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Model of Symmetric Key Encryption

ReceiverSender
message M

DecryptEncrypt ciphertext

public channel

secret key K secret key Kadversary
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One-Time Pad

message

true random
sequence

ciphertext

1 0 0 1 1 1

0 0 1 1 01

1 0 1 0 0 1
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Model of Additive Stream Cipher
secret 
key K

Initialise state 1 update state 2 update

output output

message blk message blk

ciphertext blk ciphertext blk

initialisation
vector

keystream
blk

keystream
blk

Key: k bits; IV: (usually) ≤ k bits; state: (usually) ≥ 2k bits;

initialise, update, output: functions (deterministic algorithms);

keystream blk, msg blk, cpr blk: ≥ 1 bit.
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Self-Synchronizing Stream Cipher

message m0 m1 m2 · · · mi · · ·

keystream k0 k1 k2 · · · ki · · ·

ciphertext c0 c1 c2 · · · ci · · ·

ci = mi ⊕ ki .
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Self-Synchronizing Stream Cipher

message m0 m1 m2 · · · mi · · ·

keystream k0 k1 k2 · · · ki · · ·

ciphertext c0 c1 c2 · · · ci · · ·

ci = mi ⊕ ki .

ki is completely determined by the secret key K and ci−n, . . . , ci−1.

Correctly receiving n ciphertext bits allow correct generation of the
next keystream bit.

Robust against channel errors: bit flip/drop/insert.
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Self-Synchronizing Stream Cipher

message m0 m1 m2 · · · mi · · ·

keystream k0 k1 k2 · · · ki · · ·

ciphertext c0 c1 c2 · · · ci · · ·

ci = mi ⊕ ki .

ki is completely determined by the secret key K and ci−n, . . . , ci−1.

Correctly receiving n ciphertext bits allow correct generation of the
next keystream bit.

Robust against channel errors: bit flip/drop/insert.

More generally, mi is completely determined by the secret key K and
the last n ciphertext bits.
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Attack Models: Adversarial Access

Ciphertext only attack:
the attacker has access to only ciphertext(s);
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Attack Models: Adversarial Access

Ciphertext only attack:
the attacker has access to only ciphertext(s);

Known plaintext attack:
the attacker knows (P1,C1), . . . , (Pt ,Ct);
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Attack Models: Adversarial Access

Ciphertext only attack:
the attacker has access to only ciphertext(s);

Known plaintext attack:
the attacker knows (P1,C1), . . . , (Pt ,Ct);

Chosen plaintext attack:
the attacker chooses P1, . . . ,Pt ; receives C1, . . . ,Ct ;

For additive stream ciphers, this is the same as known plaintext
attack.
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Attack Models: Adversarial Access (contd.)

Known/Chosen IV attack: (resynchronization attack)
the attacker knows/chooses IV1, . . . , IVt ;
receives the corresponding keystreams.

Obtaining keystreams correspond to known plaintexts.
IVs are always known.
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Attack Models: Adversarial Access (contd.)

Known/Chosen IV attack: (resynchronization attack)
the attacker knows/chooses IV1, . . . , IVt ;
receives the corresponding keystreams.

Obtaining keystreams correspond to known plaintexts.
IVs are always known.

Chosen ciphertext attack.
the attacker chooses C1, . . . ,Ct ; receives P1, . . . ,Pt ;

Not very meaningful for usual additive stream ciphers.
Serious threat for self-synchronising stream ciphers.
Serious threat for stream ciphers which combine encryption and
authentication in a single composite primitive.
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Attack Models: Adversarial Goals

Key recovery: the ultimate goal of the adversary.
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Attack Models: Adversarial Goals

Key recovery: the ultimate goal of the adversary.
State recovery:

This allows forward generation of the keystream.
If the state update function is invertible, then this allows to move
backwards.
If the initialisation function is invertible, then this allows key
recovery.
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Attack Models: Adversarial Goals

Key recovery: the ultimate goal of the adversary.
State recovery:

This allows forward generation of the keystream.
If the state update function is invertible, then this allows to move
backwards.
If the initialisation function is invertible, then this allows key
recovery.

Distinguishing attack:
Define a test statistic on a bit string such that the values it takes for
uniform random strings and for the real keystream are ‘significantly’
different.
Sometimes distinguishing attacks can be converted to key recovery
attacks.
In case of chosen IV attacks, the goal is to distinguish between the
set of keystreams and a set of uniform random strings of the same
lengths.
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Encrypting Short Fixed Length Strings

key K key K

msg blk

cpr blk

cpr blk

msg blk

Encrypt Decrypt
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Encrypting Short Fixed Length Strings

key K key K

msg blk

cpr blk

cpr blk

msg blk

Encrypt Decrypt

Block Cipher.

E : {0, 1}k × {0, 1}n → {0, 1}n.

D : {0, 1}k × {0, 1}n → {0, 1}n.

For each K ∈ {0, 1}k ,
DK (EK (M)) = M.
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Modes of Operations

message: M1,M2,M3, . . . (n-bit blocks);
initialization vector: n-bit IV (used as nonce).

Cipher block chaining (CBC) mode:
C1 = EK (M1 ⊕ IV);
Ci = EK (Mi ⊕ Ci−1), i ≥ 2.
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CBC Mode

C1 C2 Cm−1 Cm

EK EK EK EK

1 2 m−1 mP P P P

IV
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Modes of Operations (contd.)

message: M1,M2,M3, . . . (n-bit blocks);
initialization vector: n-bit IV (used as nonce).

Output feedback (OFB) mode:
Z1 = EK (IV); Zi = EK (Zi−1), i ≥ 2;
Ci = Mi ⊕ Zi , i ≥ 1.

This is essentially an additive stream cipher.
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Cipher feedback (CFB) mode:
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Modes of Operations (contd.)

message: M1,M2,M3, . . . (n-bit blocks);
initialization vector: n-bit IV (used as nonce).

Output feedback (OFB) mode:
Z1 = EK (IV); Zi = EK (Zi−1), i ≥ 2;
Ci = Mi ⊕ Zi , i ≥ 1.

This is essentially an additive stream cipher.

Cipher feedback (CFB) mode:
C1 = M1 ⊕ EK (IV);
Ci = Mi ⊕ EK (Ci−1), i ≥ 2.

Can be used as a self-synchronizing stream cipher in
a 1-bit feedback mode.

Counter (CTR) mode:
Ci = Mi ⊕ EK (nonce||bin(i)), i ≥ 1.

Other variants of the CTR mode have been proposed.
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Linear Feedback Shift Register

Given (non-zero) initial state (a0, . . . , an−1) generates a sequence

a0, a1, a2, . . . , ai , . . .

where ai = cn−1ai−1 ⊕ · · · ⊕ c1ai−n+1 + c0ai−n.
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Linear Feedback Shift Register

Given (non-zero) initial state (a0, . . . , an−1) generates a sequence

a0, a1, a2, . . . , ai , . . .

where ai = cn−1ai−1 ⊕ · · · ⊕ c1ai−n+1 + c0ai−n.
Characteristic (connection) polynomial:

τ(x) = xn ⊕ cn−1xn−1 ⊕ · · · ⊕ c1x ⊕ c0.
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Linear Feedback Shift Register

Given (non-zero) initial state (a0, . . . , an−1) generates a sequence

a0, a1, a2, . . . , ai , . . .

where ai = cn−1ai−1 ⊕ · · · ⊕ c1ai−n+1 + c0ai−n.
Characteristic (connection) polynomial:

τ(x) = xn ⊕ cn−1xn−1 ⊕ · · · ⊕ c1x ⊕ c0.

If τ(x) is primitive over GF (2), then the period of {ai} is 2n − 1.

Other well-understood “randomness-like” properties.
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Linear Feedback Shift Register

Given (non-zero) initial state (a0, . . . , an−1) generates a sequence

a0, a1, a2, . . . , ai , . . .

where ai = cn−1ai−1 ⊕ · · · ⊕ c1ai−n+1 + c0ai−n.
Characteristic (connection) polynomial:

τ(x) = xn ⊕ cn−1xn−1 ⊕ · · · ⊕ c1x ⊕ c0.

If τ(x) is primitive over GF (2), then the period of {ai} is 2n − 1.

Other well-understood “randomness-like” properties.

Any bit of the sequence is a linear combination of the first n bits.

Given any n bits of the sequence, it is easy to get the initial state.

Unsuitable for direct use in cryptography.
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Nonlinear Combiner Model
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Correlation Attacks.
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Correlation Attack

Suppose

Pr
[
X (i)

1 = ki

]
= p 6=

1
2
.

Divide-and-conquer attack.

Collect ℓ bits of the keystream.

From each possible 2m1 − 1 non-zero initial states of LFSR1,
generate ℓ bits of the LFSR sequence.

Let s be the number of places where the LFSR sequence equals
the keystream sequence.

If s ≈ ℓp, then the corresponding state is likely to be the correct
intial state.

If s ≈ ℓ/2, then the corresponding state is unlikely to be the
correct intial state.
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Correlation Attack (contd.)

For the attack to work ℓ must be at least m1/(1− H(p)).

If p = 1/2 the attack does not work.
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Correlation Attack (contd.)

For the attack to work ℓ must be at least m1/(1− H(p)).

If p = 1/2 the attack does not work.

But, if Pr
[
X (i)

1 ⊕ X (i)
2 = ki

]
= p 6= 1

2 then the LFSRs 1 and 2 can

be attacked simultaneously.
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Correlation Attack (contd.)

For the attack to work ℓ must be at least m1/(1− H(p)).

If p = 1/2 the attack does not work.

But, if Pr
[
X (i)

1 ⊕ X (i)
2 = ki

]
= p 6= 1

2 then the LFSRs 1 and 2 can

be attacked simultaneously.

In general, if

Pr
[
X (i)

j1
⊕ · · · ⊕ X (i)

jr
= ki

]
= p 6=

1
2

then the LFSRs j1, . . . , jr can be attacked simulatenously.
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Correlation Attack (contd.)

For the attack to work ℓ must be at least m1/(1− H(p)).

If p = 1/2 the attack does not work.

But, if Pr
[
X (i)

1 ⊕ X (i)
2 = ki

]
= p 6= 1

2 then the LFSRs 1 and 2 can

be attacked simultaneously.

In general, if

Pr
[
X (i)

j1
⊕ · · · ⊕ X (i)

jr
= ki

]
= p 6=

1
2

then the LFSRs j1, . . . , jr can be attacked simulatenously.
Leads to Boolean function design criteria and trade-offs.

Balancedness.
Correlation immunity (resilience).
Algebraic degree.
Nonlinearity.
Other properties: propagation criteria, strict avalanche criteria, ....
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Fast Correlation Attacks

Coding theory framework:

State S of an LFSR is expanded to sequence a which is perturbed by
non-linear noise e to obtain ciphertext c with p = Pr[ei = 0] 6= 1/2.
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Fast Correlation Attacks

Coding theory framework:

State S of an LFSR is expanded to sequence a which is perturbed by
non-linear noise e to obtain ciphertext c with p = Pr[ei = 0] 6= 1/2.

View the expansion of S to a as the encoding procedure of a linear
code.
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Fast Correlation Attacks

Coding theory framework:

State S of an LFSR is expanded to sequence a which is perturbed by
non-linear noise e to obtain ciphertext c with p = Pr[ei = 0] 6= 1/2.

View the expansion of S to a as the encoding procedure of a linear
code.

Given c, using suitable decoding technique to obtain S.
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An Iterative Decoding Procedure

Generation of parity checks: find a number of linear relations that
a bit ai in the sequence a should satisfy.
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An Iterative Decoding Procedure

Generation of parity checks: find a number of linear relations that
a bit ai in the sequence a should satisfy.

Shifting, squaring and multiples of the connection polynomial.

Palash Sarkar (ISI, Kolkata) stream ciphers ASK 2011 21 / 55



isilogo

An Iterative Decoding Procedure

Generation of parity checks: find a number of linear relations that
a bit ai in the sequence a should satisfy.

Shifting, squaring and multiples of the connection polynomial.

Use k as an approximation of a and find the number of equations
involving ai that hold for ki .

If this number is less than a threshold, then complement ki .
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An Iterative Decoding Procedure

Generation of parity checks: find a number of linear relations that
a bit ai in the sequence a should satisfy.

Shifting, squaring and multiples of the connection polynomial.

Use k as an approximation of a and find the number of equations
involving ai that hold for ki .

If this number is less than a threshold, then complement ki .

Iterate the procedure until the sequence satisfies the LFSR
recurrence.
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An Iterative Decoding Procedure

Generation of parity checks: find a number of linear relations that
a bit ai in the sequence a should satisfy.

Shifting, squaring and multiples of the connection polynomial.

Use k as an approximation of a and find the number of equations
involving ai that hold for ki .

If this number is less than a threshold, then complement ki .

Iterate the procedure until the sequence satisfies the LFSR
recurrence.

Works well if the number of taps in the LFSR is small.
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Improvements to Correlation Attacks

Identify an embedded low-rate convolutional code in the LFSR
code; use Viterbi algorithm for decoding.
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Improvements to Correlation Attacks

Identify an embedded low-rate convolutional code in the LFSR
code; use Viterbi algorithm for decoding.
Turbo code techniques.

Identify “parallel” embedded convolutional code in the LFSR code.
The keystream sequence is used to construct received sequences
for the convolutional codes.
These are decoded using an iterative algorithm.
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Improvements to Correlation Attacks

Identify an embedded low-rate convolutional code in the LFSR
code; use Viterbi algorithm for decoding.
Turbo code techniques.

Identify “parallel” embedded convolutional code in the LFSR code.
The keystream sequence is used to construct received sequences
for the convolutional codes.
These are decoded using an iterative algorithm.

List decoding techniques.
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Improvements to Correlation Attacks

A different view: Reconstruction of linear polynomials.

Bit ai is a linear combination ai =

m1−1⊕

j=0

wi,jaj ; where wi,js can be

computed from τ(x).
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j=0

wi,jaj ; where wi,js can be

computed from τ(x).

Let w i = (wi,0, . . . ,wi,m1−1) and define A(x) =
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j=0
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The values a0, . . . , am1−1 define the polynomial and are unknown.
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Improvements to Correlation Attacks

A different view: Reconstruction of linear polynomials.

Bit ai is a linear combination ai =

m1−1⊕

j=0

wi,jaj ; where wi,js can be

computed from τ(x).

Let w i = (wi,0, . . . ,wi,m1−1) and define A(x) =
m1−1⊕

j=0

xjaj .

The values a0, . . . , am1−1 define the polynomial and are unknown.

Then A(x) is a linear polynomial and ai = A(w i) for i ≥ m1.

ki is a noisy output of the unknown polynomial A(x) evaluated at
the known point w i .

Use of techniques from computational learning theory due to
Goldreich, Rubinfeld and Sudan to reconstruct f from the kis.
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Improvements to Correlation Attacks

A different view: Reconstruction of linear polynomials.

Bit ai is a linear combination ai =

m1−1⊕

j=0

wi,jaj ; where wi,js can be

computed from τ(x).

Let w i = (wi,0, . . . ,wi,m1−1) and define A(x) =
m1−1⊕

j=0

xjaj .

The values a0, . . . , am1−1 define the polynomial and are unknown.

Then A(x) is a linear polynomial and ai = A(w i) for i ≥ m1.

ki is a noisy output of the unknown polynomial A(x) evaluated at
the known point w i .

Use of techniques from computational learning theory due to
Goldreich, Rubinfeld and Sudan to reconstruct f from the kis.

The application is not straightforward, there are a few tricks
involved.
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Other Kinds of Correlations

Correlations between linear functions of several output bits and
linear functions of a subset of LFSR bits.

For strong enough correlations, a number of stochastic equations
may be derived.
If the known keystream sequence is long enough, then the
equations can be solved.
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Other Kinds of Correlations

Correlations between linear functions of several output bits and
linear functions of a subset of LFSR bits.

For strong enough correlations, a number of stochastic equations
may be derived.
If the known keystream sequence is long enough, then the
equations can be solved.

Keystream (or simply key) correlation: leads to distinguishing
attacks.

Bias in a particular keystream bit or a linear combination of
keystream bits, eg. Pr[k16 = 0] 6= 1/2.
Attack types: multiple keys; or, single key but, multiple IVs.
Bias in a subsequence of key bits,
eg. Pr[ki = ki+3] 6= 1/2 for all i ≥ 0.
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Some References: Correlation Attacks
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J. Dj. Golić: Correlation Properties of a General Binary Combiner
with Memory. J. Cryptology 9(2): (1996).

Palash Sarkar (ISI, Kolkata) stream ciphers ASK 2011 25 / 55



isilogo

Some References: Correlation Attacks

T. Siegenthaler: Decrypting a Class of Stream Ciphers Using
Ciphertext Only. IEEE Trans. Computers 34(1): (1985).
T. Siegenthaler: Correlation-immunity of nonlinear combining
functions for cryptographic applications. IEEE Trans. on Inf. Th.
30(5): (1984).
W. Meier, O. Staffelbach: Fast Correlation Attacks on Certain
Stream Ciphers. J. Cryptology 1(3): (1989).
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Algebraic Attacks.
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Algebraic Attacks: Basic Idea

Let L be the update functions of all the LFSRs.

Each LFSR is updated using a linear function and let L be the
applications of these linear functions to the respective states.

L is a linear function on the whole state.
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Algebraic Attacks: Basic Idea

Let L be the update functions of all the LFSRs.

Each LFSR is updated using a linear function and let L be the
applications of these linear functions to the respective states.

L is a linear function on the whole state.

Let (s0, . . . , sn−1) be the n-bit state at time i .
Keystream:

f (s0, . . . , sn−1) = ki

f (L(s0, . . . , sn−1)) = ki+1

f (L2(s0, . . . , sn−1)) = ki+2

· · · · · · · · ·

Each of the expressions on the left have degree d ∆
= deg(f ).
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Solving Equations

There are
∑d

j=1

(n
j

)
monomials of degree at most d .

Replace each monomial by a new variable.
Solve the resulting system of linear equations.

Sufficient number of keystream bits required to get an over-defined
system of equations.

From the solution to the linear system, obtain the solution to the
original system.
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Solving Equations

There are
∑d

j=1

(n
j

)
monomials of degree at most d .

Replace each monomial by a new variable.
Solve the resulting system of linear equations.

Sufficient number of keystream bits required to get an over-defined
system of equations.

From the solution to the linear system, obtain the solution to the
original system.

Use Gröbner basis based technique to directly solve the system of
multivariate polynomial equations over IF2.

Becomes progressively inefficient as d increases.

The linearisation technique also essentially computes the Gröbner
basis.
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Controlling the Degree

Suppose g is a function such that deg(f × g) < deg(g).
Example: f (x1, x2, x3) = x1 ⊕ x2 ⊕ x1x2x3 and g(x1, x2, x3) = x2x3.
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Suppose g is a function such that deg(f × g) < deg(g).
Example: f (x1, x2, x3) = x1 ⊕ x2 ⊕ x1x2x3 and g(x1, x2, x3) = x2x3.

f (s0, . . . , sn−1)g(s0, . . . , sn−1) = ki · g(s0, . . . , sn−1)

f (L(s0, . . . , sn−1))g(L(s0, . . . , sn−1)) = ki+1 · g(L(s0, . . . , sn−1))

f (L2(s0, . . . , sn−1))g(L
2(s0, . . . , sn−1)) = ki+2 · g(L

2(s0, . . . , sn−1))

· · · · · · · · ·
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Controlling the Degree

Suppose g is a function such that deg(f × g) < deg(g).
Example: f (x1, x2, x3) = x1 ⊕ x2 ⊕ x1x2x3 and g(x1, x2, x3) = x2x3.

f (s0, . . . , sn−1)g(s0, . . . , sn−1) = ki · g(s0, . . . , sn−1)

f (L(s0, . . . , sn−1))g(L(s0, . . . , sn−1)) = ki+1 · g(L(s0, . . . , sn−1))

f (L2(s0, . . . , sn−1))g(L
2(s0, . . . , sn−1)) = ki+2 · g(L

2(s0, . . . , sn−1))

· · · · · · · · ·

If deg(g) < d or kj = 0 (which happens roughly half of the times), then
we get a system of equations whose degrees are less than d .

Finding a “good” g is important.
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A General Formulation

Let s = (s0, . . . , sn−1). Find a Boolean function f̂ such that for some
δ ≥ 0

f̂ (Lt(s), . . . , Lt+δ(s), kt , . . . , kt+δ) = 0.

For δ = 0, take f̂ = f .
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A General Formulation

Let s = (s0, . . . , sn−1). Find a Boolean function f̂ such that for some
δ ≥ 0

f̂ (Lt(s), . . . , Lt+δ(s), kt , . . . , kt+δ) = 0.

For δ = 0, take f̂ = f .

Suppose f̂ can be written as

f̂ (Lt(s), . . . , Lt+δ(s), kt , . . . , kt+δ)

= h(Lt(s), . . . , Lt+δ(s))⊕ g(Lt(s), . . . , Lt+δ(s), kt , . . . , kt+δ)

= ht(s)⊕ gt(s, kt , . . . , kt+δ)

where the degree e of s in g is less than the degree d of s in f̂ .
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A General Formulation (contd.)

Assume that the attacker can find constants c0, . . . , cT−1 such that

T−1⊕

j=0

cjht+j(s) = 0.
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A General Formulation (contd.)

Assume that the attacker can find constants c0, . . . , cT−1 such that

T−1⊕

j=0

cjht+j(s) = 0.

Using

0 = f̂ (Lt(s), . . . , Lt+δ(s), kt , . . . , kt+δ) = ht(s)⊕ gt(s, kt , . . . , kt+δ)

we can write
T−1⊕

j=0

cjgt+j(s, kt , . . . , kt+δ) = 0.
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A General Formulation (contd.)

Assume that the attacker can find constants c0, . . . , cT−1 such that

T−1⊕

j=0

cjht+j(s) = 0.

Using

0 = f̂ (Lt(s), . . . , Lt+δ(s), kt , . . . , kt+δ) = ht(s)⊕ gt(s, kt , . . . , kt+δ)

we can write
T−1⊕

j=0

cjgt+j(s, kt , . . . , kt+δ) = 0.

This is an equation of lower degree e in the unknown s.
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A General Formulation (contd.)

Finding the constants c0, . . . , cT−1.

Choose a “reasonable” value s∗ of s.

Compute k̂t = ht(s∗) for t = 0, . . . , 2T − 1.
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Finding the constants c0, . . . , cT−1.

Choose a “reasonable” value s∗ of s.

Compute k̂t = ht(s∗) for t = 0, . . . , 2T − 1.

Use Berlekamp-Massey algorithm to find c0, . . . , cT−1 such that

0 =
T−1⊕

j=0

cj k̂t+j
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Compute k̂t = ht(s∗) for t = 0, . . . , 2T − 1.

Use Berlekamp-Massey algorithm to find c0, . . . , cT−1 such that

0 =
T−1⊕

j=0

cj k̂t+j
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j=0
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A General Formulation (contd.)

Finding the constants c0, . . . , cT−1.

Choose a “reasonable” value s∗ of s.

Compute k̂t = ht(s∗) for t = 0, . . . , 2T − 1.

Use Berlekamp-Massey algorithm to find c0, . . . , cT−1 such that

0 =
T−1⊕

j=0

cj k̂t+j

=
T−1⊕

j=0

cjht+j(s∗).

Requires O(T 2) time.
The proof that these c0, . . . , cT−1 work for all s is non-trivial.
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Some References: Algebraic Attacks

N. Courtois, W. Meier: Algebraic Attacks on Stream Ciphers with
Linear Feedback. EUROCRYPT 2003.
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Differential Attacks.
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Trivium: A Counter-Point to Correlation and Algebraic
Attacks

State: (s(i)
1 , . . . , s(i)

288): (Super-script i is omitted for simplicity.)

State update function is non-linear.

Output function is linear.
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Trivium: A Counter-Point to Correlation and Algebraic
Attacks

State: (s(i)
1 , . . . , s(i)

288): (Super-script i is omitted for simplicity.)

State update function is non-linear.

Output function is linear.

t1 = s66 ⊕ s93; t2 = s162 ⊕ s177; t3 = s243 ⊕ s288;
ki = t1 ⊕ t2 ⊕ t3;
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State: (s(i)
1 , . . . , s(i)

288): (Super-script i is omitted for simplicity.)

State update function is non-linear.

Output function is linear.

t1 = s66 ⊕ s93; t2 = s162 ⊕ s177; t3 = s243 ⊕ s288;
ki = t1 ⊕ t2 ⊕ t3;

t1 = t1 ⊕ s91 · s92 ⊕ s171;
t2 = t2 ⊕ s175 · s176 ⊕ s264;
t3 = t3 ⊕ s286 · s287 ⊕ s69;
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Trivium: A Counter-Point to Correlation and Algebraic
Attacks

State: (s(i)
1 , . . . , s(i)

288): (Super-script i is omitted for simplicity.)

State update function is non-linear.

Output function is linear.

t1 = s66 ⊕ s93; t2 = s162 ⊕ s177; t3 = s243 ⊕ s288;
ki = t1 ⊕ t2 ⊕ t3;

t1 = t1 ⊕ s91 · s92 ⊕ s171;
t2 = t2 ⊕ s175 · s176 ⊕ s264;
t3 = t3 ⊕ s286 · s287 ⊕ s69;

(s1, s2, . . . , s93)← (t3, s1, . . . , s92);
(s94, s95 . . . , s177)← (t1, s94, . . . , s176);
(s178, s179, . . . , s288)← (t2, s178, . . . , s287);
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Derivatives

Given an n-variable Boolean function f (x) and a ∈ {0, 1}n, the
derivative of f at a is defined to be a Boolean function

∆af (x) ∆
= f (x ⊕ a)⊕ f (x).
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Derivatives

Given an n-variable Boolean function f (x) and a ∈ {0, 1}n, the
derivative of f at a is defined to be a Boolean function

∆af (x) ∆
= f (x ⊕ a)⊕ f (x).

Extension:

∆
(2)
a1,a2

f (x) = f (x ⊕ a1 ⊕ a2)⊕ f (x ⊕ a1)⊕ f (x ⊕ a2)⊕ f (x).
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Derivatives

Given an n-variable Boolean function f (x) and a ∈ {0, 1}n, the
derivative of f at a is defined to be a Boolean function

∆af (x) ∆
= f (x ⊕ a)⊕ f (x).

Extension:

∆
(2)
a1,a2

f (x) = f (x ⊕ a1 ⊕ a2)⊕ f (x ⊕ a1)⊕ f (x ⊕ a2)⊕ f (x).

Other direction: f (x ⊕ a1 ⊕ a2) = ∆
(2)
a1,a2

f (x)⊕∆a1 f (x)⊕∆a2 f (x)⊕ f (x).
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Derivatives

Given an n-variable Boolean function f (x) and a ∈ {0, 1}n, the
derivative of f at a is defined to be a Boolean function

∆af (x) ∆
= f (x ⊕ a)⊕ f (x).

Extension:

∆
(2)
a1,a2

f (x) = f (x ⊕ a1 ⊕ a2)⊕ f (x ⊕ a1)⊕ f (x ⊕ a2)⊕ f (x).

Other direction: f (x ⊕ a1 ⊕ a2) = ∆
(2)
a1,a2

f (x)⊕∆a1 f (x)⊕∆a2 f (x)⊕ f (x).

f (x ⊕ a1 ⊕ · · · ⊕ an) =
n⊕

i=0

⊕

1≤j1<···<ji≤n

∆
(i)
aj1

,...,aji
f (x).
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Derivatives (contd.)

Properties.

deg(∆af ) < deg(f ).

∆
(2)
a1,a2

f (x) = ∆
(2)
a2,a1

f (x).

∆a(f ⊕ g) = ∆af ⊕∆ag.

∆a(f (x)g(x)) = f (x ⊕ a)∆ag(x)⊕ (∆af (x))g(x).

If a ∈ {0, 1}n is such that supp(a) ⊂ {1, . . . , i}, then

∆a(x1 · · · xi f (xi+1, . . . , xn)) = f (xi+1, . . . , xn)∆a(x1 · · · xi).
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Derivatives (contd.)

Properties.

deg(∆af ) < deg(f ).

∆
(2)
a1,a2

f (x) = ∆
(2)
a2,a1

f (x).

∆a(f ⊕ g) = ∆af ⊕∆ag.

∆a(f (x)g(x)) = f (x ⊕ a)∆ag(x)⊕ (∆af (x))g(x).

If a ∈ {0, 1}n is such that supp(a) ⊂ {1, . . . , i}, then

∆a(x1 · · · xi f (xi+1, . . . , xn)) = f (xi+1, . . . , xn)∆a(x1 · · · xi).

Nothing special about x1 · · · xi ; easy modification for the monomial
xj1 · · · xji .
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Derivatives (contd.)

Let C[a1, . . . , ai ] be the set of all linear combinations of a1, . . . , ai .
Then

∆
(i)
a1,...,ai

f (x) =
⊕

c∈C[a1,...,ai ]

f (x ⊕ c).
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Derivatives (contd.)

Let C[a1, . . . , ai ] be the set of all linear combinations of a1, . . . , ai .
Then

∆
(i)
a1,...,ai

f (x) =
⊕

c∈C[a1,...,ai ]

f (x ⊕ c).

If ai is linearly dependent on a1, . . . , ai−1, then ∆
(i)
a1,...,ai

f (x) = 0.
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Using Derivatives

Suppose f (x1, . . . , xn) can be written as

f (x1, . . . , xn) = x1 · · · xig(xi+1, . . . , xn)⊕ h(x1, . . . , xn)

where x1 · · · xi does not divide any monomial of h(x1, . . . , xn).
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Suppose f (x1, . . . , xn) can be written as

f (x1, . . . , xn) = x1 · · · xig(xi+1, . . . , xn)⊕ h(x1, . . . , xn)

where x1 · · · xi does not divide any monomial of h(x1, . . . , xn).

Let a1, . . . , ai be linearly independent vectors such that
supp(a1), . . . , supp(ai) ⊂ {1, . . . , i}.
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f (x1, . . . , xn) = x1 · · · xig(xi+1, . . . , xn)⊕ h(x1, . . . , xn)

where x1 · · · xi does not divide any monomial of h(x1, . . . , xn).

Let a1, . . . , ai be linearly independent vectors such that
supp(a1), . . . , supp(ai) ⊂ {1, . . . , i}. Then

g(xi+1, . . . , xn) = ∆a1,...,ai f (x1, . . . , xn)
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g(xi+1, . . . , xn) = ∆a1,...,ai f (x1, . . . , xn)

=
⊕

c∈C[a1,...,ai ]

f (x ⊕ c).

Nothing special about x1 · · · xi ; easy modification for xj1 · · · xji .
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Using Derivatives (contd.)

Maxterm: xj1 · · · xji is a maxterm if the corresponding g is of degree 1.
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Using Derivatives (contd.)

Maxterm: xj1 · · · xji is a maxterm if the corresponding g is of degree 1.
Observation: If f is a random polynomial of degree d , then with high
probability every degree (d − 1) monomial is a maxterm.
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Using Derivatives (contd.)

Maxterm: xj1 · · · xji is a maxterm if the corresponding g is of degree 1.
Observation: If f is a random polynomial of degree d , then with high
probability every degree (d − 1) monomial is a maxterm.

Suppose x1 · · · xi is a maxterm.

f (x) = x1 · · · xig(xi+1, . . . , xn) + h(x).
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Using Derivatives (contd.)

Maxterm: xj1 · · · xji is a maxterm if the corresponding g is of degree 1.
Observation: If f is a random polynomial of degree d , then with high
probability every degree (d − 1) monomial is a maxterm.

Suppose x1 · · · xi is a maxterm.

f (x) = x1 · · · xig(xi+1, . . . , xn) + h(x).

Constant term of g is obtained by setting xi+1, . . . , xn to 0 and
XORing together the values of f for all possible choices of
x1, . . . , xi .
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Using Derivatives (contd.)

Maxterm: xj1 · · · xji is a maxterm if the corresponding g is of degree 1.
Observation: If f is a random polynomial of degree d , then with high
probability every degree (d − 1) monomial is a maxterm.

Suppose x1 · · · xi is a maxterm.

f (x) = x1 · · · xig(xi+1, . . . , xn) + h(x).

Constant term of g is obtained by setting xi+1, . . . , xn to 0 and
XORing together the values of f for all possible choices of
x1, . . . , xi .

The coefficient of xj in g (j > i) is obtained by setting xj to 1, all
other xi+1, . . . , xn to 0 and XORing together the values of f for all
possible choices of x1, . . . , xi .
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Using Derivatives (contd.)

Maxterm: xj1 · · · xji is a maxterm if the corresponding g is of degree 1.
Observation: If f is a random polynomial of degree d , then with high
probability every degree (d − 1) monomial is a maxterm.

Suppose x1 · · · xi is a maxterm.

f (x) = x1 · · · xig(xi+1, . . . , xn) + h(x).

Constant term of g is obtained by setting xi+1, . . . , xn to 0 and
XORing together the values of f for all possible choices of
x1, . . . , xi .

The coefficient of xj in g (j > i) is obtained by setting xj to 1, all
other xi+1, . . . , xn to 0 and XORing together the values of f for all
possible choices of x1, . . . , xi .

Nothing special about x1 · · · xi ; easy modification for xj1 · · · xji .
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Attacking Stream Ciphers With IV: Pre-Processing

Consider a stream cipher with secret key K = (κ1, . . . , κn) and
IV= (v1, . . . , vm).
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Attacking Stream Ciphers With IV: Pre-Processing

Consider a stream cipher with secret key K = (κ1, . . . , κn) and
IV= (v1, . . . , vm). Any keystream bit k can be written as

kt = ft(K , IV) = f (κ1, . . . , κn, v1, . . . , vm).
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Consider a stream cipher with secret key K = (κ1, . . . , κn) and
IV= (v1, . . . , vm). Any keystream bit k can be written as

kt = ft(K , IV) = f (κ1, . . . , κn, v1, . . . , vm).

Suppose f behaves like a random polynomial of degree d . Then with
high probability every degree (d − 1) monomial consisting only of IV
bits is a maxterm.
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Attacking Stream Ciphers With IV: Pre-Processing

Consider a stream cipher with secret key K = (κ1, . . . , κn) and
IV= (v1, . . . , vm). Any keystream bit k can be written as

kt = ft(K , IV) = f (κ1, . . . , κn, v1, . . . , vm).

Suppose f behaves like a random polynomial of degree d . Then with
high probability every degree (d − 1) monomial consisting only of IV
bits is a maxterm.

Choose n such maxterms. In a pre-processing stage, the
corresponding linear functions g1, . . . , gn are obtained ensuring that
each gj depends on at least one key bit.
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Attacking Stream Ciphers With IV: Pre-Processing

Consider a stream cipher with secret key K = (κ1, . . . , κn) and
IV= (v1, . . . , vm). Any keystream bit k can be written as

kt = ft(K , IV) = f (κ1, . . . , κn, v1, . . . , vm).

Suppose f behaves like a random polynomial of degree d . Then with
high probability every degree (d − 1) monomial consisting only of IV
bits is a maxterm.

Choose n such maxterms. In a pre-processing stage, the
corresponding linear functions g1, . . . , gn are obtained ensuring that
each gj depends on at least one key bit.

Let A be an n × n matrix representing these linear functions. It can be
ensured with high probability that A is invertible.
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Attacking Stream Ciphers With IV: On-line

Suppose v1 · · · vd−1 be a maxterm and g(K , vd , . . . , vm) be the
corresponding linear function.
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Attacking Stream Ciphers With IV: On-line

Suppose v1 · · · vd−1 be a maxterm and g(K , vd , . . . , vm) be the
corresponding linear function. Let a1, . . . , ad−1 ∈ {0, 1}n+m be l.i. with
supp(aj) among the indices of v1, . . . , vd−1; and let b j be the restriction
of aj to the last m bits.
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Suppose v1 · · · vd−1 be a maxterm and g(K , vd , . . . , vm) be the
corresponding linear function. Let a1, . . . , ad−1 ∈ {0, 1}n+m be l.i. with
supp(aj) among the indices of v1, . . . , vd−1; and let b j be the restriction
of aj to the last m bits. Then

g(K , vd , . . . , vm) =
⊕

c∈C[a1,...,ad−1]

f ((K , IV)⊕ c)

=
⊕

d∈C[b1,...,bd−1]

f (K , IV⊕ b).
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Attacking Stream Ciphers With IV: On-line

Suppose v1 · · · vd−1 be a maxterm and g(K , vd , . . . , vm) be the
corresponding linear function. Let a1, . . . , ad−1 ∈ {0, 1}n+m be l.i. with
supp(aj) among the indices of v1, . . . , vd−1; and let b j be the restriction
of aj to the last m bits. Then

g(K , vd , . . . , vm) =
⊕

c∈C[a1,...,ad−1]

f ((K , IV)⊕ c)

=
⊕

d∈C[b1,...,bd−1]

f (K , IV⊕ b).

Obtaining the outputs of f on 2d−1 chosen IVs gives the value of
g(K , 0, . . . , 0) for the unknown K .
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Attacking Stream Ciphers With IV: On-line

Suppose v1 · · · vd−1 be a maxterm and g(K , vd , . . . , vm) be the
corresponding linear function. Let a1, . . . , ad−1 ∈ {0, 1}n+m be l.i. with
supp(aj) among the indices of v1, . . . , vd−1; and let b j be the restriction
of aj to the last m bits. Then

g(K , vd , . . . , vm) =
⊕

c∈C[a1,...,ad−1]

f ((K , IV)⊕ c)

=
⊕

d∈C[b1,...,bd−1]

f (K , IV⊕ b).

Obtaining the outputs of f on 2d−1 chosen IVs gives the value of
g(K , 0, . . . , 0) for the unknown K .
Obtain the values of g1(K , 0, . . . , 0), . . . , gn(K , 0, . . . , 0). Use the
previously computed A−1 to solve the system of linear equations and
obtain the secret key K .
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Feasibility and Computational Complexity

Exponential in d in both the pre-processing and the online
phases.

Works well when d is small.
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Feasibility and Computational Complexity

Exponential in d in both the pre-processing and the online
phases.

Works well when d is small.

Polynomial in n in both the pre-processing and the online phases;
pre-processing: O(n3) to compute A−1.
on-line: O(n2) to solve using A−1.
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Feasibility and Computational Complexity

Exponential in d in both the pre-processing and the online
phases.

Works well when d is small.

Polynomial in n in both the pre-processing and the online phases;
pre-processing: O(n3) to compute A−1.
on-line: O(n2) to solve using A−1.

Variants of the attack have been proposed.
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Time/Memory Trade-Off Attacks
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Inverting a One-Way Function

Let S be a finite set with #S = N and

f : S → S

be a one-way function.
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Inverting a One-Way Function

Let S be a finite set with #S = N and

f : S → S

be a one-way function.

Inversion problem: Given target y , find x such that f (x) = y .
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Inverting a One-Way Function

Let S be a finite set with #S = N and

f : S → S

be a one-way function.

Inversion problem: Given target y , find x such that f (x) = y .

Memory N; time constant.
Pre-compute a table of all N pairs (x , y) such that f (x) = y .
Store the table sorted on the second column.
Given a target y0, look up the table to find a pre-image.
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Inverting a One-Way Function

Let S be a finite set with #S = N and

f : S → S

be a one-way function.

Inversion problem: Given target y , find x such that f (x) = y .

Memory N; time constant.
Pre-compute a table of all N pairs (x , y) such that f (x) = y .
Store the table sorted on the second column.
Given a target y0, look up the table to find a pre-image.

Memory constant; time N.
Given target y0, compute f (x) for each x ∈ S until y0 is obtained.
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Time/Memory Trade-Off

f : S → S.

Basic idea.

Perform a one-time computation of N invocations of f .

Store a table of size M.

Given a particular target y0, in time T obtain a pre-image.
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f : S → S.

Basic idea.

Perform a one-time computation of N invocations of f .

Store a table of size M.

Given a particular target y0, in time T obtain a pre-image.

Trade-Off Curve:
TM2 = N2.
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Time/Memory Trade-Off

f : S → S.

Basic idea.

Perform a one-time computation of N invocations of f .

Store a table of size M.

Given a particular target y0, in time T obtain a pre-image.

Trade-Off Curve:
TM2 = N2.

A trade-off point: T = M = N2/3.
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Time/Memory Trade-Off

f : S → S.

Basic idea.

Perform a one-time computation of N invocations of f .

Store a table of size M.

Given a particular target y0, in time T obtain a pre-image.

Trade-Off Curve:
TM2 = N2.

A trade-off point: T = M = N2/3.
Pre-computation time is N which would make the attack inadmissible.
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Multiple Targets/Data

f : S → S.

Given: y1, . . . , yD.
Goal: Invert any one of these points, i.e., obtain an x such that
f (x) = yi for some i .
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Multiple Targets/Data

f : S → S.

Given: y1, . . . , yD.
Goal: Invert any one of these points, i.e., obtain an x such that
f (x) = yi for some i .
Modified Trade-Off Curve:

TM2D2 = N2; 1 ≤ D2 ≤ T ;P = N/D.
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Multiple Targets/Data

f : S → S.

Given: y1, . . . , yD.
Goal: Invert any one of these points, i.e., obtain an x such that
f (x) = yi for some i .
Modified Trade-Off Curve:

TM2D2 = N2; 1 ≤ D2 ≤ T ;P = N/D.

Pre-computation time: P = N/D.

Memory M and online time satisfy the equation TM2 = (N/D)2.

A trade-off point: D = N1/4; P = N3/4; T = M = N1/2.

All the parameters D,P,T ,M are less than N which makes the
attack admissible.
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TMTO on Stream Ciphers

Let g(S) denote the keystream obtained by starting from state S.
Assume that the output function produces a single bit.
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TMTO on Stream Ciphers

Let g(S) denote the keystream obtained by starting from state S.
Assume that the output function produces a single bit.
State-to-keystream map:

f : s-bit state S 7→ s-bit prefix of g(S).
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TMTO on Stream Ciphers

Let g(S) denote the keystream obtained by starting from state S.
Assume that the output function produces a single bit.
State-to-keystream map:

f : s-bit state S 7→ s-bit prefix of g(S).

Data: Given a keystream of length D + s − 1, shift a window of size s
to construct D s-bit strings y1, . . . , yD.
Inverting f on any of these targets gives an internal state.
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TMTO on Stream Ciphers

Let g(S) denote the keystream obtained by starting from state S.
Assume that the output function produces a single bit.
State-to-keystream map:

f : s-bit state S 7→ s-bit prefix of g(S).

Data: Given a keystream of length D + s − 1, shift a window of size s
to construct D s-bit strings y1, . . . , yD.
Inverting f on any of these targets gives an internal state.

Search space: N = 2s.
Trade-off point: D = 2s/4; P = 23s/4; T = M = 2s/2.
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TMTO on Stream Ciphers

Let g(S) denote the keystream obtained by starting from state S.
Assume that the output function produces a single bit.
State-to-keystream map:

f : s-bit state S 7→ s-bit prefix of g(S).

Data: Given a keystream of length D + s − 1, shift a window of size s
to construct D s-bit strings y1, . . . , yD.
Inverting f on any of these targets gives an internal state.

Search space: N = 2s.
Trade-off point: D = 2s/4; P = 23s/4; T = M = 2s/2.

Suppose K is k bits long.
If s < 2k , then T = 2s/2 < 2k .
Ignoring pre-computation time, this is an attack.
Counter-measure: state size must be double that of secret key
size.
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TMTO on Stream Ciphers (contd.)

Consider a stream cipher with IV.
Suppose IVs are v bits long.
A one-way function:

f : (K , IV) 7→ (k + v)-bit prefix of the keystream.
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TMTO on Stream Ciphers (contd.)

Consider a stream cipher with IV.
Suppose IVs are v bits long.
A one-way function:

f : (K , IV) 7→ (k + v)-bit prefix of the keystream.

Search space: N = 2k+v .

Trade-off point: D = 2(k+v)/4; P = 23(k+v)/4; T = M = 2(k+v)/2.
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TMTO on Stream Ciphers (contd.)

Consider a stream cipher with IV.
Suppose IVs are v bits long.
A one-way function:

f : (K , IV) 7→ (k + v)-bit prefix of the keystream.

Search space: N = 2k+v .

Trade-off point: D = 2(k+v)/4; P = 23(k+v)/4; T = M = 2(k+v)/2.

Ignoring pre-computation time, if v < k , then T < 2k and we have
a valid attack.

Counter-measure: IV should be at least as large as the key.
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TMTO on Stream Ciphers (contd.)

Consider a stream cipher with IV.
Suppose IVs are v bits long.
A one-way function:

f : (K , IV) 7→ (k + v)-bit prefix of the keystream.

Search space: N = 2k+v .

Trade-off point: D = 2(k+v)/4; P = 23(k+v)/4; T = M = 2(k+v)/2.

Ignoring pre-computation time, if v < k , then T < 2k and we have
a valid attack.

Counter-measure: IV should be at least as large as the key.

If v < k/3, then P < 2k and we have a valid attack even
considering pre-computation.
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Multi-User Setting

A secure stream cipher will become popular and will be widely
deployed.

Users will choose random secret keys.

Encryption will be done using the secret key and an IV.

Restriction on the IV: should not be repeated for the same key.
To obtain higher security, a user may choose a secret key for each
session.

Each message in a session would be encrypted using a distinct IV.
Same restriction: do not repeat IV for the same key.

Palash Sarkar (ISI, Kolkata) stream ciphers ASK 2011 51 / 55



isilogo

Multi-User (In)security

Set IV to a fixed value v and define the map

f : K → first k bits of SCK (v).
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Multi-User (In)security

Set IV to a fixed value v and define the map

f : K → first k bits of SCK (v).

Suppose k = 80: Get 220 users to encrypt messages using the
same IV and obtain the first 80 bits of the keystream.

No violation of IV usage; same IV used, but, for different keys.
This gives 220 targets.
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Multi-User (In)security

Set IV to a fixed value v and define the map

f : K → first k bits of SCK (v).

Suppose k = 80: Get 220 users to encrypt messages using the
same IV and obtain the first 80 bits of the keystream.

No violation of IV usage; same IV used, but, for different keys.
This gives 220 targets.

Inverting f on any one of these targets will give the corresponding
secret key.

Trade-off point: P = 260; D = 220; T = M = 240.
A very realistic attack: 80-bit security is inadequate!
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Multi-User (In)security

Set IV to a fixed value v and define the map

f : K → first k bits of SCK (v).

Suppose k = 80: Get 220 users to encrypt messages using the
same IV and obtain the first 80 bits of the keystream.

No violation of IV usage; same IV used, but, for different keys.
This gives 220 targets.

Inverting f on any one of these targets will give the corresponding
secret key.

Trade-off point: P = 260; D = 220; T = M = 240.
A very realistic attack: 80-bit security is inadequate!

No counter-measures; using random IVs may actually make it
easier for the attacker to mount the attack.
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Multi-User (In)security

Set IV to a fixed value v and define the map

f : K → first k bits of SCK (v).

Suppose k = 80: Get 220 users to encrypt messages using the
same IV and obtain the first 80 bits of the keystream.

No violation of IV usage; same IV used, but, for different keys.
This gives 220 targets.

Inverting f on any one of these targets will give the corresponding
secret key.

Trade-off point: P = 260; D = 220; T = M = 240.
A very realistic attack: 80-bit security is inadequate!

No counter-measures; using random IVs may actually make it
easier for the attacker to mount the attack.

Works for all k ; but, the effect is less dramatic.
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Summary

A brief background on stream ciphers.
Additive and self-synchornizing stream ciphers.
Attack models and goals.
Block cipher modes of operations.
LFSR and non-linear combiner model.

Correlation Attacks.

Algebraic Attacks.

Chosen IV differential attacks.
(In)security in the Multi-User Setting.

TMTO attacks on stream ciphers.
Inadequacy of 80-bit security in the multi-user setting.

Palash Sarkar (ISI, Kolkata) stream ciphers ASK 2011 54 / 55



isilogo

Summary

A brief background on stream ciphers.
Additive and self-synchornizing stream ciphers.
Attack models and goals.
Block cipher modes of operations.
LFSR and non-linear combiner model.

Correlation Attacks.

Algebraic Attacks.

Chosen IV differential attacks.
(In)security in the Multi-User Setting.

TMTO attacks on stream ciphers.
Inadequacy of 80-bit security in the multi-user setting.

We have left out a lot of topics including some important ones.
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Thank you for your attention!
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