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Appendix D: Numerical Tensor Products

This appendix discusses how tensor products are handled in numerical linear algebra soft-
ware. We will focus on Python with the Numeric Python (numpy) module. The discussion
is also applicable, with minor modifications, to GNU Octave or Matlab. We assume the
reader is familiar with the basics of Python/Numpy, e.g. how vectors can be represented by
1D arrays, linear operators (matrices) can be represented by 2D arrays, etc.

Tensor products are implemented by the numpy.kron function, which performs an opera-
tion called a Kronecker product. The function takes two inputs, which can be 1D arrays,
2D arrays, or even higher-dimensional arrays (which we won’t discuss). It returns a new
array representing the tensor product of the inputs, whose dimensionality depends on that
of the inputs. The function can be used to compute products of vectors (|a⟩⊗ |b⟩), products
of operators (ÔA ⊗ ÔB), etc. It can even compute “mixed” products like |a⟩ ⊗ ÔB, which is
useful for calculating partial projections and partial traces.

In the next few sections, we will prove that the various tensor products of bras, kets, and
operators can be represented using the following Numpy expressions involving numpy.kron:

|a⟩ ⊗ |b⟩ ↔ kron(a, b) ⟨a| ⊗ ⟨b| ↔ kron(a.conj(), b.conj())

Â⊗ B̂ ↔ kron(A, B)

|a⟩ ⊗ B̂ ↔ kron(a, B.T).T ⟨a| ⊗ B̂ ↔ kron(a.conj(), B)

Â⊗ |b⟩ ↔ kron(A.T, b).T Â⊗ ⟨b| ↔ kron(A, b.conj())

D.1. PRODUCTS OF VECTORS

Suppose a and b are both 1D arrays, of length M and N respectively; let their compo-
nents be (a0, a1, . . . , aM−1) and (b0, b1, . . . , bN−1). Following Numpy conventions, we do not
explicitly distinguish between “row vectors” and “column vectors”, and component indices
start from 0. The Kronecker product between a and b generates the following 1D array:

kron(a, b) =
(
a0b0, . . . , a0bN−1, a1b0, . . . , a1bN−1, . . . , aM−1bN−1

)
. (D.1)

We can think of this as taking each component of a, and multiplying it by the entire b array :

kron(a, b) =
(
a0b, a1b, . . . , aM−1b

)
. (D.2)

As we shall see, this description of the Kronecker product extends to higher-dimensional
arrays as well. In the present case, a and b are both 1D, and the result is a 1D array of MN
components, which can be described compactly in index notation by[

kron(a, b)
]
µ
= am bn where µ = mN + n. (D.3)
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The index µ is defined so that as we sweep through m = 0, . . . ,M − 1 and n = 0, . . . , N − 1,
µ runs through the values 0, 1, . . . ,MN − 1 without duplication. Note, by the way, that
the order of inputs into kron is important: kron(a, b) is not the same as kron(b, a)! The
asymmetry between a and b is apparent in the definitions (D.1) and (D.2).

In terms of abstract linear algebra (as used in quantum theory), let HA be an M -
dimensional space with basis {|m⟩}, and HB be an N -dimensional space with basis {|n⟩}.
Any two vectors |a⟩ ∈ HA and |b⟩ ∈ HB can be written as

|a⟩ =
M−1∑
m=0

am|m⟩, |b⟩ =
N−1∑
n=0

bn|n⟩. (D.4)

A natural basis for the product space HA ⊗ HB is

{
|µ⟩ ≡ |m⟩|n⟩

}
where


µ = mN + n

m = 0, 1, . . . ,M − 1

n = 0, 1, . . . , N − 1.

(D.5)

Using Eq. (D.3), we can show that

|a⟩ ⊗ |b⟩ =
∑
mn

ambn|m⟩|n⟩ =
MN−1∑
µ=0

[
kron(a, b)

]
µ
|µ⟩. (D.6)

Therefore, we need only remember that the tensor product of two kets is represented by

|a⟩ ⊗ |b⟩ ↔ kron(a, b). (D.7)

Likewise, for bras,
⟨a| ⊗ ⟨b| ↔ kron(a∗, b∗). (D.8)

D.2. PRODUCTS OF MATRICES

Let A and B be 2D arrays of size M ×M and N ×N respectively:

A =

 A00 · · · A0,M−1
...

. . .
...

AM−1,0 · · · AM−1,M−1

 , B =

 B00 · · · B0,N−1
...

. . .
...

BN−1,0 · · · BN−1,N−1

 . (D.9)

Then the Kronecker product of A and B is an MN ×MN array of the form

kron(A,B) =

 A00B · · · A0,M−1B
...

. . .
...

AM−1,0B · · · AM−1,M−1B

 . (D.10)

As before, this can be interpreted as taking each component of A, and multiplying it by B.
The result can be written using index notation as[

kron(A,B)
]
µµ′ = Amm′Bnn′ where µ = mN + n, µ′ = m′N + n′. (D.11)
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In the language of abstract linear algebra, let HA and HB again be spaces with bases
{|m⟩} and {|n⟩}. Consider two linear operators Â and B̂ acting respectively on these spaces:

Â =
M−1∑

m,m′=0

|m⟩Amm′⟨m′|, B̂ =
N−1∑
n,n′=0

|n⟩Bnn′⟨n′|. (D.12)

Then we can show using Eq. (D.11) that

Â⊗ B̂ =
∑

mm′nn′

|m⟩|n⟩Amm′Bnn′ ⟨m′|⟨n′| (D.13)

=
∑
µ,µ′

|µ⟩
[
kron(A,B)

]
µµ′ ⟨µ′|, (D.14)

where
{
|µ⟩

}
is the basis for HA ⊗ HB previously defined in Eq. (D.5). Thus,

Â⊗ B̂ ↔ kron(A,B). (D.15)

This result, like Eq. (D.7), is nice because it means that we can relegate the handling of
tensor product components entirely to the kron function. So long as we make a particular
basis choice for the spaces HA and HB, and keep to that choice, kron will return the
vector products and operator products expressed using an appropriate and natural basis for
HA ⊗ HB [i.e., the basis defined in Eq. (D.5)].

D.3. MIXED PRODUCTS

For “mixed” products of operators with bras or kets, the representation using kron is
more complicated, but only slightly. First, consider the 1D array a and 2D array B:

a = (a0, . . . , aM−1), B =

 B00 · · · B0,N−1
...

. . .
...

BN−1,0 · · · BN−1,N−1

 . (D.16)

Then the Kronecker product between the two is

kron(a,B) = (a0B, a1B, . . . , aM−1B). (D.17)

Note that a is explicitly treated as a row vector. In component terms,

[kron(a,B)]nµ′ = am′Bnn′ , where µ′ = m′N + n′. (D.18)

In linear algebraic terms, let

|a⟩ =
∑
m

am|m⟩, B̂ =
∑
nn′

|n⟩Bnn′⟨n′|. (D.19)

Then

|a⟩ ⊗ B̂ =
∑
µn′

|µ⟩ amBnn′ ⟨n′|, µ = mN + n. (D.20)
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This does not quite match Eq. (D.18)! The basic problem is that the Kronecker product
treats a a row vector. However, we can patch things up by massaging Eq. (D.18) a bit:

[ kron(a,BT )T ]µn′ = [kron(a,BT )]n′µ

= am(B
T )n′n where µ′ = m′N + n′

= amBnn′ .

(D.21)

This is an appropriate match for Eq. (D.20), so we conclude that

|a⟩ ⊗ B̂ ↔ kron(a,BT )T . (D.22)

To take the product using the bra ⟨a|, we replace Eq. (D.20) by

⟨a| ⊗ B̂ =
∑
nµ′

|n⟩ a∗m′Bnn′ ⟨µ′|, µ′ = m′N + n′. (D.23)

Comparing this to Eq. (D.18) yields

⟨a| ⊗ B̂ ↔ kron(a∗, B). (D.24)

Likewise, consider the 2D array A and 1D array b:

A =

 A00 · · · A0,M−1
...

. . .
...

AM−1,0 · · · AM−1,M−1

 , b = (b0, . . . , bN−1). (D.25)

Then the Kronecker product is

kron(A, b) =

 A00b · · · A0,M−1b
...

. . .
...

AM−1,0b · · · AM−1,M−1b

 . (D.26)

Similar to before, b is treated as a row vector. In component terms,

[kron(A, b)]mµ′ = Amm′bn′ , where µ′ = m′N + n′. (D.27)

Using the same procedure as before, we can straightforwardly show that

Â⊗ |b⟩ =
∑
µm′

|µ⟩ [kron(AT , b)T ]µm′ ⟨m′| ↔ kron(AT , b)T (D.28)

Â⊗ ⟨b| =
∑
mµ′

|m⟩ [kron(A, b∗)]mµ′ ⟨µ′| ↔ kron(A, b∗). (D.29)
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