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Appendix E: Coherent States

Coherent states are special states of bosonic systems (including the quantum harmonic
oscillator, whose excitation quanta can be regarded as bosonic particles) whose dynamics are
highly similar to classical oscillator trajectories. They provide an important link between
quantum and classical harmonic oscillators.

E.1. DEFINITION

The Hamiltonian of a simple harmonic oscillator (with ℏ = m = ω0 = 1 for simplicity) is

Ĥ =
p̂2

2
+
x̂2

2
, (E.1)

where x̂ and p̂ are the position and momentum operators. The ladder operators are

â =
1√
2
(x̂+ ip̂) (E.2)

â† =
1√
2
(x̂− ip̂) . (E.3)

These obey the commutation relation [
â, â†

]
= 1. (E.4)

As a result, we can also regard these as the creation and annihilation operators for a bosonic
particle that has only one single-particle state.

The Hamiltonian for the harmonic oscillator, Eq. (E.1), can be written as

Ĥ = â†â+ 1/2. (E.5)

The annihilation operator â kills off the ground state |∅⟩:

â|∅⟩ = 0. (E.6)

Thus, |∅⟩ is analogous to the “vacuum state” for a bosonic particle.

Returning to the Hamiltonian (E.1), suppose we add a term proportional to x̂:

Ĥ ′ =
p̂2

2
+
x̂2

2
−
√
2α1x̂. (E.7)

The coefficient of −
√
2α1, where α1 ∈ R, is for later convenience. By completing the square,

we see that this additional term corresponds to a shift in the center of the potential, plus
an energy shift:

Ĥ ′ =
p̂2

2
+

1

2

(
x̂−

√
2α1

)2

− α2
1. (E.8)

Let |α1⟩ denote the ground state for the shifted harmonic oscillator.
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By analogy with how we solved the original harmonic oscillator problem, let us define a
new annihilation operator with displaced x:

â′ =
1√
2

(
x̂−

√
2α1 + ip̂

)
. (E.9)

This is related to the original annihilation operator by

â′ = â− α1. (E.10)

We can easily show that [â′, â′†] = 1, and that Ĥ ′ = â′†â′ + 1/2− α2
1. Hence,

â′ |α1⟩ = 0. (E.11)

But Eq. (E.10) implies that in terms of the original annihilation operator,

â |α1⟩ = α1 |α1⟩. (E.12)

In other words, |α1⟩ is an eigenstate of the original harmonic oscillator’s annihilation opera-
tor, with the displacement parameter α1 as the corresponding eigenvalue! For reasons that
will become clear later, we call |α1⟩ a coherent state of the original harmonic oscillator Ĥ.

E.2. EXPLICIT EXPRESSION FOR THE COHERENT STATE

Let us derive an explicit expression for the coherent state in terms of â and â†, the creation
and annihilation operators of the original harmonic oscillator. Consider the translation
operator

T̂ (∆x) = exp(−ip̂∆x). (E.13)
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Since |α1⟩ is the ground state of a displaced harmonic oscillator, it can be generated by
performing a displacement of the original oscillator’s ground state |∅⟩. The displacement is
∆x =

√
2α1:

|α1⟩ = T̂
(√

2α1

)
|∅⟩ (E.14)

= exp
[
α1

(
â† − â

)]
|∅⟩. (E.15)

In deriving the second line, we have used Eqs. (E.2)–(E.3) to express p̂ in terms of â and
â†. We can further simplify the result by using the Baker-Campbell-Hausdorff formula for
operator exponentials:

If [[Â, B̂], Â] = [[Â, B̂], B̂] = 0 ⇒ eÂ+B̂ = e−[Â,B̂]/2 eÂeB̂. (E.16)

The result is
|α1⟩ = e−α2

1/2 eα1â†|∅⟩. (E.17)

If we write the exponential in its series form,

|α1⟩ = e−α2
1/2

(
1 + α1â

† +
α2
1

2

(
â†
)2

+ · · ·
)
|∅⟩, (E.18)

then we see that from the point of view of the bosonic excitations of the original Hamiltonian
Ĥ, the state |α1 ⟩ has an indeterminate number of bosons. It is a superposition of the zero-
boson (vacuum) state, a one-boson state, a two-boson state, etc.

We can generalize the coherent state by performing a shift not just in space, but also in
momentum. Instead of Eq. (E.7), let us define

Ĥ ′ =
1

2

(
p̂−

√
2α2

)2

+
1

2

(
x̂−

√
2α1

)2

(E.19)

= Ĥ −
(
αâ† + α∗â

)
+ constant, (E.20)

where
α ≡ α1 + iα2 ∈ C. (E.21)

It can then be shown that the ground state of Ĥ ′, which we denote by |α⟩, satisfies

â |α⟩ = α |α⟩. (E.22)

(Note that â is not Hermitian, so its eigenvalue α need not be real.) In explicit terms,

|α⟩ = exp
[
αâ† − α∗â

]
|∅⟩ = e−|α|2/2eαâ

†|∅⟩. (E.23)

E.3. BASIC PROPERTIES

There is one coherent state |α⟩ for each complex number α ∈ C. They have the following
properties:

1. They are normalized:
⟨α|α⟩ = 1. (E.24)

This follows from the fact that they are ground states of displaced harmonic oscillators.
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2. They form a complete set, meaning that the identity operator can be resolved as

Î = C

∫
d2α|α⟩⟨α|, (E.25)

where C is some numerical constant and
∫
d2α denotes an integral over the complex

plane. However, the coherent states do not form an orthonormal set, as they are
over-complete: ⟨α|α′⟩ ≠ 0 for α ̸= α′.

3. The expected number of particles in a coherent state is

⟨α|â†â|α⟩ = |α|2. (E.26)

4. The probability distribution of the number of particles follows a Poisson distribution:

P (n) = |⟨n|α⟩|2 = e−|α|2 |α|2n

n!
. (E.27)

The mean and variance of this distribution are both |α|2.

5. The mean position and momentum are

⟨α|x̂|α⟩ =
√
2Re(α) (E.28)

⟨α|p̂|α⟩ =
√
2 Im(α). (E.29)

E.4. DYNAMICAL PROPERTIES

Take the harmonic oscillator Hamiltonian with zero-point energy omitted for convenience:

Ĥ = â†â. (E.30)

Suppose we initialize the system in a coherent state |α0⟩ for some α0 ∈ C. This is not an

energy eigenstate of Ĥ, so how will it subsequently evolve?

It turns out that the dynamical state has the form

|ψ(t)⟩ = |α(t)⟩, where α(0) = α0. (E.31)

In other words, the system is always in a coherent state, but the complex parameter α(t)
varies with time. To find α(t), plug the ansatz into the time-dependent Schrödinger equation:

i
d

dt
|α(t)⟩ = â†â|α(t)⟩ (E.32)

i
〈
α(t)

∣∣∣ d
dt

∣∣∣α(t)〉 = |α(t)|2. (E.33)

We can calculate the left-hand side using Eqs. (E.22), (E.23), and (E.24):

i
〈
α(t)

∣∣∣ d
dt

∣∣∣α(t)〉 = i ⟨α(t)| d
dt

[
e−|α|2/2eαâ

†
]
|∅⟩ (E.34)

= i ⟨α(t)|
(
−1

2

d

dt
(αα∗) +

dα

dt
â†
)
|α(t)⟩ (E.35)

= i

(
−1

2
α̇α∗ − 1

2
αα̇∗ + α̇α∗

)
. (E.36)
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Hence,
i

2
(α̇α∗ − αα̇∗) = |α|2. (E.37)

This looks more complicated than it actually is. Dividing both sides by αα∗ gives

1

2

(
iα̇

α
+

[
iα̇

α

]∗)
= Re

[
iα̇

α

]
= 1. (E.38)

This reduces to
α̇ =

[
− i+ γ(t)

]
α(t), γ ∈ R, (E.39)

which is the equation of motion for a complex harmonic oscillator with an arbitrary damping
or amplification factor γ. For γ = 0, the oscillator is energy-conserving and the solutions
are

α(t) = α0 e
−it. (E.40)

Referring back to Eqs. (E.28)–(E.29), this implies that the mean position and momentum
have the following time-dependence:

⟨x⟩ =
√
2|α0| cos [t− arg(α0)] (E.41)

⟨p⟩ = −
√
2|α0| sin [t− arg(α0)] . (E.42)

The dynamics of a coherent state therefore reproduces the motion of a classical harmonic
oscillator with m = ω0 = 1.
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