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Appendix C: Entropy

“Entropy” is a concept used in multiple fields of science and mathematics to quantify
one’s lack of knowledge about a complex system. In physics, its most commonly-encountered
form is thermodynamic entropy, which describes the uncertainty about the microscopic
configuration, or “microstate”, of a large physical system. In the field of mathematics
known as information theory, information entropy (also called Shannon entropy after
its inventor C. Shannon) describes the uncertainty about the contents of a transmitted
message. One of the most profound developments in theoretical physics in the 20th century
was the discovery by E. T. Jaynes that statistical mechanics can be formulated in terms
of information theory; hence, the thermodynamics-based and information-based concepts of
entropy are one and the same. For details about this connection, see Jaynes (1957) and
Jaynes (1957a). This appendix summarizes the definition of entropy in classical physics,
and how it is related to other physical quantities.

C.1. DEFINITION

Suppose a system has W discrete microstates labeled by integers {1,2,3,...,W}. These
microstates are associated with probabilities {p1, p2, ps, . .., pw }, subject to the conservation
of total probability

Zpi = 1. (C.1)

We will discuss how these microstate probabilities are chosen later (see Section C.3). Given
a set of these probabilities, the entropy is defined as

S =—k, Zpi In(p;). (C.2)

Here, k; is Boltzmann’s constant, which gives the entropy units of [F/T] (energy per unit
temperature); this is a remnant of entropy’s origins in 19th century thermodynamics, and
is omitted by mathematicians.

It is probably not immediately obvious why Eq. (C.2) is useful. To understand it better,
consider its behavior under two extreme scenarios:

e Suppose the microstate is definitely known, i.e., p, = 1 for some k. Then S = 0.

e Suppose there are W possible microstates, each with equal probabilities
1
i =— Vied{l,2,... W} C.3
pi= Vi ) (C3)
This describes a scenario of complete uncertainty between the possible choices. Then

1
§ = ~kWz m(1/W) = kW, (C.4)

The entropy formula is designed so that any other probability distribution—i.e., any situa-
tion of partial uncertainty—yields an entropy S between 0 and k,In W.
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To see that zero is the lower bound for the entropy, note that for 0 < p; < 1, each term
in the entropy formula (C.2) satisfies —ky, p; In(p;) > 0, and the equality holds if and only if
p; = 0 or p; = 1. This is illustrated in the figure below:
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This implies that S > 0. Moreover, S = 0 if and only if p; = d;, for some k (i.e., there is no
uncertainty about which microstate the system is in).
Next, it can be shown that S is bounded above by k,In W, a relation known as Gibbs’

inequality. This follows from the fact that Inz < x — 1 for all positive x, with the equality
occurring if and only if x = 1. Take x = 1/(Wp;) where W is the number of microstates:
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Moreover, the equality holds if and only if p; = 1/W for all i.

C.2. EXTENSIVITY

Another important feature of the entropy is that it is extensive, meaning that it scales
proportionally with the size of the system. Consider two independent systems A and B,
which have microstate probabilities {p;'} and {pF}. If we treat the combination of A and
B as a single system, each microstate of the comblned system is specified by one microstate
of A and one of B, with probability p;; = pf‘pf. The entropy of the combined system is

:_kbzpz pg pzp])

:_kb(zi:pi lnpi)<zj:pf> —kb(;pf>(2j:pflnpf> (C.6)

:SA—i-SB,

where S, and Sp are the individual entropies of the A and B subsystems.


https://en.wikipedia.org/wiki/Gibbs%27_inequality
https://en.wikipedia.org/wiki/Gibbs%27_inequality
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C.3. ENTROPY AND THERMODYNAMICS

The theory of statistical mechanics seeks to describe the macroscopic behavior of a large
physical system by assigning some set of probabilities {p1,ps,...,pw} to its microstates.
How are these probabilities chosen? One elegant way is to use the following postulate:

Choose {p1,...,pw} so as to maximize S, subject to constraints
imposed by known facts about the macroscopic state of the system.

The idea is that we want a probability distribution that is as “neutral” as possible, while
being consistent with the available macroscopic information about the system.

For instance, suppose the only information we have about the macroscopic state of the
system is that its energy is precisely E. In this scenario, called a micro-canonical ensem-
ble, we maximize S by assigning equal probability to every microstate of energy F, and zero
probability to all other microstates, for reasons discussed in Section C.1. (In some other
formulations of statistical mechanics, this assignment of equal probabilities is treated as a
postulate, called the ergodic hypothesis.)

Or suppose that only the system’s mean energy (E) is known, and nothing else. In this
case, we can maximize S using the method of Lagrange multipliers. The relevant constraints
are the given value of (E) and conservation of probability:

(E) = ZEipi> Zpi =1 (C.7)
We thus introduce two Lagrange multiplers, A; and Ay. For every microstate i, we require
08
+ M\

0 0
E.n. ] = _

= —k (lnpi + 1) + M E; + X = 0. (Cg)

Upon taking \; = —1/T" as the definition of the temperature T', we obtain the celebrated
Boltzmann distribution:

c—E/kT

A

pi = , where Z = Ze_E/ka. (C.10)
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