Andrey Bogdanov, Gregor Leander, Kaisa Nyberg and <u>Meiqin Wang</u>

K.U.Leuven, DTU, Aalto University and Shandong University

ASK 2012, August 28, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline Background and Motivation

Reduction of Data Complexity[BW 2012]

Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conclusions

Background

- Differential, linear and impossible differential cryptanalysis: basic evaluation tools for block ciphers.
 - > Differential cryptanalysis: differentials with higher probability
 - Linear cryptanalysis: linear approximations whose probability deviates from 1/2
 - Impossible differential cryptanalysis: differentials with zero probability
- Zero correlation linear cryptanalysis
 - Recently, proposed by Andrey Bogdanov and Vincent Rijmen (IACR Eprint Report:2011/123)
 - ► Uses linear approximations with probability p=1/2, or the correlation c is zero

$$c=2p-1.$$

Background

- Differential, linear and impossible differential cryptanalysis: basic evaluation tools for block ciphers.
 - Differential cryptanalysis: differentials with higher probability
 - Linear cryptanalysis: linear approximations whose probability deviates from 1/2
 - Impossible differential cryptanalysis: differentials with zero probability
- Zero correlation linear cryptanalysis
 - Recently, proposed by Andrey Bogdanov and Vincent Rijmen (IACR Eprint Report:2011/123)
 - Uses linear approximations with probability p=1/2, or the correlation c is zero

$$c=2p-1.$$

Motivation

- Zero correlation linear cryptanalysis
 - Similar to impossible differential cryptanalysis, but essentially different mathematical theory
 - Applied to 6-round AES-256 and 13-round CLEFIA-256 with the full codebook or half of the full codebook
 - Motivation:
 - reduce the data complexity
 - find ciphers with longer zero-correlation linear approximations

attack more rounds of ciphers

Linear Approximations with Zero Correlation

Consider an n-bit block cipher C = f_K(P), the linear approximation Γ_P → Γ_C: Γ^T_P P ⊕ Γ^T_C C = 0. Γ_P, Γ_C: nonzero plaintext and ciphertext masks. The probability of Γ_P → Γ_C:

The probability of
$$\Gamma_P \to \Gamma_C$$
.
 $p_{\Gamma_P,\Gamma_C} = \Pr_{P \in \mathbf{F}_2^n} \{\Gamma_P^T P \oplus \Gamma_C^T C = 0\}.$
The correlation of $\Gamma_P \to \Gamma_C$: $c_{\Gamma_P,\Gamma_C} = 2p_{\Gamma_P,\Gamma_C} - 1$
 $p_{\Gamma_P,\Gamma_C} = \frac{1}{2} \Rightarrow c_{\Gamma_P,\Gamma_C} = 0$: zero correlation

The probability that a linear approximation has zero correlaiton for n-bit random permutation:

$$\frac{1}{\sqrt{2\pi}}2^{\frac{4-n}{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Linear Approximations with Zero Correlation

Consider an n-bit block cipher C = f_K(P), the linear approximation Γ_P → Γ_C: Γ_P^TP ⊕ Γ_C^TC = 0.
 Γ_P, Γ_C: nonzero plaintext and ciphertext masks.

The probability of
$$\Gamma_P \to \Gamma_C$$
:
 $p_{\Gamma_P,\Gamma_C} = \Pr_{P \in \mathbf{F}_2^n} \{ \Gamma_P^T P \oplus \Gamma_C^T C = 0 \}.$
The correlation of $\Gamma_P \to \Gamma_C$: $c_{\Gamma_P,\Gamma_C} = 2p_{\Gamma_P,\Gamma_C} - 1$
 $p_{\Gamma_P,\Gamma_C} = \frac{1}{2} \Rightarrow c_{\Gamma_P,\Gamma_C} = 0$: zero correlation

The probability that a linear approximation has zero correlaiton for n-bit random permutation:

$$\frac{1}{\sqrt{2\pi}}2^{\frac{4-n}{2}}$$

Relations for linear mask for three operations[Bogdanov-Vincent 2011]

- ► Lemma 1(XOR approximation): Either the three linear selection patterns at an XOR ⊕ are equal or the correlation over ⊕ is exactly zero.
- Lemma 2(Branching approximation): Either the three linear selection patterns at a branching point · sum up to 0 or the correlation over · is exactly zero.
- Lemma 3(Permutation approximation): Over a permutation φ, if the input and output selection patterns are neither both zero nor both nonzero. the correlation over φ is exactly zero.

Zero correlation linear approximation for AES AES: 4 rounds zero correlation linear approximations(3 full rounds +1 round without MixColumns):

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Zero correlation linear approximation for CLEFIA

CLEFIA: 9 rounds zero correlation linear approximations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Key Recovery with Zero Correlation Linear Approximations

Background and Motivation

Reduction of Data Complexity[BW 2012]

Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Distinguishing Between Two Normal Distributions

- ► Two normal distributions: $\mathcal{N}(\mu_0, \sigma_0)$, $\mathcal{N}(\mu_1, \sigma_1)$, $\mu_0 < \mu_1$.
- The sample s is from N(μ₀, σ₀) or N(μ₁, σ₁)? Perform the test to compare the value s to some threshold value t.

• if
$$s \leq t$$
, $s \in \mathcal{N}(\mu_0, \sigma_0)$

- if s > t, $s \in \mathcal{N}(\mu_1, \sigma_1)$.
- Two error probabilities:

$$\begin{array}{lll} \beta_0 &=& \Pr\{"s \in \mathcal{N}(\mu_1, \sigma_1)" | s \in \mathcal{N}(\mu_0, \sigma_0)\}, \\ \beta_1 &=& \Pr\{"s \in \mathcal{N}(\mu_0, \sigma_0)" | s \in \mathcal{N}(\mu_1, \sigma_1)\}. \end{array}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition 1

For the test to have error probabilities of β_0 and β_1 , the parameters of the normal distributions $\mathcal{N}(\mu_0, \sigma_0)$ and $\mathcal{N}(\mu_1, \sigma_1)$ with $\mu_0 \neq \mu_1$ have to be such that

$$rac{z_{1-eta_1}\sigma_1+z_{1-eta_0}\sigma_0}{|\mu_1-\mu_0|}=1,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $z_{1-\beta_1}$ and $z_{1-\beta_0}$ are the quantiles of the standard normal distribution.

Correlation under Right and Wrong Keys

Consider the key recovery procedure with N known plaintext-ciphertext pairs and for each of the ℓ given linear hulls, an empirical correlation value $\hat{c}_i = 2\frac{T_i}{N} - 1$.

- ▶ Right key guess: $\hat{c}_i \sim \mathcal{N}(0, 1/\sqrt{N})$, [Junod01,selcuk08]
- ▶ Wrong key guess: $\hat{c}_i \sim \mathcal{N}(c_i, 1/\sqrt{N})$, $c_i \sim \mathcal{N}(0, 2^{-n/2})$, c_i : the exact value of the correlation, [O'Connor95,Daemen07]
- ▶ For one linear hull: only focus on \hat{c}_i , but need full codebook or half of the codebook.
- For ℓ linear hulls: focus on the statistic value of $\sum_{i=1}^{\ell} \hat{c}_i^2$,

$$\sum_{i=1}^{\ell} \hat{c}_i^2 = \sum_{i=1}^{\ell} \left(2 \frac{T_i}{N} - 1 \right)^2.$$

Distribution of the Statistic under Right Key

Proposition 2

Consider ℓ nontrivial zero correlation linear approximations for a block cipher with a fixed key. If N is the number of known plaintext-ciphertext pairs, T_i is the number of times such a linear approximation is fulfilled for $i \in \{1, ..., \ell\}$, and ℓ is high enough, then the following approximate distribution holds for sufficiently large N:

$$\sum_{i=1}^{\ell} \left(2\frac{T_i}{N} - 1 \right)^2 \sim \mathcal{N}\left(\frac{\ell}{N}, \frac{\sqrt{2\ell}}{N} \right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Distribution of the Statistic under Wrong Key

Proposition 3

Consider ℓ nontrivial linear approximations for a randomly drawn permutation. If N is the number of known plaintext-ciphertext pairs, T_i is the number of times a linear approximation is fulfilled for $i \in \{1, \ldots, \ell\}$, and ℓ is high enough, then the following approximate distribution holds for sufficiently large N:

$$\sum_{i=1}^{\ell} \left(2\frac{T_i}{N} - 1 \right)^2 \sim \mathcal{N}\left(\frac{\ell}{N} + \frac{\ell}{2^n}, \frac{\sqrt{2\ell}}{N} + \frac{\sqrt{2\ell}}{2^n} \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Data Complexity of the Distinguisher

Theorem 1

With the assumptions of Propositions 1 to 3, using ℓ nontrivial zero correlation linear approximations, to distinguish between a wrong key and a right key with probability β_1 of false positives and probability β_0 of false negatives, a number N of known plaintext-ciphertext pairs is sufficient if the following condition is fulfilled:

$$N = \frac{2^{n+0.5}(z_{1-\beta_0} + z_{1-\beta_1})}{\sqrt{\ell} - z_{1-\beta_1}\sqrt{2}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Multidimensional Linear Distinguishers with Correlation Zero Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Background and Motivation

Reduction of Data Complexity[BW 2012]

Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

The Block Ciphers TEA and XTEA

 TEA and XTEA: 64-round, 64-bit block size, 128-bit key, Feistel small cipher, implemented in the Linux kernel

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Summary of Cryptanalytic Results on TEA

Attack	#Rounds	Data	Time	Memory	Ref.
ID	11	2 ^{52.5} CP	2 ⁸⁴	Not given	[MHL 2002]
TD	17	1920 CP	$2^{123.37}$	Not given	[HHK 2004]
ID	17	2 ⁵⁷ CP	$2^{106.6}$	2 ⁴⁹	[CWP 2011]
ZC LH	21	$2^{62.62}$ KP	$2^{121.52}$	Negligible	[BW 2012]
ZC LH	23	2^{64}	$2^{119.48}$	Negligible	[BW 2012]

CP: Chosen Plaintexts, KP: Known Plaintexts.

Memory: the number of 32-bit words.

*The effective key length for TEA is 126 bit

Summary of Cryptanalytic Results on XTEA

Attack	R	Data	Time	Memory	Ref.
ID	14	2 ^{62.5} CP	2 ⁸⁵	Not given	[MHL 2002]
ТD	23	2 ^{20.55} CP	$2^{120.65}$	Not given	[HHK 2004]
MITM	23	18 KP	2^{117}		[SMVP 2011]
ID	23	2 ^{62.3} CP	$2^{101}MA$	$2^{94.3}$	[CWP 2011]
			$+2^{105.6}$		
ID	23	2^{63}	$2^{114.5}$	2^{103}	[CWP 2011]
MITM	29	2 ⁴⁵ CP	2^{124}	2^{4}	[IS 2012]
ZC LH	25	$2^{62.62}$ KP	$2^{124.53}$	2^{30}	[BW 2012]
ZC LH	27	2^{64}	$2^{120.71}$	Negligible	[BW 2012]

CP: Chosen Plaintexts, KP: Known Plaintexts.

Memory: the number of 32-bit words.

*The effective key length for TEA is 126 bit

Linear Approximation of Modular Addition

For the modular addition of two n-bit inputs x and y, the output z can be computed as:

$$z = (x + y) \mod 2^n$$
.

 $+: (\Gamma x | \Gamma y) \rightarrow \Gamma z.$

Property 1 (Modular addition)

In any linear approximation $(\Gamma x | \Gamma y) \rightarrow \Gamma z$ of the modular addition with a non-zero correlation, the most significant non-zero mask bit for Γx , Γy and Γz is the same.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linear Approximations for One Round of TEA

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Linear Approximations for One Round of XTEA

Zero Correlation Linear Approximations of 14-R TEA/XTEA

Zero Correlation Linear Approximations 15-R TEA/XTEA

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 三の

Multidimensional Linear Distinguishers with Correlation Zero Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Compute N and τ :

► The data complexity *N*:

$$N \geq rac{2^{n+0.5}(z_{1-eta_0}+z_{1-eta_1})}{\sqrt{\ell}-z_{1-eta_1}\sqrt{2}}$$

The threshold τ:

$$au=\sigma_0\cdot z_{1-eta_0}+\mu_0=rac{\sqrt{2l}}{N}\cdot z_{1-eta_0}+rac{l}{N}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Key Recovery for 21 Rounds of TEA

~ ~ ~ ~

Key Recovery for 21 Rounds of TEA

- 1. Allocate 2⁵⁴ counters $W[\kappa] \leftarrow 0$, $\kappa = (K_0^{15 \sim 0} | K_1^{15 \sim 0} | K_2^{10 \sim 0} | K_3^{10 \sim 0})$.
- 2. Guess κ:
 - 2.1 Allocate 2⁹ counters $V[x] \leftarrow$ 0, $x = (R_5^0 | R_{19}^{1 \sim 0} | L_{19}^{5 \sim 0})$
 - 2.2 Encrypt 4 rounds and decrypt 3 rounds for N(P, C) pairs; get x and V[x] + +.
 - 2.3 For 2^7 input and output linear masks:
 - **2.3.1** $U \leftarrow 0$.
 - 2.3.2 For 2⁹ values of x, verify if the linear approximation holds. If so, U = U + V[x].

2.3.3 $W[\kappa] = W[\kappa] + (2 \cdot U/N - 1)^2$.

2.4 If $W[\kappa] < \tau$, κ is possible right and exhaustively search all cipher keys.

Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Key Recovery for 25 Rounds of XTEA

Key Recovery for 23-Round TEA with Full Codebook

Multidimensional Linear Distinguishers with Correlation Zero Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Key Recovery for 27-Round XTEA with Full Codebook

Multidimensional Linear Distinguishers with Correlation Zero — Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Background and Motivation

Reduction of Data Complexity[BW 2012]

Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

Conclusions

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Multidimensional Linear Setting

Given m linear approximations $\langle u_i, x \rangle + \langle w_i, y \rangle$, i = 1, ..., m, $x \in \mathbb{F}_2^n$ is plaintext and $y \in \mathbb{F}_2^t$ is some part of data in the encryption process.

$$z=(z_1,\ldots,z_m), \quad z_i=\langle u_i,x
angle+\langle w_i,y
angle.$$

The Probability distribution of m-tuples z:

$$\Pr[{m z}] = 2^{-m} \sum_{\gamma \in \mathbb{F}_2^m} (-1)^{\langle \gamma, z
angle} c_\gamma.$$

 c_{γ} : correlations of all linear approximations $\gamma \in \mathbb{F}_2^m$.

How to Make Zero-Correlation Multidimensional

 ► Zero-Correlation: the correlations of *m* linear approximation ⟨u_i, x⟩ + ⟨w_i, y⟩, i = 1,..., m, and their nonzero linear combinations are zero.

▶ Use less data than full codebook to evaluate distribution of *z*:

- ► multivariate hypergeometric distribution with parameter (2ⁿ, 2^{n-m}, N), for the cipher data.
- ► multinomial distribution with parameter (N, 2^{-m}) for the data drawn at random from uniform distribution on ℝ₂^m.

Multidimensional Distinguisher for Correlation Zero

- ▶ Initialize 2^m counters $V[z] = 0, z \in \mathbb{F}_2^m$;
- For $t = 1, \ldots, N$ do
 - draw (x_t, y_t) from cipher;
 - for $i = 1, \ldots, m$ do
 - calculate bit $z_i = u_i \cdot x_t \oplus w_i \cdot y_t$;
 - end
 - increment counter V[z], where z is the vector (z_1, \ldots, z_m) .

- end
- compute the statistic $T = \sum_{z=0}^{2^m-1} \frac{(V[z]-N2^{-m})^2}{N2^{-m}(1-2^{-m})}$.

Multidimensional Distinguisher for Correlation Zero

Proposition 4

For sufficiently large sample size N and number ℓ of zero-correlation approximations given for the cipher, the statistic T follows a χ^2 -distribution for the cipher approximately with mean and variance

$$\mu_0 = \operatorname{Exp}(T_{\textit{cipher}}) = (\ell - 1) \frac{2^n - N}{2^n - 1},$$

$$\sigma_0^2 = \operatorname{Var}(T_{\textit{cipher}}) = 2(\ell-1) \left(\frac{2^n-N}{2^n-1}\right)^2$$

and for a randomly drawn permutation with mean and variance

$$\mu_1 = \operatorname{Exp}(\mathit{T_{random}}) = \ell - 1, \quad \sigma_1^2 = \operatorname{Var}(\mathit{T_{random}}) = 2(\ell - 1).$$

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Distinguishing Complexity

Corollary 1

Under the assumptions of Proposition 4, for type-I error probability α_0 (the probability to wrongfully discard the cipher), type-II error probability α_1 (the probability to wrongfully accept a randomly chosen permutation as the cipher), for an *n*-bit block cipher exhibiting ℓ zero-correlation linear approximations forming an $\log_2 \ell$ -dimensional linear space, the distinguishing complexity *N* can be approximated as

$$N=rac{2^n(\,q_{1-lpha_0}+q_{1-lpha_1})}{\sqrt{\ell/2}-q_{1-lpha_1}},$$

where $q_{1-\alpha_0}$ and $q_{1-\alpha_1}$ are the respective quantiles of the standard normal distribution.

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Distinguishing Complexity

• The decision threshold of $\tau = \mu_0 + \sigma_0 q_{1-\alpha_0} = \mu_1 - \sigma_1 q_{1-\alpha_1}$.

- If the statistic $T \leq \tau$, the test outputs 'cipher'.
- If the statistic $T > \tau$, the test returns 'random'.

Background and Motivation

Reduction of Data Complexity[BW 2012]

Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

Conclusions

Multidimensional Linear Distinguishers with Correlation Zero
Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

Description of CAST-256

- ▶ 48-round, 128-bit block size, key size: 128, 192 or 256 bits
- One first-round AES candidate
- 4-line generalized feistel network with 6 forward quad-rounds followed by 6 reverse quad-rounds

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

Description of CAST-256

24-round zero-correlation linear approximation for CAST-256

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

Key recovery for 28-round CAST-256

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Key recovery for 28-round CAST-256

For each possible 148-bit subkey value $\kappa = K_R^{(1)} | K_M^{(1)}$:

- 1. Allocate a 64-bit global counter V[z] for each of 2^{64} possible values of z and set it to 0.
- 2. For each of N distinct plaintext-ciphertext pairs:
 - 2.1 Partially encrypt 4 rounds and get value for $X|C_4$.
 - 2.2 Evaluate all 64 basis zero-correlation masks on $X|C_4$ and put the evaluations to z.
 - 2.3 Increment V[z].
- 3. Compute the χ^2 statistic $T = N 2^{64} \sum_{z=0}^{2^{64}-1} \left(\frac{V[z]}{N} \frac{1}{2^{64}} \right)^2$.
- 4. If $T < \tau$, the subkey guess κ is a possible subkey candidate.

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

Summary of attacks on CAST-256

R	Key	Attack	Data	Time	Memory	Source
	Size	Туре			(bytes)	
16	All	BA	2 ^{49.3} CP	—	—	[Wagner 1999]
24	192, 256	LC	$2^{124.1}$ KP	$2^{156.52}$	—	[WWH 2008]
24	256	TD	2 ²⁴ CP	2^{244}	2^{29}	[Pestunow 2008]
28	256	MZC	2 ^{98.8} KP	$2^{244.6}$	2 ⁶⁸	[BLNW 2012]

BA: Boomerang Attack; LC: Linear Cryptanalysis;

TD: Truncated Differential; MZC: Multidimensional Zero-Correlation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background and Motivation

Reduction of Data Complexity[BW 2012]

Zero Correlation Cryptanalysis for TEA and XTEA[BW 2012]

Zero-Correlation and Multidimensional Linear Distinguishers[BLNW 2012]

Multidimensional Zero-Correlation Cryptanalysis of 28-round CAST-256[BLNW 2012]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

Conclusions

- Zero-correlation linear cryptanalysis is the counterpart of impossible differential cryptanalysis in the domain of linear cryptanalysis.
- Zero-correlation linear approximations are sometimes longer than impossible differentials
- Data complexity can be reduced to $\mathcal{O}(2^n/\sqrt{\ell})$
- > Zero correlation can result in faster attacks for some ciphers

- ロ ト - 4 回 ト - 4 □ - 4

References

- A. Bogdanov, M. Wang. Integral and Multidimensional Linear Distinguishers with Correlation Zero. ASIACRYPT'12, LNCS, Springer-Verlag, to appear, 2012.
- A. Bogdanov, M. Wang. Zero Correlation Linear Cryptanalysis with Reduced Data Complexity. FSE'12, LNCS, Anne Canteaut (ed.), Springer-Verlag, to appear, 2012.

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで