black & Rogaway '02]

• Uses secret offsets to the block cipher input: $L = E_k(0)$

Hash-based MACs

Universal forgery 0000000 Key-recovery 0000 Conclusion

PMAC

- Collision attack: two sets of messages
- $A_x = [x], |x| = 128$
 - Full block
 - MAC(A_x) = $E([x] \oplus \frac{1}{2}L)$

- ges [Lee & al '06] ► B_y = [y], |y| < 128
 - Partial block
 - $MAC(B_y) = E(pad([y]))$

- Collision (A_x, B_y)?
 - The MAC collide iff $[x] \oplus \frac{1}{2}L = pad([y])$
 - Deduce L
 - Universal forgery attack

Hash-based MAC

Universal forgery 0000000 Key-recovery 0000 Conclusion

AEZ uses a variant of PMAC

[Hoang, Krovetz & Rogaway '15]

- A collision gives $J: [x] \oplus 9J = pad([y]) \oplus 8J$
- Key derivation (AEZ v2) $J = E_0(k)$
- Collisions reveal the master key!

[FLS, AC'15]

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 11 / 59

AEZ

Conclusion

Security of block cipher based MACs

Proofs

CBC-MAC, PMAC, and AEZ have security proofs up to the birthday bound

Attacks

Effect of collision attacks with $2^{n/2}$ queries

- CBC-MAC: almost universal forgeries
- PMAC: universal forgeries
- AEZ: key recovery

[Jia & al '09]

Hash-based MACs

State recovery

Universal forgery

Key-recovery 0000 Conclusion

Outline

Introduction

MACs Security Proofs

Hash-based MACs Hash-based MACs

State recovery attacks

Using multi-collisions Using the cycle structure Short messages attacks using chains

Universal forgery attacks

Using cycles Using chains

Key-recovery attacks HMAC-GOST

G. Leurent (Inria)

Hash-based MACs ●○○

Universal forgery

Key-recovery 0000 Conclusion

Hash-based MACs

- *l*-bit chaining value
- n-bit output
- k-bit key

we focus on $\ell = n = k$

- Key-dependant initial value I_k
- Unkeyed compression function h
- Key-dependant finalization, with message length gk

HMAC

- HMAC has been designed by Bellare, Canetti, and Krawczyk in 1996
- Standardized by ANSI, IETF, ISO, NIST.
- Used in many applications:
 - To provide authentication:
 - SSL, IPSEC, ...
 - To provide identification:
 - Challenge-response protocols
 - CRAM-MD5 authentication in SASL, POP3, IMAP, SMTP, ...
 - For key-derivation:
 - HMAC as a PRF in IPsec
 - HMAC-based PRF in TLS

Universal forgery

Key-recovery 0000 Conclusion

Security of hash-based MACS

- Security proofs up to the birthday bound
- Generic attacks based on collisions
 - Proof is tight for some security notions
 - Existential forgery
 - Distinguishing-R

What is the remaining security above the birthday bound?

- Generic distinguishing-H attack?
- Generic state-recovery attack?
- Generic universal forgery attack?
- Generic key-recovery attack?

Hash-based MACs

State recovery

Universal forgery

Key-recovery 0000 Conclusion

Outline

Introduction

MACs Security Proofs

Hash-based MACs

Hash-based MACs

State recovery attacks

Using multi-collisions Using the cycle structure Short messages attacks using chains

Universal forgery attacks

Using cycles Using chains

Key-recovery attacks HMAC-GOST

G. Leurent (Inria)

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

Bibliography

Y. Naito, Y. Sasaki, L. Wang, K. Yasuda

Generic State-Recovery and Forgery Attacks on ChopMD-MAC and on NMAC/HMAC IWSEC 2013

G. Leurent, T. Peyrin, L. Wang New Generic Attacks against Hash-Based MACs ASIACRYPT 2013

🔋 I. Dinur, G. Leurent

Improved Generic Attacks against Hash-Based MACs and HAIFA CRYPTO 2014 State recovery

Multi-collision based attack

[Naito, Sasaki, Wang & Yasuda '13]

- Using a fixed message block, we apply a fixed function
- Starting point and ending point unknown because of the key

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 19/59

Multi-collision based attack

[Naito, Sasaki, Wang & Yasuda '13]

- Using a fixed message block, we apply a fixed function
- Starting point and ending point unknown because of the key

Can we detect properties of the function $h_0 : x \mapsto h(x, 0)$ *?*

- Use bias in the output of the compression function
 - Some outputs are more likely than others
 - With $2^{\ell-\epsilon}$ work, find a value x^* with ℓ preimages (offline)

How to detect when this state is reached?

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 19 / 59

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

G. Leurent (Inria)

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

G. Leurent (Inria)

Hash-based MACs 000 State recovery

Universal forgery 0000000 *Key-recovery* 0000 Conclusion

Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

2 MAC($M \parallel c$) $\stackrel{?}{=}$ MAC($M \parallel c'$) $M \qquad c$ $I_k \qquad \downarrow \qquad x? \qquad \downarrow \qquad f_h \qquad f_h$

G. Leurent (Inria)

First state-recovery attack

[Naito, Sasaki, Wang & Yasuda '13]

- Fix a message block m₁ = [0].
 With 2^{ℓ-ε} work, find a value x* with ℓ preimages
- 2 Find a collision $h(x^*, c) = h(x^*, c')$
- 3 For random m₀, compare MAC(m₀ || [0] || c) and MAC(m₀ || [0] || c') If they are equal, x₂ = x^{*}

G. Leurent (Inria)

First state-recovery attack

[Naito, Sasaki, Wang & Yasuda '13]

1 Fix a message block $m_1 = [0]$.

With $2^{\ell-\epsilon}$ work, find a value x^* with ℓ preimages

- 2 Find a collision $h(x^*, c) = h(x^*, c')$
- 3 For random m₀, compare MAC(m₀ || [0] || c) and MAC(m₀ || [0] || c') If they are equal, x₂ = x^{*}

G. Leurent (Inria)

First state-recovery attack

[Naito, Sasaki, Wang & Yasuda '13]

- Fix a message block m₁ = [0].
 With 2^{ℓ-ε} work, find a value x* with ℓ preimages
- 2 Find a collision $h(x^*, c) = h(x^*, c')$
- For random m₀, compare MAC(m₀ || [0] || c) and MAC(m₀ || [0] || c') If they are equal, x₂ = x^{*}

G. Leurent (Inria)

First state-recovery attack

[Naito, Sasaki, Wang & Yasuda '13]

$$I_{k} \xrightarrow{\ell}_{x_{0}} h \xrightarrow{\ell}_{x_{1}} h \xrightarrow{\ell}_{x_{2}} h \xrightarrow{\ell}_{x_{3}} g_{k} \xrightarrow{n} MAC_{k}(M)$$

- Fix a message block m₁ = [0].
 With 2^{ℓ-ε} work, find a value x* with ℓ preimages
- 2 Find a collision $h(x^*, c) = h(x^*, c')$
- For random m₀, compare MAC(m₀ || [0] || c) and MAC(m₀ || [0] || c') If they are equal, x₂ = x^{*}

G. Leurent (Inria)

First state-recovery attack

[Naito, Sasaki, Wang & Yasuda '13]

$$I_{k} \xrightarrow{\ell}_{x_{0}} h \xrightarrow{\ell}_{x_{1}} h \xrightarrow{\ell}_{x_{2}} h \xrightarrow{\ell}_{x_{3}} g_{k} \xrightarrow{n} MAC_{k}(M)$$

- Fix a message block m₁ = [0].
 With 2^{ℓ-ε} work, find a value x* with ℓ preimages
- 2 Find a collision $h(x^*, c) = h(x^*, c')$
- For random m₀, compare MAC(m₀ || [0] || c) and MAC(m₀ || [0] || c') If they are equal, x₂ = x*

G. Leurent (Inria)

Universal forgery 0000000 *Key-recovery* 0000 Conclusion

Structure of state-recovery attacks

- Identify special states easier to reach
- 2 Build filter for special states
- Build messages to reach special states
 Test if special state reached using filters
- ▶ In this attack, steps 1 & 2 offline, step 3 online.
Cycle based attack

- Using a fixed message block, we iterate a fixed function
- Starting point and ending point unknown because of the key

Can we detect properties of the function $h_0 : x \mapsto h(x, 0)$ *?*

- Study the cycle structure of random mappings
- Used to attack HMAC in related-key setting

[Peyrin, Sasaki & Wang, Asiacrypt 12]

Cycle based attack

- Using a fixed message block, we iterate a fixed function
- Starting point and ending point unknown because of the key

Can we detect properties of the function $h_0 : x \mapsto h(x, 0)$ *?*

- Study the cycle structure of random mappings
- Used to attack HMAC in related-key setting

[Peyrin, Sasaki & Wang, Asiacrypt 12]

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

Random Mappings

- Functional graph of a random mapping $x \to f(x)$
- Iterate $f: x_i = f(x_{i-1})$
- Collision after ≈ 2^{ℓ/2} iterations
 Cycles
- Trees rooted in the cycle
- Several components

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

Random Mappings

- Functional graph of a random mapping $x \to f(x)$
- Iterate $f: x_i = f(x_{i-1})$
- Collision after ≈ 2^{ℓ/2} iterations
 Cycles
- Trees rooted in the cycle
- Several components

Hash-based MACs

State recovery

Universal forgery

Key-recovery 0000 Conclusion

Random Mappings

- Functional graph of a random mapping $x \to f(x)$
- Iterate $f: x_i = f(x_{i-1})$
- Collision after ≈ 2^{ℓ/2} iterations
 Cycles
- Trees rooted in the cycle
- Several components

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

Cycle structure

Expected properties of a random mapping over *N* points:

- # Components: $\frac{1}{2} \log N$
- # Cyclic nodes: $\sqrt{\pi N/2}$
- Tail length: $\sqrt{\pi N/8}$
- Rho length: $\sqrt{\pi N/2}$
- Largest tree: 0.48N
- Largest component: 0.76N

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

Cycle structure

Expected properties of a random mapping over *N* points:

- # Components: $\frac{1}{2} \log N$
- # Cyclic nodes: $\sqrt{\pi N/2}$
- Tail length: $\sqrt{\pi N/8}$
- Rho length: $\sqrt{\pi N/2}$
- Largest tree: 0.48N
- Largest component: 0.76N

Introduction Hash-based MACs State recovery Universal forgery Key-recovery

Using the cycle length

1 Offline: find the cycle length *L* of the main component of h_0 **2** Online: query $t = MAC(r || [0]^{2^{\ell/2}})$ and $t' = MAC(r || [0]^{2^{\ell/2}+L})$

Success if

The starting point is in the main componentp = 0.76The cycle is reached with less than $2^{\ell/2}$ iterations $p \ge 0.5$ Randomize starting point

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 26 / 59

Hash-based MACs 000 State recovery

Universal forgery 0000000 Key-recovery 0000 Conclusion

Cycle structure

Expected properties of a random mapping over *N* points:

- # Components: $\frac{1}{2} \log N$
- # Cyclic nodes: $\sqrt{\pi N/2}$
- Tail length: $\sqrt{\pi N/8}$
- Rho length: $\sqrt{\pi N/2}$
- Largest tree: 0.48N
- Largest component: 0.76N

Using the cycle length

2 Offline: find the cycle length *L* of the main component of h_0 **2** Online: query $t = MAC(r || [0]^{2^{\ell/2}})$ and $t' = MAC(r || [0]^{2^{\ell/2}+L})$

Success if

 The starting point is in the main component *p* = 0.76

 The cycle is reached with less than 2^{l/2} iterations *p* ≥ 0.5

 Randomize starting point

Hash-based MACs 000 State recovery

Universal forgery 0000000 Key-recovery 0000 Conclusion

Dealing with the message length

Problem: most MACs use the message length.

Hash-based MACs 000 State recovery

Universal forgery 0000000 *Key-recovery* 0000 Conclusion

Dealing with the message length

Solution: reach the cycle twice

G. Leurent (Inria)

Hash-based MACs 000 State recovery

Universal forgery 0000000 *Key-recovery* 0000 Conclusion

Dealing with the message length

Solution: reach the cycle twice

Distinguishing-H attack

1 Offline: find the cycle length *L* of the main component of h_0

- 2 Online: query $t = MAC(r || [0]^{2^{\ell/2}} || [1] || [0]^{2^{\ell/2}+L})$ $t' = MAC(r || [0]^{2^{\ell/2}+L} || [1] || [0]^{2^{\ell/2}})$
- 3 If t = t', then h is the compression function in the oracle

Analysis

- ► Complexity: 2^{ℓ/2} compression function calls
- ► Success probability: p ≈ 0.14
 - Both starting point are in the main component
 - Both cycles are reached with less than $2^{\ell/2}$ iterations

 $p = 0.76^2$ $p \ge 0.5^2$

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

State recovery attack

- Consider the first cyclic point
- With high pr., root of the giant tree

 Offline: find cycle length L, and root of giant tree α

 Online: Binary search for smallest *z* with collisions: MAC(*r* || [0]^{*z*} || [*x*] || [0]^{2^{ℓ/2}+L}), MAC(*r* || [0]^{*z*+L} || [*x*] || [0]^{2^{ℓ/2}})

3 State after $r \parallel [0]^z$ is α (with high pr.)

Analysis

• Complexity $2^{\ell/2} \times \ell \times \log(\ell)$

Hash-based MACs 000 *State recovery*

Universal forgery

Key-recovery 0000 Conclusion

Cycle structure

Expected properties of a random mapping over *N* points:

- # Components: $\frac{1}{2} \log N$
- # Cyclic nodes: $\sqrt{\pi N/2}$
- Tail length: $\sqrt{\pi N/8}$
- Rho length: $\sqrt{\pi N/2}$
- Largest tree: 0.48N
- Largest component: 0.76N

Hash-based MACs 000 State recovery

Universal forgery 0000000 Key-recovery 0000 Conclusion

State recovery attack

- Consider the first cyclic point
- With high pr., root of the giant tree
- **1** Offline: find cycle length *L*, and root of giant tree α
- 2 Online: Binary search for smallest *z* with collisions: MAC(*r* || [0]^z || [*x*] || [0]^{2^{ℓ/2}+L}), MAC(*r* || [0]^{z+L} || [*x*] || [0]^{2^{ℓ/2}})
- **3** State after $r \parallel [0]^z$ is α (with high pr.)

Analysis

• Complexity $2^{\ell/2} \times \ell \times \log(\ell)$

Hash-based MACs 000 *State recovery*

Universal forgery

Key-recovery 0000 Conclusion

Short message attacks

Limitations of cycle-based attacks

- Messages of length $2^{\ell/2}$ are not very practical...
 - SHA-1 and HAVAL limit the message length to 2⁶⁴ bits
- Cycle detection impossible with messages shorter than $L \approx 2^{\ell/2}$
 - Shorter cycles have a small component
- Not applicable to HAIFA hash functions

Compare with collision finding algorithms

- Pollard's rho algorithm use cycle detection
- Parallel collision search for van Oorschot and Wiener uses shorter chains

Chain-based attack

- Using a fixed message, we iterate a fixed sequence of function
- Starting point and ending point unknown because of the key

Can we detect properties of the iteration of fixed functions?

Study the entropy loss

🕻 🍽 skip details

G. Leurent (Inria)

Introduction Hash-based MACs State recovery Universal forgery Key-recovery Conclu-

Chain-based attack

- Using a fixed message, we iterate a fixed sequence of function
- Starting point and ending point unknown because of the key

Can we detect properties of the iteration of fixed functions?

Study the entropy loss

G. Leurent (Inria)

Hash-based MACs 000 *State recovery*

Universal forgery 0000000 Key-recovery

Conclusion

Collision finding with short chains

- $x_2 \bullet \rightarrow \bullet y_2$
- $\begin{array}{c} X_3 & \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet & \bullet & \bullet \\ X_4 & \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet & \bullet & \bullet \end{array}$
- I Compute chains x → y Stop when y distinguished
- 2 If $y \in \{y_i\}$, collision found

Theorem (Entropy loss)

Let $f_1, f_2, ..., f_{2^s}$ be a fixed sequence of random functions; the image of $g_{2^s} \triangleq f_{2^s} \circ ... \circ f_2 \circ f_1$ contains about $2^{\ell-s}$ points.

Use these state as special states (instead of cycle entry point)

Hash-based MACs

State recovery

Universal forgery

Key-recovery

Conclusion

State-recovery attacks

Send messages to the oracle

 M_{i} $I_{k} \bullet h_{0} \bullet h_{1} \bullet h_{2} \bullet \dots \bullet \mathfrak{G} \bullet \mathsf{MAC}(M_{0})$ $I_{k} \bullet h_{0} \bullet h_{1} \bullet h_{2} \bullet \dots \bullet \mathfrak{G} \bullet \mathsf{MAC}(M_{1})$ $I_{k} \bullet h_{0} \bullet h_{1} \bullet h_{2} \bullet \dots \bullet \mathfrak{G} \bullet \mathsf{MAC}(M_{2})$ $I_{k} \bullet h_{0} \bullet h_{1} \bullet h_{2} \bullet \dots \bullet \mathfrak{G} \bullet \mathsf{MAC}(M_{3})$ $I_{k} \bullet h_{0} \bullet h_{1} \bullet h_{2} \bullet \dots \bullet \mathfrak{G} \bullet \mathsf{MAC}(M_{4})$ Online Structure

 Do some computations offline with the compression function

Offline Structure

- Match the sets of points?
 - How to test equality? Online chaining values unknown
 - How many equality test do we need?

G. Leurent (Inria)

Universal forgery 0000000 Key-recovery 0000 Conclusion

First attempt

• Chains of length 2^s, with a fixed message C

Online Structure

- Evaluate 2^t chains offline Build filters for endpoints
- 2 Query 2^u message $M_i = [i] \parallel C$

Test endpoints with filters

C $2^{t} \begin{cases} \bullet h_{1} \bullet h_{2} \bullet \dots & h_{5} \bullet \\ \bullet h_{1} \bullet h_{2}$

 $s + t + u = \ell$

Cplx: 2^{s+t+u}

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 34 / 59

Hash-based MACs 000 *State recovery*

Universal forgery

Key-recovery 0000 Conclusion

Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

G. Leurent (Inria)

Hash-based MACs 000 *State recovery*

Universal forgery

Key-recovery 0000 Conclusion

Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

Find a collision:
 h(x,p) = h(x,p')

Offline Structure

G. Leurent (Inria)

Hash-based MACs 000 *State recovery*

Universal forgery

Key-recovery 0000 Conclusion

Building filters

Filters to compare online and online states

Test whether the state reached after processing M is equal to x

 Collisions are preserved by the finalization (for same-length messages)

2 MAC(
$$M||p$$
) $\stackrel{?}{=}$ MAC($M||p'$)

Online Structure

Find a collision:
 h(x,p) = h(x,p')

Generic Attacks against MAC algorithms

G. Leurent (Inria)

 Universal forgery

Key-recovery 0000 Conclusion

First attempt

Chains of length 2^s, with a fixed message C

Online Structure

- Evaluate 2^t chains offline Build filters for endpoints
- Query 2^u message M_i = [i] || C
 Test endpoints with filters

 $s + t + u = \ell$

Cplx: 2^{s+t+u}

Hash-based MACs

State recovery

Universal forgery

Key-recovery 0000 Conclusion

Online filters

- Using the filters is too expensive.
- If we build filters online, using them is cheap.

Hash-based MACs 000 *State recovery*

Universal forgery

Key-recovery 0000 Conclusion

First attack on HMAC-HAIFA

• Chains of length 2^s, with a fixed message *C*

Online Structure

- Query 2^u message M_i = [i] || C
 Build filters for M_i
- Evaluate 2^t chains offline Test endpoints with filters

Offline Structure

 $s + t + u = \ell$ Cplx: $2^{s+u+\ell/2}$ Cplx: 2^{t+s} Cplx: 2^{t+u}

Hash-based MACs 000 *State recovery*

Universal forgery

Key-recovery 0000 Conclusion

First attack on HMAC-HAIFA

Chains of length 2^s, with a fixed message C

Online Structure

- Query 2^u message M_i = [i] || C
 Build filters for M_i
- Evaluate 2^t chains offline Test endpoints with filters

Offline Structure

Optimal complexity $2^{\ell-s}$, for $s \le \ell/6$ (using u = s) Minimum: $2^{5\ell/6}$

Hash-based MACs

State recovery

Universal forgery

Key-recovery 0000 Conclusion

Diamond filters

- Building filers is a bottleneck.
- Can we amortize the cost of building many filters?

Diamond structure

[Kelsey & Kohno, EC'06]

Herd N initial states to a common state

- Try $\approx 2^{\ell/2}/\sqrt{N}$ msg from each state.
- Whp, the initial states can be paired
- Repeat...

Total $\approx \sqrt{N} \cdot 2^{\ell/2}$

Hash-based MACs

State recovery

Universal forgery 0000000 Key-recovery 0000 Conclusion

Diamond filters

- Building filers is a bottleneck.
- Can we amortize the cost of building many filters?

Diamond structure

[Kelsey & Kohno, EC'06]

Herd N initial states to a common state

- Try $\approx 2^{\ell/2}/\sqrt{N}$ msg from each state.
- Whp, the initial states can be paired
- Repeat...

Total $\approx \sqrt{N} \cdot 2^{\ell/2}$

Hash-based MACs 000 *State recovery*

Universal forgery

Key-recovery 0000 Conclusion

Diamond filters

- Building filers is a bottleneck.
- Can we amortize the cost of building many filters?

Diamond filter

- Build a diamond structure
- 2 Build a collision filter for the final state
- Can also be built online
- Building N offline filters: $\sqrt{N} \cdot 2^{\ell/2}$ rather than $N \cdot 2^{\ell/2}$
- Building N online filters: $\sqrt{N} \cdot 2^{\ell/2+s}$ rather than $N \cdot 2^{\ell/2+s}$

Universi

Iniversal forgery

Key-recovery 0000 Conclusion

Improved attack on HMAC-HAIFA

• Chains of length 2^s, with a fixed message C

Evaluate 2^t chains offline Test endpoints with filters

on Hash-based MACs **Sta** 00000 000 00

State recovery

Universal forgery 0000000 *Key-recovery* 0000 Conclusion

Improved attack on HMAC-HAIFA

• Chains of length 2^s, with a fixed message C

Online Structure

- Query 2^u message M_i = [i] || C
 Build diamond filter for M_i
- Evaluate 2^t chains offline Test endpoints with filters

G. Leurent (Inria)

troduction Hash-based MACs State recovery Universal forgery Key-recov

Conclusio

Improvement using collisions (fixed function)

- $x_2 \bullet \rightarrow \bullet \quad y_2$
- $\begin{array}{c} X_3 \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet & \textcircled{} \bullet & \rule{} \bullet &$
- I Compute chains x → y Stop when y distinguished
- 2 If $y \in \{y_i\}$, collision found

Theorem (Entropy loss for collisions)

Let \hat{x} and \hat{y} be two collisions found using chains of length 2^s , with a fixed ℓ -bit random function f. Then $\Pr\left[\hat{x} = \hat{y}\right] = \Theta(2^{2s-\ell})$.

Use the collisions as special states (instead of cycle entry point)

G. Leurent (Inria)
Hash-based MACs

State recovery

Universal forgery 0000000 Key-recovery 0000 Conclusion

Trade-offs for state-recovery attacks

HAIFA mode

Merkle-Damgård mode

Hash-based MACs

Universal forgery

Key-recovery 0000 Conclusion

Outline

Introduction

MACs Security Proofs

Hash-based MACs

Hash-based MACs

State recovery attacks

Using multi-collisions Using the cycle structure Short messages attacks using chains

Universal forgery attacks

Using cycles Using chains

Key-recovery attacks HMAC-GOST

G. Leurent (Inria)

Hash-based MACs 000

Universal forgery

Key-recovery 0000 Conclusion

Bibliography

Τ.

T. Peyrin, L. Wang Generic Universal Forgery Attack on Iterative Hash-Based MACs EUROCRYPT 2014

J. Guo, T. Peyrin, Y. Sasaki, L. Wang Updates on Generic Attacks against HMAC and NMAC CRYPTO 2014

I. Dinur, G. Leurent

Improved Generic Attacks against Hash-Based MACs and HAIFA CRYPTO 2014

Hash-based MACs 000

Universal forgery

Key-recovery 0000 Conclusion

Universal forgery attack

- ► Given a challenge message *C*, compute MAC(*C*)
 - $len(C) = 2^s$

Ik •----____M'

- Oracle access to the MAC, can't ask MAC(C)
- Study internal states for the computation of MAC(C)
 - Unknown because of initial key and final key
 - 1 Build a different message reaching same states
 - 2 Query MAC(*M*′), use as forgery

G. Leurent (Inria)

Hash-based MACs 000

Universal forgery

Key-recovery

Conclusion

Universal forgery attack

- ► Given a challenge message *C*, compute MAC(*C*)
 - $len(C) = 2^s$

Ι_k •---- Μ΄

- Oracle access to the MAC, can't ask MAC(C)
- Study internal states for the computation of MAC(C)
 - Unknown because of initial key and final key
 - 1 Build a different message reaching same states
 - 2 Query MAC(M'), use as forgery

G. Leurent (Inria)

- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- Long-message second-preimage attack [Kelsey & Schneier '05]
 - $H(M) = H(C) \implies MAC(M) = H(M \parallel \mathbf{k}) = H(C \parallel \mathbf{k}) = MAC(C)$

- Cplx: 2^{*l*/2} Cplx: 2^{*l*-s} 2 Find a connexion from the IV to the target states

IV ⊷----- *M*′

- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- Long-message second-preimage attack [Kelsey & Schneier '05]
 - $H(M) = H(C) \Longrightarrow MAC(M) = H(M \parallel \mathbf{k}) = H(C \parallel \mathbf{k}) = MAC(C)$

G. Leurent (Inria)

- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- Long-message second-preimage attack [Kelsey & Schneier '05]
 - $H(M) = H(C) \Longrightarrow MAC(M) = H(M || \mathbf{k}) = H(C || \mathbf{k}) = MAC(C)$

Secret-suffix has no key at the beginning

2 Find a connexion from x_{\star} to the target states

- All internal states for challenge message are known!
- Long-message second-preimage attack [Kelsey & Schneier '05]
 - $H(M) = H(C) \Longrightarrow MAC(M) = H(M \parallel \mathbf{k}) = H(C \parallel \mathbf{k}) = MAC(C)$
- 1 Build a expandable message

Cplx: $2^{\ell/2}$ Cplx: $2^{\ell-s}$

3 Select expandable message

- Secret-suffix has no key at the beginning
 - All internal states for challenge message are known!
- Long-message second-preimage attack [Kelsey & Schneier '05]
 - $H(M) = H(C) \Longrightarrow MAC(M) = H(M \parallel \mathbf{k}) = H(C \parallel \mathbf{k}) = MAC(C)$
- 1 Build a expandable message
- 2 Find a connexion from x_{\star} to the target states
- 3 Select expandable message

 $\frac{h_{\star}}{m_{\star}}$ $\frac{h_{\star}}{m$

Cplx: $2^{\ell/2}$ Cplx: $2^{\ell-s}$

Hash-based MACs 000

Universal forgery

Key-recovery 0000 Conclusion

UF against secret-prefix MAC

Secret-suffix has no key at the end

- Finalization function is known!
- Query the MAC of C_l (truncated to i blocks)
- 2 Evaluate the finalization function on $2^{\ell-s}$ states
- 3 Find a match, compute MAC

Cplx: $2^{2 \cdot s}$ Cplx: $2^{\ell - s}$

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 47 / 59

Hash-based MACs 000

Universal forgery

Key-recovery 0000 Conclusion

UF against secret-prefix MAC

- Secret-suffix has no key at the end
 - Finalization function is known!
- Query the MAC of C_i (truncated to i blocks)
- 2 Evaluate the finalization function on $2^{\ell-s}$ states
- 3 Find a match, compute MAC

 $I_k \bullet h^* \overline{\mathbb{S}} \bullet Online Structure$

Cplx: 2^{2·s} Cplx: 2^{ℓ-s}

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 47 / 59

Key-recovery

Conclusion

UF attack against hash-based MAC

- Combine both techniques
 - 1 Recover an internal state of the challenge
 - 2 Use second-preimage attack with known state
- Hard part is to recover an internal state
- Extract information about the challenge state through g_k
 - Compute distance to cycle
 - Use entropy loss of iterations

Hash-based MACs

Universal forgery

Key-recovery 0000 Conclusion

Using cycles

Main idea

- ▶ Measure the distance from challenge point to cycle in *h*_[0]
 - Add zero blocks after the challenge
- Match with offline points with known distance

G. Leurent (Inria)

Using cycles

- (online) For each challenge state, use binary search to find distance $MAC(C_{|i} \parallel 0^{d+L} \parallel 1 \parallel 0^{2^{\ell/2}}) \stackrel{?}{=} MAC(C_{|i} \parallel 0^{d} \parallel 1 \parallel 0^{2^{\ell/2+L}})$
- **2** (offline) Build a structure with $2^{\ell-s}$ points with known distance.
- 3 (offline) Match the challenge states and the offline structure
- **4** (online) Test candidates at the right distance.

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 49 / 59

Hash-based MACs 000

Universal forgery

Key-recovery 0000 Conclusion

Using chains

Main idea

- Add a sequence of fixed message blocks to reduce image space
- Match in the reduced space

G. Leurent (Inria)

Universal forgery 0000000

Using chains

- 1 (online) Query messages $M_i = C_{ii} \parallel [0]^{2^{2s}-i}$. Build diamond filter for endpoints Y
- 2 (offline) Build a structure with $2^{\ell-s}$ points. Consider 2^{2s} -images X. $|X| \le 2^{\ell-2s}$
- (offline) Match X and Y.
- **4** (offline) For each match, find preimages as candidates.

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 50/59

Conclusion

Universal forgery attacks: summary

Universal forgery attacks

- It is possible to perform a generic universal forgery attack
- Best attack so far: $2^{\ell-s}$, with $s \leq \ell/4$ ($2^{3\ell/4}$ with $s = \ell/4$)
- Using distance to the cycle: query length $2^{\ell/2}$
 - ► Complexity $2^{\ell-s}$, $s \le \ell/6$ [Peyrin & Wang, EC '14] Optimal: $2^{5\ell/6}$, with $s = 2^{\ell/6}$
 - ► Complexity $2^{\ell-s}$, $s \le \ell/4$ [Guo, Peyrin, Sasaki & Wang, CR '14] Optimal: $2^{3\ell/4}$, with $s = 2^{\ell/4}$
- Later attack using chains: shorter query length 2^t
 - ► Complexity $2^{\ell-s}$, $s \leq \ell/7$, t = 2s [Dinur & L, CR '14] Optimal: $2^{6\ell/7}$, with $s = 2^{\ell/7}$, $t = 2\ell/7$
 - Complexity $2^{\ell-s/2}$, $s \le 2\ell/5$, t = sOptimal: $2^{4\ell/5}$, with $s = 2^{2\ell/5}$, $t = 2\ell/5$

[Dinur & L, CR '14]

Hash-based MACs

State recovery

Universal forgery

Key-recovery

Conclusion

Outline

Introduction

MACs Security Proofs

Hash-based MACs

Hash-based MACs

State recovery attacks

Using multi-collisions Using the cycle structure Short messages attacks using chains

Universal forgery attacks

Using cycles Using chains

Key-recovery attacks HMAC-GOST

G. Leurent (Inria)

Hash-based MACs

State recovery

Universal forgery

Key-recovery •000 Conclusion

GOST hash functions

- Family of Russian standards
 - ► GOST-1994: n = ℓ = 256
 - ► GOST-2012: $n \leq \ell = 512$, HAIFA mode

(aka Streebog)

- GOST and HMAC-GOST standardized by IETF
- Checksum (dashed lines)
 - Larger state should increase the security

G. Leurent (Inria)

Hash-based MACs

Universal forgery

Key-recovery 0●00 Conclusion

In HMAC, key-dependant value used after the message

Related-key attacks on the last block

G. Leurent (Inria)

Recover the state of a short message

- 2 Build a multicollision: 2^{31/4} messages with the same x_{*}
- 3 Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$

Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions

4 Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline

Store $(x \oplus y', y)$ for $2^{\ell/2}$ collisions

Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$

- Recover the state of a short message
- 2 Build a multicollision: $2^{3l/4}$ messages with the same x_*
- 3 Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$

Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions

4 Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline

Store $(x \oplus y', y)$ for $2^{\ell/2}$ collisions

Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$

Recover the state of a short message

- **2** Build a multicollision: $2^{3l/4}$ messages with the same x_*
- 3 Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$ Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions
- Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline
 - Store $(x \oplus y', y)$ for $2^{\ell/2}$ collisions

Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$

- Recover the state of a short message
- **2** Build a multicollision: $2^{3l/4}$ messages with the same x_*
- 3 Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$

Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions

Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline Store $(x \oplus y', y)$ for $2^{\ell/2}$ collisions

Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$

- Recover the state of a short message
- **2** Build a multicollision: $2^{3l/4}$ messages with the same x_*
- 3 Query messages, detect collisions $g(\bar{x}, k \oplus M) = g(\bar{x}, k \oplus M')$

Store $(M \oplus M', M)$ for $2^{\ell/2}$ collisions

4 Find collisions $g(\bar{x}, y) = g(\bar{x}, y')$ offline

Store $(x \oplus y', y)$ for $2^{\ell/2}$ collisions

5 Detect match $M \oplus M' = y \oplus y'$. With high probability $M \oplus k = y$

Hash-based MACs

Universal forgery 0000000 Key-recovery 000● Conclusion

Complexity

Surprising result

The checksum actually make the hash function weaker!

- HMAC-GOST-1994 is weaker than HMAC-SHA256
- HMAC-GOST-2012 is weaker than HMAC-SHA512

It is important to recover the state of a short message

- For GOST-1994, we can recover the state of a short message from a longer one using padding tricks
 Total complexity 2^{3ℓ/4}
- ▶ For GOST-2012, we use an advanced attack with message length 2^{ℓ/10}
 Total complexity 2^{4ℓ/5}

Introduction	<i>Hash-based MACs</i> 000	State recovery	Universal forgery 0000000	Key-recovery 0000	Conclusion

Attack complexity

Function	Mode	ℓ	S	St. rec.	Univ. F	K. rec.
SHA-1	MD	160	2 ⁵⁵	2 ¹⁰⁷	2 ¹³²	
SHA-224	MD	256	2 ⁵⁵	2 ¹⁹²		
SHA-256	MD	256	2 ⁵⁵	2 ¹⁹²	2 ²²⁸	
SHA-512	MD	512	2 ¹¹⁸	2 ³⁸⁴	2 ⁴⁵³	
HAVAL	MD	256	2 ⁵⁴	2 ¹⁹²	2 ²²⁹	
WHIRLPOOL	MD	512	2 ²⁴⁷	2 ²⁸³	2 ⁴⁴⁶	
BLAKE-256	HAIFA	256	2 ⁵⁵	2 ²¹³		
BLAKE-512	HAIFA	512	2 ¹¹⁸	2 ⁴¹⁹		
Skein-512	HAIFA	512	2 ⁹⁰	2 ⁴¹⁹		
GOST-94	MD+σ	256	∞	2 ¹²⁸	2 ¹⁹²	2 ¹⁹²
Streebog	HAIFA+ σ	512	∞	2 ⁴¹⁹	2 ⁴¹⁹	2 ⁴¹⁹

 Introduction
 Hash-based MACs
 State recovery
 Universal forgery
 Key-recovery
 Conclusion

Conclusion

Be carefull with security proof

- "CBC-MAC is proven secure" does not mean "CBC-MAC-AES is a secure as AES"
 - Most security proofs are up to the birthday bound
 - Is 64-bit security enough?
- Don't assume too much after the security bound of the proof
 - Generic key-recovery for envelope-MAC, AEZ, HMAC-GOST

Gaps between proofs and attacks!

- Better generic attacks?
- Better proofs?

Hash-based MACs 000 State recovery

Universal forgery

Key-recovery 0000 Conclusion

G. Leurent (Inria)

Generic Attacks against MAC algorithms

ASK 2015 59 / 59