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This talk contains two results

1. Initial Keystream Biases of RC4 and Its Applications
(From FSE 2013)
#The full version will appear in IEICE journal 2014

-T. Isobe, T. Ohigashi, Y. Watanabe, M. Morii “Full Plaintext Recovery Attack on Broadcast RC4”, FSE 2013

-T. Isobe, T. Ohigashi, Y. Watanabe, M. Morii "Comprehensive Analysis of Initial Keystream Biases of RC4",
IEICE Journal, to appear

2. Advanced Plaintext Recovery Attacks on RC4
(From SAC 2013)

-T. Ohigashi, T. Isobe, Y. Watanabe, M. Morii "How to Recover Any Bytes of Plaintext on RC4"”, SAC 2013
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RC4 Stream Cipher

B Stream cipher designed by Rivest in 1987

+ One of most famous stream ciphers
e SSL/TLS, WEP/WPA and more

E Typical Parameter
% Key size : 16 bytes (128 bits)
4 State size : 256 bytes

E Consist of
% Key Scheduling Algorithm (KSA)
4 Pseudo Random Generator Algorithm (PRGA)

Pseudo Random

Ke Key Scheduling State - Generator Algorithm ) 2. 2~ ...
Y = Agorithm (KSF) | (PRGA) s
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Key Scheduling Algorithm

t=1 i=0
| 0 1 255 | | _g
Timet SO 0| 1| e 255 SolX] = X
> loop
17 i=j +S[il+ KIil
swap(S[i], S[j1)
=1+ 1
end loop
v
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Key Scheduling Algorithm

t=1 i =0
| 0 1 255 | | _
Timet S 0| 1| e 255 SO[X] = X
0L loop
17 i=j +S[il+ KIi]
swap(S[il], S[j]
SO X | e Y |-reeeeen i = | + '|
i J Depending on key | €nd loop
\ 4
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Key Scheduling Algorithm

t=1 | = O
| 0 1 255 | | _ g
Timet SO 0| 1| e 255 SolX] = X
> loop
17 i=j +S[il+ KIil
swap(S[i], S[j])
SO X | e Y ............ | — | 4+ '|
i J Depending on key | €nd loop
Sl Y ............... x ............
v
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Key Scheduling Algorithm

1 =0
Tlmet SO 0 1 ............... 255 ISO[X] = X
— oop
17 i=j +S[il+ KIil
swap(S[il, S[j D
SO x ............... Y ............ | — | + ]
/ J Depending on key end loop
Sl Y ............... x ............
0O 1
VoG | || e Initial state of PRGA
256
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Pseudo Random Generator Algorithm

t=1 i=0
- 0o 1 X X+Y ]J=0
TlmetSO v v o |-C_>0I3_
ij =1+ 1
j=j +S[i]
swap(S[il, S[j])
Z=S[S[i]+S[]j]]
end loop
v
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Pseudo Random Generator Algorithm

t=1 i=0
_ 0 1 X X +Y J=0
TlmetSO W I v ) Loop
- =1+ 1
71 j=j+Sli]
SO ) & Y [ o) Swap(S[ | ]’ S[J ])
T E—— Z = S[S[i1+S[] 1]
end loop
v
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Pseudo Random Generator Algorithm

t=1 =0
: 0 1 X X+Y J=0
Tlmetso ) € B Y [ (o) LOOp
Lf =i+ 1
Caa j=J+S[i]
S, X | s e 0 swap(S[i 1] S[i 1)
J—i— —> X Z = S[S[i]+S[]]]
end loop
SO X | e Y |-oeeeenenes o)
/ J
S]_ Y ............... x ............ 0
v / J
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Pseudo Random Generator Algorithm

t=1 i =0
i 0 1 X X +Y 1=0
Tlmetso ) € B Y [ (o) LOOp
L] =i+ 1
cad j=J+S[i]
S, N IV 0 swap(S[i 1, S[j I
J—i- > X Z=S[S[i]+S[]j]]
end loop
SO X | e Y |-oeeeenenes o)
: J X +Y
S]_ Y ............... x ............ Q\K
' 4 J Z = S [X+Y] =0
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Known Results

Over the past 20 years, a number of results were published!

B State Recovery Attacks [KMPRV98, MK08]

E Distinguish Attacks [FM00, M'05, SVV10, SMPS12]

E Plaintext Recovery Attacks [MS01, MPS11]

E Other Attacks
4 Key Collision [M'09, JM11]
4 Key Recovery from Internal State [SM07, BCO8] \
+ Weak Keys [R98] ‘ko(e ‘
# Related Key Attack [JM12] P‘(\é
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Initial Keystream Biases of RC4

and Its Applications
(From FSE 2013)

-T. Isobe, T. Ohigashi, Y. Watanabe, M. Morii “"Full Plaintext Recovery Attack on Broadcast RC4”,
FSE 2013

-T. Isobe, T. Ohigashi, Y. Watanabe, M. Morii "Comprehensive Analysis of Initial Keystream Biases of RC4",
IEICE Journal, to appear
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Summary of Our Results

Comprehensively analyze initial biases of keystream
=> Find several new biases

#+ Theoretical : Prove “Why such biases occur in RC4?”
¢ Experimental : 2% independent key test

B Applications
#+ Plaintext Recovery Attack [FSE 2013]
# Distinguishing Attack [IEICE]
+ Key (State) Recovery Attack [IEICE]
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Known Biases of Initial Keystream

E 1st byte bias
4 Not uniform distribution

e Experimentally found [Mir02]
e Theoretically proofs [SMPS13]

Probability

E 2nd byte biases [MS01] N
4 Strongly Biased to “0” 1N

0 Value of Z, N-1

B 3rd to 255 byte biases [MPS11]
4+ Biased to “0”
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3D View of Keystrem Biases

0.00396

Bias of first 256 bytes of RC4 PRGA outputs

0.00395
0.00430
0.00394
0.00425
0.00420
0.00393
0.00415
2
0.00410 5
g 0.00392
0.00405 &
0.00400
0.00390
0.00385 40.00390
10.00389
40.00388
0.00387

This figure is created by Jiageng Chen
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New biases

Our Results
Find four types of new biases, and give theoretical reasons.
(Recent results [A+13] only shows experimental results)

0.00394
0.00393

0.00392

Probability

40.00391

10.00390

10.00389

10.00388

0.00387

This figure is created by Jiageng Chen
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New biases

Our Results
Find four types of new biases, and give theoretical reasons.

(Recent results [A+13] only shows experimental results)

0.00394
0.00425

0.00420
0.00393

Extenq
key Ie
hgth dependent bias [ 0.00415
urj

o
o
o
EN
=
o

0.00392

Probability

0.00405

0.00400

' 1. Conditional bias regarding Z,
When Z, = 0, Z, is strongly biased to “0”
-Pr(Z, =0| Z, =0) =28 (1 + 0.5)

\oe" 40.00388
50 Ne

0
0.00387

This figure is created by Jiageng Chen
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New biases

Our Results
Find four types of new biases, and give theoretical reasons.

(Recent results [A+13] only shows experimental results)

0.00394
0.00425

0.00420
0.00393

Extenq
key Ie
hgth dependent bias [ 0.00415
urj

o
o
o
FSN
=
o

0.00392

Probability

0.00405

0.00400

2.2; =131
Pr(Z;, =0) = 28(1+ 2-9512) [MSP11]

Pr (Zy = 131) = 28 (1 + 2-8089)

0
0.00387

This figure is created by Jiageng Chen
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New biases

Our Results
Find four types of new biases, and give theoretical reasons.
(Recent results [A+13] only shows experimental results)

0.00394
0.00425

3.Z.=r
Exists form 3 to 255 bytes similar to Z. = 0
Stronger than Z, = O for5 =r = 31

10.00390

10.00389

10.00388

0.00387

This figure is created by Jiageng Chen

Kobe University



New biases

Our Results
Find four types of new biases, and give theoretical reasons.

(Recent results [A+13] only shows experimental results)

0.00394
0.00425

0.00420
0.00393

Extenq
key Ie
hgth dependent bias [ 0.00415
urj

0.00392

Probability

"/ 4. Extended key length bias

< A extension of key-length dependent

biases [SVV10, SMPS11]
=> 7 = -rforr = 16, 32, 48, 64, 80, 96,

10.00388

0.00387

This figure is created by Jiageng Chen

Kobe University



Other New Biases

E Experimentally found other two types of biases

‘.’ 2256 — 0 0.003912—I | | | %25:3 ,,,,,,, .
e Negative biases 0.003510 |
° Pr(2256 =0) = 2-8 (1 - 2-9.407)

0.003908 -

0.003906 |-

Probability

0.003904

*Z;, =0
e Pr(Zyge= 0) = 28 +(1 + 2:9531)

0.003902

0.003900 L L L L L
0 50 100 150 200 250
Round number (r)

However, no theoretical reason...orz

Recently these biases are proved
by Sarkar, Sen Gupta, Paul and Maitra [SSPM13]
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Strongest Single—byte Biases

E List of strongest single-byte biases in first 257 bytes

Table 1  Strongest single-byte set of first 257 bytes for N = 256 and £ = 16

¥ Strongest single-byte bias | Prob.(Theoretical) | Prob.(Experimental) |
1 Z1 = 129 (negative bias) [1] N/A 278 (1 -2
2 2> =0 [12] 27%-(1+29 278 (1 + 20wy
3 Z3 = 131 (Owr) 278 (1 + 2780 278 (1+2 519
4 Zy=0[9] 25 (1+27 25 (1+277)
5-15 Zy = ¥ (Our) max: 275 -(1+277%) | max: 278-(1+2773)
min: 278 (1+ 2_?'?3?) min: 278 (1 +2_?'535)
16 Z1 = 240 [5] 278 (1 + 2779 28 (1+2 230
17-31 Zy = r (Our) max: 275 - (1427777 | max: 275 (1 +277°79)
min: 278 (1 + 277912y | min: 278 (1 + 277839
32 Z3 = 224 (Our) 2% (1+ 2—3.404) 35 1+ 2—:.__{35)
3347 | Z, =0 [9] max: 275 - (1 + 27397 | max: 275 (1 + 2 7568) |
min: 278 (1 + 278050 min: 278 (1 + 278039
48 Zag = 208 (Our) 281+ 2—).981) 20+ 2—5.93‘8)
49-63 Zr =0 [9] max: 275 - (1 + 27507 | max: 275 . (1 + 275039
min: 28 . (1+ 2_8'224) min: 278 (1 +2_8'233)
64 Zs4 = 192 (Our) 25 (1+20°7) 275 (1 +2 03%)
65-79 Z =0 [9] max: 275 - (1 +2750) | max: 275 - (1 +27525)
min: 278 - (1+ 2’8'398) min: 278 - (1 +2’8'376)
80 Zgo = 176 (Our) 27514277 271 +2777
81-95 Zy =0 [9] max: 275 - (1 4+ 27570 | max: 275 - (1 +275°%%)
min: 278 - (1 + 2787 min: 278 - (1 + 27839
96 Zos = 160 (Our) 278 1 +2778T 25 (142 70
97-111 Z,=0[9] max: 278 (1 +27892) | max: 278 (1 +2-3570)
min: 278 . (1+ 2_8'?41) min: 278 - (1 +2_8'?22)
112 Z112 = 144 (Our) 2-8. (1+ 2—8,)0{]) -5 (1+ 2—3,666)
113=255 | Z =0 [9] max: 275 - (1427573 | max: 275 - (1 + 275790
min: 278 - (1 + 2710052y | min: 278 . (1 4 2710041
256 Z756 = 0 (negative bias) (Our) N/A 278 (1277
257 Zy57=10 (Our} N/A 2—3 1+ 2—9.)51)
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Applications to

Plaintext Recovery Attack
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Plaintext Recovery in Broadcast Setting

B Broadcast setting
+ Same plaintext is encrypted with different (user) keys

Plaintext Ciphertext E;l %?

Jp—

£2J g
:

& © .
E Plaintext Recovery Attack

+ Extract plaintext from ONLY ciphertexts encrypted by different keys

+ Passive attack
e What attacker should do is to collect ciphertexts
e NOT use additional information such as timing and delays.
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Idea for Plaintext Recovery Attack [MS 01]

Prob.

E Relation in each byte

=>"C = P XOR 2 17256 1717..... I .....
#+ If P, is fix, the distribution of Z; maps to C J_ J_

 If Z, = 131, then C, = P, XOR 131 0 131 255
# Most frequent value of C; is P; XOR 131 1

Frequency Table of C;

E Algorithm : Plaintext Recovery Attack
1. Collect X ciphertexts C(1),..., CX)
2. Count the values of C, and make a frequency table
3. Regard Most frequent values of C as P,XOR Z', 0 O 255
Z'x : strongest biased value in our table. S~

C, = P; XOR 131 ?

Kobe University




Experimental Results

B Experiment for 256 different plaintexts in the cases where 25,. .., 23>
ciphertexts with randomly-chosen keys are given.

| | | | | |
10 TR . NN AR —
i : ' il LN I
LA ' i N Ky ]
ll \ :‘ " "\\I' 1
I! \ : E ‘r’l, ' :
I A : h b e i
| I ' II \ v ||“A '\l
08 f |3 : :' Mo,
13 " .
> D : ' [ TH
=) " "
— uy 1 "
- — 1 "
Ko} "
© F g 24
2 06 | -- 2 .
bud ' :: 228 _______
D‘; " 232 _______
[ | IR I M 35
2 0.4 AT 2
(&) — IVANTT -
O . NI
- ' /::‘I‘\
w
0.2 .
0.0 -

0 50 100 150 200 250

Round number (r
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Experimental Results

B Experiment for 256 different plaintexts in the cases where 2°5,. .., 23>
ciphertexts with randomly-chosen keys are given.

| | | | | |
1 .0 — '\‘\\' }!- i ade ) ¥ Lo VR0 S PR 'y;;'\ """""""""""""""""""""""" ’_
| 1 BTN |
5 oy |
{ I“l ""I \ 1
! ‘\l udi !
| I: v lu"“‘ , 5 l"\'_
0 . 8 : ‘\||',|‘|‘|JA ’I'
_Zs ' Y1
3
8 06 924 _
S 58
o DY ——
2 £35

Given 232 ciphertexts with different keys,
first 257 bytes of the plaintext are recovered
with probability of more than 0.5

0 50 100 150 200 250

Round number (r
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Other Plaintext Recovery Attack

How to Recover later byte (after 258 bytes)?

Plaintext Recovery Attack ?7
Using Initial Biases
Pi Por s s Paser Pasy, [stsr Pysg = ]

B Use Mantin’s long term bias
+ Occur any bytes of a keystream
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Mantin’ s Long Term Biases

E Digraph Repetition Bias
4 Known strongest long term bias strong

4 Same pattern appear after G bytes fg
—> bias
Key Stream ....ABHLWECTSDGAB....
) gap G ' G=253 ¥ weak

Z | Ziy1 = Zivoig | | Zivsig | o

—+—Simulated Biases
—— Expected Biases

0.004 4

Probability (ideal) : 1/N2 m 0003 \\}\M\ A
PrObablhty (RC4) . 1/N2(1 + p) E ooz % N

o ¥ A
) W

0

0 8 16 24 32 40 46 56
Gap
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Our Method

E Relation for plaintext recovery attacks

(C'r‘ H CT+1) D (07‘+2+G H C?"+3+G)
— (P’r 8> Zr H P’r‘+1 @ Z’r+1) S (P7’+2+G D Z?‘+2+G H P7‘+3+G b Z’r+3+G’)
= (P, ®Pryora® 2y @ Zrjota || Pt @ Prgssc © Zr41 © Ziy3ia).
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Our Method

E Relation for plaintext recovery attacks

(C'r‘ H CT+1) D (07‘+2+G H C?"+3+G)
— (P’r 8> Z’I‘ H P’r‘+1 @ Z’r+1) S (P7’+2+G D Z?‘+2+G H P7‘+3+G b Z’r+3+G’)
= (P, ®Pryora® 2y @ Zrjota || Pt @ Prgssc © Zr41 © Ziy3ia).

Assuming Z, || Zy1 = Ziyp46 || Zti346, (Mantin’s relation)
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Our Method

E Relation for plaintext recovery attacks

(C'r‘ H CT+1) D (C%"+2+G H C?"+3+G)
— (P’r D Z’I‘ H P’r‘+1 D Z?‘Jrl) S¥ (P7’+2+G S Z?‘+2+G H P7‘+3+G D ZT+3+G’)
= (P, ®Pryora® 2y @ Zrjota || Pt @ Prgssc © Zr41 © Ziy3ia).

Assuming Z, || Zy1 = Ziyp46 || Zti346, (Mantin’s relation)

[ (Cl C*1) (Cizig H Crizig) = (Pl Pry2) (Pryy | Prisig) ]

P1, P2/ I =7 I:)2561 I:)2571 I:)2581 I:)259

Know bytes Recover
Ciphertexts _ _
Guess by using long term bias
C(l)l """" j with parameters G =0, 1, ...66
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Experimental Results

E Experimental
® P,og,.., Py are recovered from 234 ciphertexts

Table 1: Success Probability of our algorithm for re-
covering F, (r > 258) on Broadecast RC4
# of ciphertexts

sl iy L ki Sk
2 2 2 2

—

FPags | 0.0039 | 0.0391 | 0.3867 | 0.9648
FPagg | 0.0039 | 0.0078 | 0.1523 | 0.9414
Fagy | 0.0000 | 0.0039 | 0.0703 | 0.9219
Fag1 | 0.0000 | 0.0078 | 0.0273 | 0.9023

E Theoretical
+ Given 234 ciphertexts with different keys, 1000 TB bytes of plaintext
are recovered with probability of 0.99
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Advanced Plaintext Recovery Attacks on RC4

(From SAC 2013)

-T. Ohigashi, T. Isobe, Y. Watanabe, M. Morii "How to Recover Any Bytes of Plaintext on RC4”,
SAC 2013

Kobe University



Overview

E Previous Plaintext Recovery Attack (FSE 2013)
+ Exploit biases in initial bytes of keystream

Plaintext Recovery Attack
Using Initial Bias

P1r Pzr 7oty P256I P257/ P258/ I3259 ]

Mantin Bias
# If first bytes are disregarded, it seems to be secure

4 Countermeasure : RC4 —drop(n)

First n bytes are disregard
A

[ |
Key —— [ RC4 ] - Z]_, Zz Jrrrun I} Zn I} Zn+1, ..... I}
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Advanced Plaintext Recovery Attacks

Two types of plaintext recovery attacks on RC4-drop

B Method 1 : Modified FSE 2013 Attack

4+ Use partial knowledge of a plaintext
+ Works even if first bytes are disregarded

B Method 2: Guess and Determine Plaintext Recover Attack
4 Combine use of two types of long term biases
4 Do not require any knowledge of plaintext

Kobe University



Method 1: Plaintext Recovery Attack

using Known Partial Plaintext Bytes

E Simple extension of FSE 2013 attack

4+ generalize FSE 2013’s attack functions based on Mantin’s biases

4 Use Mantin bias with partial knowledge in forward and backward
manner

Forward attack function

Px = Py Py P

r
Partial knowledge of \_J Recover
a target <=
(consecutive X bytes) Ciphertexts

E ........ j
Backward attack function

PPy Pz Py
U Recover

Kobe University




Experimental Results

E Probability for recovering the target byte, given X bytes of
knowledge of the plaintext

[EEN

= ' | T —e-2131
X=34,..066 T.EU 08 | ——2r32
| s 2133
( \\ a 06 l ——2/34
JAN
Px - Pa P4 P 04 . T
2736
U 4 Recover 0.2 l

0
0 20 40 60 80

# of known partial plaintext bytes (X)

ex.) Given only 6 bytes of knowledge of a plaintext,
other bytes are recovered with 234 ciphertexts
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Method 2: Guess and Determine

Plaintext Recover Attack

E Based on two types of long-term biases
4 Mantin’s long-term bias (ABSAB bias)
+ Fluhrer-McGrew bias in FSE 2000 (FMOO bias)

Attack function based on ABSAB bias (the same as the first attack)

Pr-X wee Pr-2 Pr-1 Pr P P P " PI'+X
U 4 Recover Recover U
fABSAB_F()

Attack function based on FM0O bias (NEW)
(FMOO bias : 2-byte conditional bias)

P\ P, Pl P,

Recover f|'=M00_B()

ABSAB B()

femoo_r()  Recover

Kobe University



Attack Procedure

1. Guess the value of P,

Target byte
ep 1:

Set a candidate of P.

Kobe University



Attack Procedure

1. Guess the value of P,
2. Guess X bytes of the plaintext from P, (guessed in Step 1) by FMOO bias

Pr-1 Pr

J Step 1:
Step 2: fmoo_s() Set a candidate of P,

Kobe University



Attack Procedure

1. Guess the value of P,
2. Guess X bytes of the plaintext from P, (guessed in Step 1) by FMOO bias

Pr-2 Pr-1 P, r
LI Step 1:
Step 2: fmoo_s() Set a candidate of P,

Kobe University



Attack Procedure

1. Guess the value of P,
2. Guess X bytes of the plaintext from P, (guessed in Step 1) by FMOO bias

Pr-x me Pr-2 Pr-1 Pr
\ WA WAL Step 1:

Step 2: fmoo_s() Set a candidate of P,



Attack Procedure

1. Guess the value of P,
2. Guess X bytes of the plaintext from P, (guessed in Step 1) by FMOO bias
3. Guess P’ from P,,, ..., P,.; (quessed in Step 2) by ABSAB bias

<Y
Step 3: P’
fABSAB F() '
P .. P P.., P,
\ UUU Step 1:
Step 2: fmoo_s() Set a candidate of P,

Kobe University



Attack Procedure

1. Guess the value of P,
2. Guess X bytes of the plaintext from P, (guessed in Step 1) by FMOO bias
3. Guess P’ from P,,, ..., P,.; (quessed in Step 2) by ABSAB bias
4. If P’ is not equal to P, guessed in Step 1, the value is wrong.
Otherwise the value is regarded as a candidate of correct P,

VA

Step 3: P’
ABSAB F() !
/ \ ‘ Step 4: Compare
P .. PyP.,P.
I AIIJ Step 1:
Step 2: fmoo_s() Set a candidate of P,
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Experimental Results

E Probability for recovering a byte of a plaintext on

RC4-drop(3072)

# Obtained from 256 test

+ # of ciphertexts: 232, 233, 234 235

# Target Plaintext byte in this experiment: P,,g

# of ciphertexts
2.53 2.5.5 2.5-1 EJ-EL
Piag| 0.0039 ) 0.1133 | 0.9102 | 1.0000
4 )

- Given 23> ciphertexts,
=> recover any plaintext byte with probability close to one
- Given 234 ciphertexts,

_ =>recover any plaintext byte with probability of about 0.95

Kobe University




Conclusion

This talk introduced two recent results on RC4

-Initial Keystream Biases of RC4 and Its Applications
(From FSE 2013 and IEICE Journal)

234 ciphertexts

Consecutive 1 tera bytes
E Plaintext Recovery C(l)J C(Z)J ....... C(X)l

-Advanced Plaintext Recovery Attacks on RC4-drop
(From SAC 2013)

23> ciphertexts
ANY byte

B @ag ...... @
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