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The ARMADILLO-2 function

What is ARMADILLO-2 ?

ARMADILLO-2 is a lightweight, multi-purpose cryptographic
primitive published by Badel ef al. at CHES 2010

in the original article, ARMADILLO-1 is proposed but the authors
identified a security issue and advised to use ARMADILLO-2

ARMADILLO-2is

e a FIL-MAC
e a stream-cipher
e a hash function

they are all based on an internal function that uses
data-dependent bit transpositions

5 different parameters sizes defined



The ARMADILLO-2 function

The basic building block: a parametrized permutation Qx

ARMADILLO-2 uses a permutation Q4 (B) as basic building block:

e the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A

e for each step i:
e extract bit i from A
o if A[i]=0, apply the bitwise permutations oy, otherwise o1
e bitwise XOR the constant 1010 - - - 10 to the internal state
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The ARMADILLO-2 function

The ARMADILLO-2 compression function

¢ KX

T e two inputs:
& - the chaining variable C
( - ) - the message block M
A e one output:
— - the chaining variable C’

Qx(|M) — |

— Qu(C||M)




The ARMADILLO-2 function

The ARMADILLO-2 compression function

o k | ¢ | m
$ 128 | 80 | 48

( v } 192 | 128 | 64
240 | 160 | 80

A 288 | 192 | 96
— 384 | 256 | 128

Qx(C||M) — X<—I

— Qu(C|M) — |




The ARMADILLO-2 function

Cryptanalysis of ARMADILLO-2

Abdelraheem et al. (ASTACRYPT 2011):

e key recovery attack on the FIL-MAC
e key recovery attack on the stream cipher
e (second)-preimage attack on the hash function
... but computation and memory complexity is very high, often close to the

generic complexity (example 256-bit preimage with 22 computations and
2% memory or 2*¥ computations and 2*> memory)

We provide very practical attacks (only a few operations):

e distinguisher and related-key recovery on the stream cipher
e free-start collision on the compression function (chosen-related IVs)
e semi-free-start collision on the compression/hash function (chosen IV)
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First tools

For two random k-bit words A and B of Hamming weight a2 and b

respectively, the probability that HAM(A A B) =i is
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First tools

For two random k-bit words A and B of Hamming weight a and b

respectively, the probability that HAM(A @ B) = j is

atb—j
Pxor(k,a,b,j) = { gand(kﬂ,b, 5 )

for (a + b —j) even
for (a+ b —j) odd

a balls b balls
< —>= »

-
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Free-start collision attack

The differential path - right side

Qx(C||M) —|x

— Qu(CIM)
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The differential path - right side
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Free-start collision attack

The differential path - right side

-« oo
| HAM(AX) =1
...
.
peoao T [«e—— | M| AM =0
’._. e—
[ B .
(. ¢ [ v~
HAM(AC) = 1 AM =0

We have HAM(AX) = 1 with probability 1



Free-start collision attack

The differential path - right side

UL —— | M| AM =0

HAM(AC) =1 AM =0

We have AX = 0...01 with probability Px = {
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The differential path - left side

Qx(C[|M) p— b

— Qu(C[|M)
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The differential path - left side

(5555555

< AX =0...01
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HAM(AC) = 1 AM =0




Free-start collision attack

The differential path - left side

( el R

D
D—>

Y

We have b active bits after
— first step with probability

— Pstep (b)

< AX =0...01




Free-start collision attack

The differential path - left side

I

L

Y

HAM(AY) = b

We have HAM(AY) = b with

AX =0...01

probability

Pstep (b)



Free-start collision attack

The differential path - left side

We have AMSB.(Y) =0

with probability

PStep(b) : Pout(b)
PStep(b) : Pand(kv m, ba b)
i=b—1

Pstep(b> : H
i=0

m—i
k—i
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The differential path - overall differential probability

Qx(C||M)
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The freedom degrees

For randomly chosen values of C and M,

the collision probability will be too small:

e we can choose b small, so that P, (b) is very high ...
e ... but Py, (b) is very low anyway
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The freedom degrees
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Free-start collision attack

The freedom degrees

However, we can use the freedom degrees:

e by fixing the value of M and the difference position, one can first
handle the right part of the differential path (Qum)

e then by forcing the inputs value (C||M) to have very low (or very high)
Hamming weight hw it will be possible to have P, (b) high
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The freedom degrees

However, we can use the freedom degrees:

e by fixing the value of M and the difference position, one can first
handle the right part of the differential path (Qu)

e then by forcing the inputs value (C||M) to have very low (or very high)
Hamming weight hw it will be possible to have Pg,(b) high

Prgep (b, i) = ’%w Pror (b, hw, hw—1,b)+ ™

’PXOI’(ka I’ZZU, hw+1a b)



Free-start collision attack

Attack complexity and results

The total attack complexity is (probability Px can be handled separately):

‘

Ziaﬂ Pstep(ia hw) : Pout(i)

scheme parameters attack
2 c m generic attack
complexity | complexity

128 80 48 240 275
192 | 128 64 264 278
240 | 160 80 280 281
288 | 192 96 2% 283
384 | 256 128 2128 287

We implemented and verified the attack
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Semi-free-start collision attack

The differential path - right side

Qx(C||M) —|x

— Qu(CIM)

il
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The differential path - right side

Assume we force the first ¢ bits of M to a certain value
(g being the most significant difference bit of M)
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The differential path - right side

M

- L]

AM

We would like a collision after step g, and this event can be
obtained by solving a very particular system of linear equations
since we know all first g steps



Semi-free-start collision attack

The differential path - right side

_ 2 ..
o ele T T
T TS e - e
g bits
C M o o'
AC =0 AM

If the internal collision is obtained,
we have AX = 0 with probability 1
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The differential path - left side

Qx(C[|M) p— b

— Qu(C[|M) — |~
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The differential path - left side

— Assume we have b active
— bits on M

< AX =0
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The differential path - left side

< AX =0

We have b active bits after
applying Qx with
probability 1
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The differential path - left side

We have AMSB.(Y) =0
— M with probability

. — Pout(b) = Pand(kam7b7b)
» i=b—1 .
m—1

e X
o T _ > < = Il A
_____ - — | |ax=0 k—i

S=< — i=0




The AR function Free-start collision attack Semi-free-start collision attack Conclusion

The system of linear equations

We know the value of the g first bit of M, therefore we know exactly the
permutation applied to I and I @ Ay for the g first rounds of Qu. For a
collision after ¢ rounds of Qp, we want that

o [g—1) (- (omy 1y (om0 (1) © cst) S est) -+ -)
= omle-1)( - (o) (Oamy[0) (I © Ap) © cst) Dest) - -+ )

and since all operations are linear, this can be rewritten as
p)@A = pIoA)@B=pI)®p(A)®B

where

P = OM[g—1]© """ OM[1] © TM[0] A= O’M][gfl]<' e (O’M][l](CSt> EBCSt) s
p/ = OM,[g—1] (S TM,[1] o TM,[0] B = UMz[g—l](' . (JMz[l] (CSt) ©® CSt) ce

)
).



Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)
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The freedom degrees

The system of linear equations:

e admits at least a solution with a probability depending on the number
of cycles of a complex composition of ¢y and o4
(for random permutations o and o1, we have a probability of 2~ 108(%))

e the average number of solutions is 1

Thus, in order to find a collision, we need:

e that the guess of the g bits of M is valid (with probability 27%)

e that the b active bits in M are truncated on the output of Qx (with
probability Py (b))

Minimizing ¢ and b will provide better complexity, but we need
enough randomization to eventually find a solution



Semi-free-start collision attack

Attack complexity and results

The total attack complexity is:

28 . g -1 : .
with > 2. P .(b) so as to find a solution

Pout ( b) ’ b out
scheme parameters attack
k c . generlc': attack.
complexity | complexity

128 80 48 240 289
192 | 128 64 264 2102
240 | 160 80 280 2102
288 | 192 96 2% 2102
384 | 256 128 2128 2102

We implemented and verified the attack
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Conclusion

ARMADILLO-2 is not secure, attack complexities are very low:
e the diffusion can be controlled too easily

e local linearization allows to render linear the complex part of the
differential paths

e the permutation Q4 (B) preserves the parity of the input



Conclusion

Thank you for your attention !
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