Tweaks and Keys for Block Ciphers:
the TWEAKEY Framework

Thomas Peyrin
(joint work with Jérémy Jean and Ivica Nikoli¢)

NTU - Singapore

ASK 2014
Chennai, India - December 19, 2014
NANYANG

\Q =3 TECHNOLOGICAL
Y UNIVERSITY

Introduction

® Introduction

Introduction ®000

block cipher tweakable block cipher
T

Introduction 0®00

Tweakable block ciphers are very useful building blocks:

> block cipher, stream cipher

parallel MAC

parallel authenticated encryption: like OCB3 or COPA, but
simpler design/proofs and much higher security bounds

> hash function: use the tweak input as block counter (HAIFA
framework) or to perform randomized hashing

v Vv

v

tree hashing: use the tweak to encode the position in the tree
> PRNG, KDF, disk encryption

Introduction cooe

> block cipher based TBC constructions (like XEX) usually provide
birthday security

> building an ad-hoc TBC with full security is not easy (very little
number of proposals)

> even designing a key schedule remains a risky task, especially
for long keys (see related-key attacks on AES-256)

Our contributions

> we propose the TWEAKEY framework to help designers to create
tweakable block ciphers

> we provide one cipher example KTASU-EC , the first ad-hoc
AES-based TBC

> in the TWEAKEY framework, we propose the STK construction for
SPN ciphers

> we provide two cipher examples Joltik-BC and Deoxys-BC

The TWEAKEY Framework

@ The TWEAKEY Framework
> TWEAKEY
> The tweakable block cipher KIASU-BC

The TWEAKEY Framework €0000

® The TWEAKEY Framework
> TWEAKEY

The TWEAKEY Framework 0@000

Iterated SPN block ciphers

internal permutation: f

number of iterations: r

SPN: f = P o S applies Substitution (S) and Permutation (P).
secret key: K

key scheduling algorithm: K — (k... k)

Ex: AES

vV VvV VvV VvV VvV V

The TWEAKEY Framework 0000

From an efficiency point of view, updating the tweak input of a
TBC should be doable very efficiently

— the tweak schedule should be lighter than the key schedule

From a security point of view, the tweak is fully known and
controllable, not the key

— the tweak schedule should be stronger than the key
schedule

Thus, for a TBC designer, this paradox leads to fweak — key

The TWEAKEY Framework 000@0

Rationale:
tweak and key should be treated the same way — tweakey

TWEAKEY generalizes the class of key-alternating ciphers

The TWEAKEY Framework 0000®

The TWEAKEY framework

The regular key schedule is replaced by a TWEAKEY schedule
that generates subtweakeys. An n-bit key n-bit tweak TBC has
2n-bit tweakey and g compresses 2n to n bits:

> such a primitive would be a TK-2 primitive (TWEAKEY of order 2).

> the same primitive can be seen as a 2n-bit key cipher with no tweak
(or 1.5n-bit key and 0.5n-bit tweak, etc).

The TWEAKEY Framework ©000000

® The TWEAKEY Framework

> The tweakable block cipher KIASU-BC

The TWEAKEY Framework 0@00000

AddRoundKey SubBytes ShiftRows MixColumns
DDIDID S[S[S][S
4 cells S5 [(__ >
DDIDD S[s|s]|s <
\vwj\wwj\wwj\n S[S|S|S €
«—

4 cells 8 bits

The 128-bit round function of AES-128 is an SP-network:
> AddRoundKey: xor incoming 128-bit subkey
> SubBytes: apply the 8-bit Sbox to each byte
> ShiftRows: rotate the i-th line by i positions to the left

> MixColumns: apply the AES-128 MDS matrix to each columns
independently

The TWEAKEY Framework 00@0000

AES-128 key schedule

Na
E

IV

VAL
LN

fany)
N

The

TWEAKEY Framework 000®000

KIASU-BC is exactly the AES-128 cipher, but with a fixed
64-bit tweak value T XORed to each subkey (two first rows)

AES-128

The

TWEAKEY Framework 000®000

KIASU-BC is exactly the AES-128 cipher, but with a fixed
64-bit tweak value T XORed to each subkey (two first rows)

aps=128) WA) SPS LA) Kitasu-BC.
K~ [[Rl

The

The security of KIASU-BC is the same as AES-128 for a fixed tweak.
The tricky part is to analyse what happens when the tweak varies.

TWEAKEY Framework 0000800

If the key is fixed and one varies the tweak:

KIASU-BC’s tweak schedule has been chosen such that it is itself a
good key schedule.

Bad idea: adding a tweak on the entire 128-bit state, since trivial and
very good related-tweakey differential paths would exist.

If both the key and tweak vary (aka related-tweakey):

KIASU-BC was designed such that no interesting interaction between
the key schedule and the tweak schedule will exist. We put a special
focus on attacks which are highly impacted by the key schedule:

> related-key related-tweak attacks (aka related-tweakey)
> meet-in-the-middle attacks

The TWEAKEY Framework 00000e0

Related-tweakey attacks

We prove that no good related-key related-tweak (aka
related-tweakey) attacks differential path exist for KIASU
(even boomerang), with a computer-aided search tool.

active upper bound on

rounds SBoxes probability method used

1-2 0 e trivial

3 1 2 Matsui’s

4 8 P Matsui’s

5 > 14 P Matsui’s

7 >22 Pa ex. split (3R+4R)

The TWEAKEY Framework 0000008

first adhoc tweakable AES-128 ...

v

> ... which provides 2! security - not only birthday security

v

extremely fast in software: less than 1 ¢/B on Haswell

v

quite small in hardware

v

very simple - almost direct plug-in of AES-128 (reuse existing
security analysis and implementations)

v

backward compatible with AES-128 (simply set T = 0)

The STK Construction

® The STK Construction
> STK
> Joltik-BC and Deoxys—BC

The STK Construction €00000

® The STK Construction
> STK

The sTK Construction 0®0000

The case of AES-like ciphers

> KIASU is limited to 64-bit tweak for AES (insecure otherwise)

> we could do a LED-like design, but slow due to high number of
rounds

> the main issue: adding more tweakey state makes the security
drop, or renders security hard to study, even for automated tools

Idea: separate the tweakey material in several words, design a
secure tweakey schedule for one word and then superpose
them in a secure way

The sTK Construction 00000

STK Tweakey Schedule

- B BN .
P=s T T T iy oy s =C
o l——o— s o -

From the TWEAKEY framework to the STK construction:

> the tweakey state update function / consists in the same
subfunction i’ applied to each tweakey word

> the subtweakey extraction function g consists in XORing all the
words together
o reduce the implementation overhead

o reduce the area footprint by reusing code
o simplify the security analysis

The sTK Construction 00000

STK Tweakey Schedule

B o o B -
P=s fa fa a fa IL s, =C
o l——o— W & pi e

From the TWEAKEY framework to the STK construction:

> problem: strong interaction between the parallel branches of
tweakey state

> solution: differentiate the parallel branches by simply using
distinct multiplications in a small field

The sTK Construction 0000€0

STK Tweakey Schedule

- B . B B c B
P=so —@& ! & i & & 2] H— 5 —C
ART ART ART ART ART

In details:

> assume the n-bit internal state of the cipher is divided into p
nibbles of ¢ bits: we divide the tweakey material into n-bit
words, and then c-bit nibbles

> K’ will simply be a permutation of the nibbles positions

> each nibble of the k-th tweakey word is multiplied by a value
ax € GF(2°)

The sTK Construction 00000@®

Design choices
> multiplication in GF(2°) controls the number of cancellations in
g, when the subtweakeys are XORed to the internal state
> rely on a linear code to bound the number of cancellations

Implementation

> very simple transformations: linear and lightweight
> multiplications constants chosen as 1, 2, 4, ... for efficiency

Security analysis

> a security analysis is now possible with STK:
o when considering one tweakey word, we ensure that
function /’ is itself a good tweakey schedule
o when considering several tweakey words, we reuse existing
tools searching for good differential paths: for these tools it
is easy to add the cancellation bound

The STK Construction [TeYole}

® The STK Construction

> Joltik-BC and Deoxys—BC

The sTK Construction (o] Tele}

STK construction (for TK-3) with a 4 x 4 internal state matrix

> multiplication factors are 1, 2 and 4 in GF(2°)

> I is a simple permutation of the 16 nibbles:
0 4 8 12 Wy 9 13
1 5 9 13 LN 6 10 14 2
2 6 10 14 1 15 3 7
3 7 11 15 12 0 4 8

The sTK Construction [ele] e}

Joltik-BC tweakable block cipher:

> 64-bit TBC, instance of the STK construction
> two members: Joltik-BC-128 and Joltik-BC-192
o 128 bits for TK-2: |key| + |fweak| = 128 (2 tweakey words)
o 192 bits for TK-3: |key| + |tweak| = 192 (3 tweakey words)
> AES-like design:

o 4-bit S-Box from the Piccolo block cipher

(compact in hardware)
o involutive MDS matrix = low decryption overhead
o light constant additions to break symmetries

(from LED cipher)

> Joltik—-BC-128 has 24 rounds (TK-2)
> Joltik—-BC-192 has 32 rounds (TK-3)

> HW implementations estimation: about 1500 GE for TK-2
version

The sTK Construction [eloYe] }

Deoxys-BC tweakable block cipher:

> 128-bit TBC, instance of the STK construction
> two members: Deoxys—-BC—-256 and Deoxys—-BC-384

o 256 bits for TK-2: |key| + |tweak| = 256 (2 tweakey words)
o 384 bits for TK-3: |key| + |tweak| = 384 (3 tweakey words)

> the round function is exactly the AES round function
(AES-NI)

> constants additions to break symmetries
(RCON from AES key schedule)

> Deoxys—BC-256 has 14 rounds (TK-2): can replace
AES-256

> Deoxys—BC-384 has 16 rounds (TK-3)
> software performances: about 1.30 c/B with AES-NI

AE with TBC

@ Authenticated encryption with TBC

Authenticated Encryption

Authentication + Encryption

AE with TBC 0®#0000

One can easily build a nonce-based parallelizable AE mode
from a TBC (similar to OCB3 or TAE): simply ensure that every
call to the TBC will have a distinct tweak input value

We can directly reuse the OCB3 security proofs:
> but ensuring full security instead of birthday bound
> the proofs are simpler (see ©CB3 and OCB3 proofs)
> no long initialization required anymore: fast for short inputs

We plug KIASU-BC, Joltik-BC and Deoxys—BC

in such modes and we obtain:

KIASU#, Joltik# and Deoxys# for nonce-respecting scenario
KIASU=, Joltik= and Deoxys= for nonce-misuse scenario

AE with TBC c0e000

We have two operating modes K1ASU# and KIASU=, both
built upon the same tweakable block cipher named KITASU-BC .

Operating modes:
> KIASU# is for nonce-respecting (based on OCB3)
> KIASU= is for nonce-misuse resistance (based on COP2)
> both modes are parallelizable

The tweakable block cipher KIASU-BC :
> message of n = 128 bits
> key of k = 128 bits
> tweak of t = 64 bits

AE with TBC 000e00

For Associated Data (full block):

KIASU+# is based on OCB3

L4 [4 |
] i

2,N,1 2N 2
E¥ E¥

2,N,l;
EK

00—

For Associated Data (partial block):

[4 [[4]
¥ i

A, | [A10°
7 v

2,N,1
EK

2,N,2
EK

2Nl
EK

6,N I,
EK

Auth

Auth

AE with TBC cooceoo

KIASU# is based on OCB3
For Plaintext (full block):

ED Bl ED [

[

E(])(,N 1 E%N’Z E([J(,N,l E}(,N,I
-¢ -¢ -* ﬁle:B <--Auth
[tag]

For Plaintext (partial block):

I EE

o A
E%N’l E;J(,N,Z E?(,N,l Y E%N’l
¥ y e] E4’N'l inal ¥
El B @ E - -2

7]

AE with TBC coooeo

KIASU= is based on COPA
For Associated Data (full block):

¥
E%N’l 5 - Ei,N,Iu—l EI6<,N,L1
[
0 &
For Associated Data (partial block):
[3
2,N,1 e N N o
EK EiN It E17(N Il
[
0 ®

AE with TBC coooeo

KIASU=— is based on COPA

For Plaintext (full block):

E EEEE .

E%N,l cee E([)(,N,l—l E?(,N,l E}(,N,l
Auth |-@— -
S T T]
E4’N’1 . E4,N,1—1 E4,N,l ES,N,I

{ final

AE with TBC coooeo

KIASU= is based on COPA

For Plaintext For Plaintext
(single partial block): (partial block):

mw
] (] e

¥
T] A)
-6 —— & ; ;
- & - —6— b0

4N,0 5.N.,0 ut 1 T v

LN B

7 7 E;}(,N,l E;,N,x—1| E‘Il(,N,I EZ,N,I
] T— 7
B —_

| xus

N
[ag] .
o=

.‘

AE with TBC oooooe

Security (bits)
nonce-respecting user KIASU# KIASU=
Confidentiality for the plaintext 128 64
Integrity for the plaintext 128 64
Integrity for the associated data 128 64

Security (bits)
nonce-misuse user KIASU# KIASU=
Confidentiality for the plaintext none 64
Integrity for the plaintext none 64
Integrity for the associated data none 64

AE with TBC oooooe

Security (bits)
nonce-respecting user KIASU# KIASU=
Confidentiality for the plaintext 128 128
Integrity for the plaintext 128 128
Integrity for the associated data 128 128

Security (bits)
nonce-misuse user KIASU# KIASU=
Confidentiality for the plaintext none 64
Integrity for the plaintext none 64
Integrity for the associated data none 64

Future

@ Future works

Future

> cryptanalysis of STK?
> proofs for STK?
> other better/faster /stronger constructions than STK?

> adding a layer on top of KIASU to increase the tweak size ?

Thank you !

	Introduction
	The TWEAKEY Framework
	TWEAKEY
	The tweakable block cipher KIASU-BC

	The STK Construction
	STK
	Joltik-BC and Deoxys-BC

	Authenticated encryption with TBC
	Future works

