The ARMADILLO-2 function Free-start collision attack Semi-free-start collision attack Conclusion

Practical Cryptanalysis of ARMADILLO-2
Thomas Peyrin
(joint work with Maria Naya-Plasencia)
Nanyang Technological University - Singapore
ASK 2012

Nagoya, Japan - August 29, 2012

— B NANYANG
= vy — 3= | TECHNOLOGICAL
UNIVERSITY

—_—
UNIVERSITE DE VERSAILLES
SAINT-QUENTIN-EN-YVELINES

The ARMADILLO-2 function Free-start collision attack Semi-free-start collision attack Conclusion

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

«O>» «F»r» « >

«E>

DA

The ARMADILLO-2 function

What is ARMADILLO-2 ?

ARMADILLO-2 is a lightweight, multi-purpose cryptographic
primitive published by Badel ef al. at CHES 2010

in the original article, ARMADILLO-1 is proposed but the authors
identified a security issue and advised to use ARMADILLO-2

ARMADILLO-2is

e a FIL-MAC
e a stream-cipher
e a hash function

they are all based on an internal function that uses
data-dependent bit transpositions

5 different parameters sizes defined

The ARMADILLO-2 function

The basic building block: a parametrized permutation Qx

ARMADILLO-2 uses a permutation Q4 (B) as basic building block:

e the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A

e for each step i:
e extract bit i from A
o if A[i]=0, apply the bitwise permutations oy, otherwise o1
e bitwise XOR the constant 1010 - - - 10 to the internal state

The ARMADILLO-2 function

The basic building block: a parametrized permutation Qx

ARMADILLO-2 uses a permutation Q4 (B) as basic building block:

e the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A

e for each step i:

e extract bit i from A
o if A[i]=0, apply the bitwise permutations oy, otherwise o1
e bitwise XOR the constant 1010 - - - 10 to the internal state

[1 — apply oy and xor 1010 - - - 10

The ARMADILLO-2 function

The basic building block: a parametrized permutation Qx

ARMADILLO-2 uses a permutation Q4 (B) as basic building block:

e the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A

e for each step i:
e extract bit i from A
o if A[i]=0, apply the bitwise permutations oy, otherwise o1
e bitwise XOR the constant 1010 - - - 10 to the internal state

e 1 — apply o7 and xor 1010 - - - 10
| e—— 1 — apply oy and xor 1010 - - - 10

The ARMADILLO-2 function

The basic building block: a parametrized permutation Qx

ARMADILLO-2 uses a permutation Q4 (B) as basic building block:

e the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A

e for each step i:
e extract bit i from A
o if A[i]=0, apply the bitwise permutations oy, otherwise o1
e bitwise XOR the constant 1010 - - - 10 to the internal state

Qa(B) A
| —— 0 — apply 0 and xor 1010 - - - 10
e 1 — apply o1 and xor 1010 - - - 10
| e—— 1 — apply oy and xor 1010 - - - 10

3 [

The ARMADILLO-2 function

The basic building block: a parametrized permutation Qx

ARMADILLO-2 uses a permutation Q4 (B) as basic building block:

e the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A

e for each step i:
e extract bit i from A

o if A[i]=0, apply the bitwise permutations oy, otherwise o1
e bitwise XOR the constant 1010 - - - 10 to the internal state

Qa(B) A| O-—>apply og and xor 1010 - - - 10
0 — apply op and xor 1010 - - - 10
1 — apply oy and xor 1010 - - - 10
1 — apply oy and xor 1010 - - - 10

1l

5 [

The ARMADILLO-2 function

The basic building block: a parametrized permutation Qx

ARMADILLO-2 uses a permutation Q4 (B) as basic building block:

e the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A

e for each step i:
e extract bit i from A
o if A[i]=0, apply the bitwise permutations oy, otherwise o1
e bitwise XOR the constant 1010 - - - 10 to the internal state

1 — apply o1 and xor 1010 - - - 10
A | 0—apply og and xor 1010 - - - 10
0 — apply o and xor 1010 - - - 10
1 — apply o1 and xor 1010 - - - 10
1 — apply oy and xor 1010 - - - 10

1l

The ARMADILLO-2 function

The basic building block: a parametrized permutation Qx

ARMADILLO-2 uses a permutation Q4 (B) as basic building block:

e the internal state is initialized with input B
we apply a steps, where a is the bitsize of the input parameter A

e for each step i:
e extract bit i from A

o if A[i]=0, apply the bitwise permutations oy, otherwise o1
e bitwise XOR the constant 1010 - - - 10 to the internal state

0 — apply o and xor 1010 - - - 10
1 — apply o1 and xor 1010 - - - 10
A | 0—apply og and xor 1010 - - - 10
0 — apply o and xor 1010 - - - 10
1 — apply o1 and xor 1010 - - - 10
1 — apply oy and xor 1010 - - - 10

11

The ARMADILLO-2 function

The ARMADILLO-2 compression function

¢ KX

T e two inputs:
& - the chaining variable C
(-) - the message block M
A e one output:
— - the chaining variable C’

Qx(|M) — |

— Qu(C||M)

The ARMADILLO-2 function

The ARMADILLO-2 compression function

o k | ¢ | m
$ 128 | 80 | 48

(v } 192 | 128 | 64
240 | 160 | 80

A 288 | 192 | 96
— 384 | 256 | 128

Qx(C||M) — X<—I

— Qu(C|M) — |

The ARMADILLO-2 function

Cryptanalysis of ARMADILLO-2

Abdelraheem et al. (ASTACRYPT 2011):

e key recovery attack on the FIL-MAC
e key recovery attack on the stream cipher
e (second)-preimage attack on the hash function
... but computation and memory complexity is very high, often close to the

generic complexity (example 256-bit preimage with 22 computations and
2% memory or 2*¥ computations and 2*> memory)

We provide very practical attacks (only a few operations):

e distinguisher and related-key recovery on the stream cipher
e free-start collision on the compression function (chosen-related IVs)
e semi-free-start collision on the compression/hash function (chosen IV)

The ARMADILLO-2 function Free-start collision attack Semi-free-start collision attack Conclusion
First tools

For two random k-bit words A and B of Hamming weight a2 and b

respectively, the probability that HAM(A A B) =i is

D69 _ GG

Pand(k’ a, b, l) =

(s) (o)

r
A J

k boxes

The ARMADILLO-2 function Free-start collision attack Semi-free-start collision attack Conclusion

First tools

For two random k-bit words A and B of Hamming weight a2 and b
respectively, the probability that HAM(A A B) =i is

aballs b balls
« > < >
® ® ® 0 ® 0 ® 0
o« y

k boxes

The ARMADILLO-2 function Free-start collision attack Semi-free-start collision attack Conclusion
First tools

For two random k-bit words A and B of Hamming weight a2 and b

respectively, the probability that HAM(A A B) =i is

OED _ O

P d(k, 11, b; l) —
. G 0
b balls
a balls R @ o 0
.

k boxes

The ARMADILLO-2 function Free-start collision attack Semi-free-start collision attack
First tools

For two random k-bit words A and B of Hamming weight a and b

respectively, the probability that HAM(A A B) =i is

Conclusion

OED O

alk,a,b,i) =
e ())
_ aballs b balls
o ®| - ol o0 e
-«

The ARMADILLO-2 function Free-start collision attack Semi-free-start collision attack Conclusion

First tools

For two random k-bit words A and B of Hamming weight a and b

respectively, the probability that HAM(A @ B) = j is

atb—j
Pxor(k,a,b,j) = { gand(kﬂ,b, 5)

for (a + b —j) even
for (a+ b —j) odd

a balls b balls
< —>= »

-

i balls

Outline

The ARMADILLO-2 function
Free-start collision attack

Semi-free-start collision attack

Conclusion

«O>» «F»r» « >

«E>

DA

Free-start collision attack

The differential path - right side

Qx(C||M) —|x

— Qu(CIM)

Free-start collision attack

The differential path - right side

[«— | M| AM =0

(. ¢ [x|

HAM(AC) = 1 AM =0

Free-start collision attack

The differential path - right side

-« oo
| HAM(AX) =1
...
.
peoao T [«e—— | M| AM =0
’._. e—
[B .
(. ¢ [v~
HAM(AC) = 1 AM =0

We have HAM(AX) = 1 with probability 1

Free-start collision attack

The differential path - right side

UL —— | M| AM =0

HAM(AC) =1 AM =0

We have AX = 0...01 with probability Px = {

The AR function Free-start collision attack Semi-free-start collision attack Conclusion

The differential path - left side

Qx(C[|M) p— b

— Qu(C[|M)

Free-start collision attack

The differential path - left side

(5555555

< AX =0...01

(. c I |

HAM(AC) = 1 AM =0

Free-start collision attack

The differential path - left side

(el R

D
D—>

Y

We have b active bits after
— first step with probability

— Pstep (b)

< AX =0...01

Free-start collision attack

The differential path - left side

I

L

Y

HAM(AY) = b

We have HAM(AY) = b with

AX =0...01

probability

Pstep (b)

Free-start collision attack

The differential path - left side

We have AMSB.(Y) =0

with probability

PStep(b) : Pout(b)
PStep(b) : Pand(kv m, ba b)
i=b—1

Pstep(b> : H
i=0

m—i
k—i

The ARMAD)-2 function Free-start collision attack Semi-free-start collision attack Conclusion

The differential path - overall differential probability

Qx(C||M)

T

—
I
3
Il
[S3
—

The AR function Free-start collision attack Semi-free-start collision attack Conclusion

The freedom degrees

For randomly chosen values of C and M,

the collision probability will be too small:

e we can choose b small, so that P, (b) is very high ...
e ... but Py, (b) is very low anyway

Free-start collision attack
The freedom degrees

For randomly chosen values of C and M,
the collision probability will be too small:

e we can choose b small, so that P, (b) is very high ...
e ... but Py, (b) is very low anyway

1]1j0f({0|0O]1|0]|1 111
11]0j1f{1]0]j0Of0O]|1 0|1

-ofof1j1{1|10]1(0 0|0

The AR function Free-start collision attack Semi-free-start collision attack Conclusion

The freedom degrees

For randomly chosen values of C and M,

the collision probability will be too small:

e we can choose b small, so that P,,;(b) is very high ...
e ... but Py, (b) is very low anyway

-

Free-start collision attack

The freedom degrees

However, we can use the freedom degrees:

e by fixing the value of M and the difference position, one can first
handle the right part of the differential path (Qum)

e then by forcing the inputs value (C||M) to have very low (or very high)
Hamming weight hw it will be possible to have P, (b) high

ojojofojof1({0]0 110
ojoj1f({ojofofoj|o0 0|0

Sigma 0 Sigma 1l T

1-000|0j1{0|0]|0OfO 0|0

Free-start collision attack

The freedom degrees

However, we can use the freedom degrees:

e by fixing the value of M and the difference position, one can first
handle the right part of the differential path (Qar)

e then by forcing the inputs value (C||M) to have very low (or very high)
Hamming weight hw it will be possible to have P, (b) high

$ oo

The AR function Free-start collision attack Semi-free-start collision attack Conclusion

The freedom degrees

However, we can use the freedom degrees:

e by fixing the value of M and the difference position, one can first
handle the right part of the differential path (Qu)

e then by forcing the inputs value (C||M) to have very low (or very high)
Hamming weight hw it will be possible to have Pg,(b) high

Prgep (b, i) = ’%w Pror (b, hw, hw—1,b)+ ™

’PXOI’(ka I’ZZU, hw+1a b)

Free-start collision attack

Attack complexity and results

The total attack complexity is (probability Px can be handled separately):

‘

Ziaﬂ Pstep(ia hw) : Pout(i)

scheme parameters attack
2 c m generic attack
complexity | complexity

128 80 48 240 275
192 | 128 64 264 278
240 | 160 80 280 281
288 | 192 96 2% 283
384 | 256 128 2128 287

We implemented and verified the attack

The ARMADILLO-2 function Free-start collision attack Semi-free-start collision attack Conclusion

Outline

Semi-free-start collision attack

Semi-free-start collision attack

The differential path - right side

Qx(C||M) —|x

— Qu(CIM)

il

Semi-free-start collision attack

The differential path - right side

Assume we force the first ¢ bits of M to a certain value
(g being the most significant difference bit of M)

Semi-free-start collision attack

The differential path - right side

M

- L]

AM

We would like a collision after step g, and this event can be
obtained by solving a very particular system of linear equations
since we know all first g steps

Semi-free-start collision attack

The differential path - right side

_ 2 ..
o ele T T
T TS e - e
g bits
C M o o'
AC =0 AM

If the internal collision is obtained,
we have AX = 0 with probability 1

The AR function Free-start collision attack Semi-free-start collision attack Conclusion

The differential path - left side

Qx(C[|M) p— b

— Qu(C[|M) — |~

Semi-free-start collision attack

The differential path - left side

— Assume we have b active
— bits on M

< AX =0

Semi-free-start collision attack

The differential path - left side

< AX =0

We have b active bits after
applying Qx with
probability 1

Semi-free-start collision attack

The differential path - left side

We have AMSB.(Y) =0
— M with probability

. — Pout(b) = Pand(kam7b7b)
» i=b—1 .
m—1

e X
o T _ > < = Il A
_____ - — | |ax=0 k—i

S=< — i=0

The AR function Free-start collision attack Semi-free-start collision attack Conclusion

The system of linear equations

We know the value of the g first bit of M, therefore we know exactly the
permutation applied to I and I @ Ay for the g first rounds of Qu. For a
collision after ¢ rounds of Qp, we want that

o [g—1) (- (omy 1y (om0 (1) © cst) S est) -+ -)
= omle-1)(- (o) (Oamy[0) (I © Ap) © cst) Dest) - -+)

and since all operations are linear, this can be rewritten as
p)@A = pIoA)@B=pI)®p(A)®B

where

P = OM[g—1]© """ OM[1] © TM[0] A= O’M][gfl]<' e (O’M][l](CSt> EBCSt) s
p/ = OM,[g—1] (S TM,[1] o TM,[0] B = UMz[g—l](' . (JMz[l] (CSt) ©® CSt) ce

)
).

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

«* %,

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C
with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The system of linear equations
We have to solve p(I) @ p'(I) = A @ B @ p'(A[) which can be rewritten

Ier()=C

with C a constant and 7 a bit permutation (we model as random)

Semi-free-start collision attack

The freedom degrees

The system of linear equations:

e admits at least a solution with a probability depending on the number
of cycles of a complex composition of ¢y and o4
(for random permutations o and o1, we have a probability of 2~ 108(%))

e the average number of solutions is 1

Thus, in order to find a collision, we need:

e that the guess of the g bits of M is valid (with probability 27%)

e that the b active bits in M are truncated on the output of Qx (with
probability Py (b))

Minimizing ¢ and b will provide better complexity, but we need
enough randomization to eventually find a solution

Semi-free-start collision attack

Attack complexity and results

The total attack complexity is:

28 . g -1 : .
with > 2. P .(b) so as to find a solution

Pout (b) ’ b out
scheme parameters attack
k c . generlc': attack.
complexity | complexity

128 80 48 240 289
192 | 128 64 264 2102
240 | 160 80 280 2102
288 | 192 96 2% 2102
384 | 256 128 2128 2102

We implemented and verified the attack

Outline

The ARMADILLO-2 function

Free-start collision attack

Semi-free-start collision attack

Conclusion

«O>» «F»r» « >

«E>

nae

Conclusion

ARMADILLO-2 is not secure, attack complexities are very low:
e the diffusion can be controlled too easily

e local linearization allows to render linear the complex part of the
differential paths

e the permutation Q4 (B) preserves the parity of the input

Conclusion

Thank you for your attention !

	The ARMADILLO-2 function
	Free-start collision attack
	Semi-free-start collision attack
	Conclusion

