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Appendix A: Circular and Spherical Waves

This Appendix describes the mathematics of circular waves and spherical waves, and their
uses in 2D and 3D scattering problems.

A.1. THE HELMHOLTZ EQUATION

Consider a non-relativistic particle moving in d-dimensional space with zero potential.
This is the case, for example, in a scattering problem at positions far from the scatterer
(Chapter 1). The time-independent Schrödinger equation is

− ℏ2

2m
∇2ψ(r) = Eψ(r), (A.1)

where ∇2 denotes the d-dimensional Laplacian and E > 0 is the particle’s energy.

Eq. (A.1) can be re-written as a differential equation called the Helmholtz equation:(
∇2 + k2

)
ψ(r) = 0, (A.2)

where

k =

√
2mE

ℏ2
∈ R+. (A.3)

A well-known class of solutions consists of plane waves of the form

ψ(r) = ψ0 exp (ik · r) , (A.4)

where ψ0 ∈ C and k is a d-component wave-vector with |k| = k.

When studying the scattering problem in Chapter 1, we saw that scattered wavefunctions
should be “outgoing”—i.e., they should propagate outward from the scatterer, to infinity.
However, a plane wave like (A.4) is neither outgoing, nor incoming. This indicates that we
should look for a different type of solution to Eq. (A.2). In Sec. A.2–A.3, we will discuss
the nature of these solutions for the d = 2 and d = 3 cases, and in Sec. A.4–A.5 we will talk
about how they can used to solve scattering problems.

A.2. CIRCULAR WAVES IN 2D

In 2D, we can express r using polar coordinates (r, ϕ), and write the wavefunction as

ψ(r) = ψ(r, ϕ). (A.5)

This should obey periodic boundary conditions in the azimuthal direction, ψ(r, ϕ + 2π) =
ψ(r, ϕ). Hence, we can express the ϕ-dependence via the Fourier basis, and focus on solutions
of the form

ψ(r, ϕ) = Ψm(r) e
imϕ, m ∈ Z. (A.6)

These is called a circular wave, and the integer m describes its angular momentum. For
example, for m > 0, the phase of ψ increases with ϕ, so the wave rotates in the +ϕ direction.
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By plugging Eq. (A.6) into the Helmholtz equation (A.2), and expressing the 2D Laplacian
in polar coordinates, we arrive at the following ordinary differential equation for Ψm(r):

r
d

dr

(
r
dΨm

dr

)
+
(
k2r2 −m2

)
Ψm(r) = 0. (A.7)

This is the Bessel equation, which supports the following solutions:

Ψm(r) ∝


Jm(kr) (Bessel function of the 1st kind)

Ym(kr) (Bessel function of the 2nd kind)

H+
m(kr) ≡ Jm(kr) + iYm(kr) (Hankel function of the 1st kind)

H−
m(kr) ≡ Jm(kr)− iYm(kr) (Hankel function of the 2nd kind).

(A.8)

(Click on the links to refer to the implementations of these functions in Scientific Python.)

The Bessel functions Jm and Ym are real-valued, whereas the Hankel functions H+
m and

H−
m are complex-valued. These two sets of functions are related by

{
H+

m = Jm + iYm

H−
m = Jm − iYm

⇔


Jm =

1

2

(
H+

m +H−
m

)
Ym =

1

2i

(
H+

m −H−
m

)
,

(A.9)

which is very similar to the relationship between the exponential and trigonometric functions:

{
eiz = cos z + i sin z

e−iz = cos z − i sin z.
⇔

cos z =
1

2

(
eiz + e−iz

)
sin z =

1

2i

(
eiz − e−iz

)
.

(A.10)

Importantly, the various Bessel and Hankel functions satisfy different boundary conditions:

• For kr → 0, Jm(kr) is finite, whereas Ym, H
+
m, and H

−
m diverge.

• For kr → ∞, they have the following asymptotic forms:

Jm(kr) →
√

2

πkr
cos

(
kr − mπ

2
− π

4

)
Ym(kr) →

√
2

πkr
sin

(
kr − mπ

2
− π

4

)
H±

m(kr) →
√

2

πkr
exp

[
±i

(
kr − mπ

2
− π

4

)]


for − π < arg[kr] < π. (A.11)

These further cement the analogy with Eq. (A.10). Moreover, from the last line in Eq. (A.11),
we see that H+

m describes outward propagation (i.e., in the direction of increasing radial
distance r), whereas H−

m describes inward propagation. This indicates that using H+
m in

Eq. (A.6) yields an outgoing circular wave—precisely what we need for describing scattered
wavefunctions.
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Let us examine the H+
m functions in more detail. (You are welcome to check the properties

of the H−
m counterparts.) Below, we plot the real and imaginary parts for m = 0, 1, 2, 3:

For large kr, the functions behave as decaying complex sinuoidals, in accordance with
Eq. (A.11). In the asymptotic form Eq. (A.11), the decay factor of 1/

√
r satisfies the

conservation of flux in the r direction in 2D (see Chapter 1, Sec. 1.4); moreover, the Hankel
functions for different m’s are all normalized to carry the same flux.

For small kr, the value of H+
m(kr) diverges (specifically, its imaginary part, which is Ym).

This is also consistent with flux conservation: as the circumference vanishes with r, the flux
density must diverge as 1/r to keep the total flux constant.

The figure below shows 2D plots for a few outgoing circular waves. The real part of the
wavefunction is plotted, using red and blue colors to represent positive and negative values,
while black arrows indicate the direction of propagation of the wave at a few selected points:
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We see that the wave travels outward in a clockwise spiral (m < 0), isotropically (m = 0),
or in a counterclockwise spiral (m > 0).

Like plane waves, circular waves can be used as a basis for expressing arbitrary waveforms.
However, when writing a waveform as a superposition of circular waves, we must choose the
right set of circular waves by considering the boundary conditions. For example, for a purely
outgoing wave like a scattered wavefunction, the decomposition naturally has the form

ψs(r) =
∞∑

m=−∞

c+mH
+
m(kr) e

imϕ, c+m ∈ C, (A.12)

involving only the H+
m functions.

Even a plane wave can be expressed as a superposition of circular waves. For a plane wave
of wave-vector kz = kẑ, one can show (using mathematical manipulations whose details we
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will skip) that

eikz ·r = eikr cosϕ =
∞∑

m=−∞

im Jm(kr) e
imϕ. (A.13)

The sum involves Jm-type circular waves, consistent with our earlier assertion that plane
waves are neither purely outgoing nor incoming.

A.3. SPHERICAL WAVES IN 3D

In 3D, we can express r using spherical coordinates (r, θ, ϕ). Proceeding by analogy with
the 2D case of Sec. A.2, we look for solutions to the 3D Helmholtz equation of the form

ψ(r, θ, ϕ) = Ψ(r) f(θ, ϕ), (A.14)

which exhibit a separation of variables between r and (θ, ϕ). Observing that θ and ϕ are
angular variables, we can specialize further to solutions of definite angular momentum,

ψ(r, θ, ϕ) = Ψℓm(r)Yℓm(θ, ϕ). (A.15)

The spherical harmonic function Yℓm(θ, ϕ) acts as a generalization of the exp(imϕ) factor
in the 2D ansatz (A.6). It is indexed by two integers ℓ and m, which are the quantum
numbers corresponding to the total angular momentum and the z-component of the angular
momentum, respectively. If we take

ℓ ≥ 0 and − ℓ ≤ m ≤ ℓ, (A.16)

it can be shown that Yℓm(θ, ϕ) is a well-behaved function of the anglular coordinates θ and
ϕ; i.e., periodic in ϕ and regular at the coordinate poles θ = {0, π}.

By plugging Eq. (A.15) into the Helmholtz equation and expressing the 3D Laplacian in
spherical coordinates, we arrive at the spherical Bessel equation

d

dr

(
r2
dΨℓm

dr

)
+
[
k2r2 − ℓ(ℓ+ 1)

]
Ψℓm(r) = 0. (A.17)

Remarkably, this turns out to involve only ℓ, not m. The solution thus only depends on ℓ,
and we henceforth write it as Ψℓ(r). Now, Eq. (A.17) has the following solutions:

Ψℓ(r) ∝


jℓ(kr) (Spherical Bessel function of the 1st kind)

yℓ(kr) (Spherical Bessel function of the 2nd kind)

h+ℓ (kr) ≡ jℓ(kr) + iyℓ(kr) (Spherical Hankel function of the 1st kind)

h−ℓ (kr) ≡ jℓ(kr)− iyℓ(kr) (Spherical Hankel function of the 2nd kind).

(A.18)

Their boundary conditions are closely analogous to the 2D circular waves from Section A.2:

• For kr → 0, jℓ(kr) is finite, while yℓ, h
+
ℓ , and h

−
ℓ are divergent.

• For kr → ∞, they have the following asymptotic forms:

4

https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.sph_harm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_jn.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.spherical_yn.html


Y. D. Chong Appendix A: Circular and Spherical Waves | Graduate Quantum Mechanics

jℓ(kr) →
sin(kr − ℓπ

2
)

kr

yℓ(kr) → −
cos(kr − ℓπ

2
)

kr

h±ℓ (kr) → ±
exp

[
±i(kr − ℓπ

2
)
]

ikr


for − π < arg[kr] < π. (A.19)

Hence, the spherical Hankel functions of the first and second kind describe outgoing and
incoming waves, respectively. The 1/r prefactors are consistent with flux conservation in
3D: spherical wavefronts are spread over an area 4πr2, so |Ψℓm(r)|2 · 4πr2 is r-independent.
The spherical Hankel functions for different ℓ,m are normalized to carry the same flux.

Similar to the 2D case, we can express a plane wave as a superposition of spherical waves.
This is accomplished via the identity

eiki·r =
∞∑
ℓ=0

ℓ∑
m=−ℓ

4πjℓ(kr)e
iℓπ/2 Y ∗

ℓm(k̂i)Yℓm(r̂), (A.20)

where k̂i denotes the angular components (in spherical coordinates) of the incident wave-
vector ki, and r̂ denotes the angular components of the position vector r.

A.4. PARTIAL WAVE ANALYSIS

Circular waves (Section A.2) and spherical waves (Section A.3) play an important role in
the analysis of scattering problems.

Let ψ(r) be the wavefunction in the exterior region of a scattering experiment, where the
scattering potential vanishes. It obeys the Helmholtz equation, so we can expand it as a
superposition of incoming and outgoing circular waves (for 2D) or spherical waves (for 3D):

ψ(r) =



∞∑
m=−∞

[
c+mH

+
m(kr) + c−mH

−
m(kr)

]
eimϕ (2D)

∞∑
ℓ=0

ℓ∑
m=−ℓ

[
c+ℓmh

+
ℓ (kr) + c−ℓmh

−
ℓ (kr)

]
Yℓm(θ, ϕ). (3D)

(A.21)

Since the individual circular or spherical waves satisfy the Helmholtz equation, which is
linear, any such linear superposition automatically satisfies the Helmholtz equation. For
simplicity, let us denote the coefficients by {c±µ }, where µ ≡ m for 2D and µ ≡ (ℓ,m) for
3D. Each µ is called a scattering channel. The approach of dividing a scattering problem
into different scattering channels is called partial wave analysis.

The circular and spherical waves are appropriately normalized such that the energy flux
in each scattering channel µ is directly proportional to |c±µ |2. This follows from the normal-
ization choice in the definitions of the Hankel and spherical Hankel functions, as noted in
Sections A.2 and A.3).

In a scattering problem, the incoming coefficients c−µ and the outgoing coefficients c+µ
are not independent. If we vary any individual c−µ , there should be a corresponding linear
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variation in every c+µ (the variation is linear since the Schrödinger wave equation is linear).
Hence, there exists a set of linear relations

c+µ =
∑
ν

Sµν c
−
ν , for all µ. (A.22)

Here, the outgoing wave coefficients are on the left, and the incoming coefficients on the
right. The complex matrix S, called the scattering matrix, is determined by the scattering
potential V (r) and energy E. It specifies how the scatterer converts incoming waves into
outgoing waves. Due to flux conservation, the scattering matrix must be unitary:(

S−1
)
mm′ = S∗

m′m. (A.23)

Do not confuse the “incoming” and “outgoing” waves of Eq. (A.21) with the “incident”
and “scattered” waves defined in the scattering problem. As discussed in Chapter 1, a
scattering experiment typically has an incident wave that is a plane wave, of the form

ψi(r) = Ψi e
iki·r where |ki| = k. (A.24)

However, relative to a given coordinate origin (r = 0), a plane wave is neither purely
incoming nor outgoing! For 2D, we can use Eq. (A.13) to decompose the plane wave as

ψi(r) =
Ψi

2

∞∑
m=−∞

imeim∆ϕ
[
H+

m(kr) +H−
m(kr)

]
, (A.25)

where r = |r| and ∆ϕ = cos−1 [(ki ·r)/kr]. Likewise, for 3D we can use Eq. (A.20) to write

ψi(r) = 2πΨi

∞∑
ℓ=0

ℓ∑
m=−ℓ

[
h+ℓ (kr) + h−ℓ (kr)

]
eiℓπ/2 Y ∗

ℓm(k̂i)Yℓm(r̂), (A.26)

where k̂i and r̂ denote the angular components of ki and r respectively. In both cases, the
incident plane wave is evidently a superposition of incoming and outgoing waves.

Using Eqs. (A.25) and (A.26), we can relate the scattering matrix to the formulation of
the scattering problem discussed in Chapter 1. Let us go through the details for 3D, leaving
the 2D case as an exercise.

Focusing on 3D, a comparison of Eqs. (A.21) and (A.26) allows us to determine the
spherical wave coefficients for the incident wave:

c±i,ℓm = 2πeiℓπ/2 Y ∗
ℓm(k̂i) Ψi. (A.27)

The total wavefunction consists of ψi(r) plus the scattered wavefunction ψs(r). By assump-
tion, the latter is a superposition of only outgoing waves, so denote its coefficients by c+s,ℓm.
Next, re-express the scattering matrix equation (A.22) using these coefficients:

c+i,ℓm + c+s,ℓm =
∑

ℓ,m,ℓ′,m′

Sℓm,ℓ′m′c−i,ℓ′m′ . (A.28)

Note that the scattered wave does not contribute to the right side because it has no incoming
components. Moving c+i,ℓm to the right side of the equation, and using Eq. (A.27), gives

c+s,ℓm = 2π
∑
ℓ′m′

(
Sℓm,ℓ′m′ − δℓℓ′δmm′

)
eiℓ

′π/2 Y ∗
ℓ′m′(k̂i) Ψi. (A.29)
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Hence, the scattered wavefunction is

ψs(r) =
∑
ℓm

c+s,ℓmh
+
ℓ (kr)Yℓm(r̂)

= Ψi

∑
ℓm

∑
ℓ′m′

2π
(
Sℓm,ℓ′m′ − δℓℓ′δmm′

)
eiℓ

′π/2 Y ∗
ℓ′m′(k̂i) h

+
ℓ (kr)Yℓm(r̂).

(A.30)

For large r, we can simplify the spherical Hankel functions using Eq. (A.19), obtaining

ψs(r)
r→∞−→ Ψi

eikr

r

[
2π

ik

∑
ℓm

∑
ℓ′m′

(
Sℓm,ℓ′m′ − δℓℓ′δmm′

)
e−i(ℓ−ℓ′)π/2 Y ∗

ℓ′m′(k̂i) Yℓm(r̂)

]
. (A.31)

The quantity in square brackets is the scattering amplitude (Section 1.5):

f(ki → kr̂) =
2π

ik

∑
ℓm

∑
ℓ′m′

(
Sℓm,ℓ′m′ − δℓℓ′δmm′

)
e−i(ℓ−ℓ′)π/2 Y ∗

ℓ′m′(k̂i) Yℓm(r̂). (A.32)

A.5. SCATTERING FROM A UNIFORM SPHERE

As a concluding example, we will use the results from the preceding sections to derive
the scattering amplitudes for a spatially uniform 3D sphere. The scattering potential is

V (r) =

{
−U for |r| < R,

0 for |r| > R,
(A.33)

where R is the radius of the well and U is its depth. For simplicity, we assume an attractive
potential, U > 0. (The interested reader can work through the repulsive case, U < 0, which
is almost the same, except that the wavefunction inside the scatterer is an evanescent wave.)

This scattering potential is isotropic, so angular momentum is conserved. There must
therefore exist solutions where both the incident and scattered wavefunctions have definite
angular momentum ℓ,m. The total wavefunction takes the form

ψ(r, θ, ϕ) = Aℓm(r)Yℓm(θ, ϕ) (A.34)

everywhere (i.e., inside and outside the scatterer). The existence of such solutions implies
that the scattering matrix is diagonal; in other words, the scattering channels can be con-
sidered independently of each other. Moreover, the diagonal entries turn out to depend on
only the principal angular momentum quantum number ℓ (see below), so

Sℓm,ℓ′m′ = sℓ δℓℓ′ δmm′ . (A.35)

We also know from Eq. (A.23) that the scattering matrix is unitary. For a matrix that is
both diagonal and unitary, each diagonal matrix element must have magnitude 1. Hence,

sℓ = ei∆ℓ , (A.36)

for some real phase ∆ℓ. This has a simple physical intepretation: since each scattering
channel is independent and flux-conserving, the outgoing wave in that channel must have
the same magnitude as the incoming wave. It can only vary by a phase shift.
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Let us plug the ansatz (A.34) into the Schrödinger equation. This gives

d

dr

(
r2
dAℓm

dr

)
+
[
K2(r) r2 − ℓ(ℓ+ 1)

]
Aℓm(r) = 0, (A.37)

where r = |r| and

K2(r) =

√
2m

[
E − V (r)

]
ℏ2

. (A.38)

Since the differential equation does not involve m, the solution only depends on ℓ. We
therefore replace Aℓm(r) with Aℓ(r) in Eq. (A.34):

ψ(r, θ, ϕ) = Aℓ(r)Yℓm(θ, ϕ). (A.39)

In the exterior region r > R, Eq. (A.37) reduces to the spherical Bessel equation (A.17),
with K(r) → k, and we can write

Aℓ(r) = c−ℓ h
−
ℓ (kr) + c+ℓ h

+
ℓ (kr), (A.40)

for some coefficients c+ℓ and c−ℓ obeying the scattering relation (A.22). The fact that Aℓ

does not depend on m justifies our prior assertion, in Eq. (A.35), that the scattering matrix
entries do not depend on m. Using Eqs. (A.35)–(A.36), we can simplify this to

Aℓ(r) = c−ℓ

(
h−ℓ (kr) + ei∆ℓ h+ℓ (kr)

)
, for r > R. (A.41)

Next, consider the region inside the scatterer, r < R. Here, the Schrödinger wave equation
reduces to the Helmholtz equation, with k replaced by

q =

√
2m(E + U)

ℏ2
. (A.42)

Given that U > 0, we have q ∈ R+ for all E > 0. As discussed in Section A.3, the solutions
are spherical Bessel functions (of the first and second kind) or spherical Hankel functions
(of the first and second kind). But the interior region includes the point r = 0, and the
wavefunction must be finite, so we cannot use the yℓ or h

±
ℓ functions, which diverge at r = 0.

This leaves only the spherical Bessel function of the first kind:

Aℓ(r) = αℓ jℓ(qr) for r < R. (A.43)

To proceed, we compare the exterior solution (A.41) and the interior solution (A.43) at
r = R. Matching both the wavefunction and its first derivative, we obtain two equations:

αℓ jℓ(qR) = c−ℓ

(
h−ℓ (kR) + ei∆ℓh+ℓ (kR)

)
αℓ qj

′
ℓ(qR) = c−ℓ k

(
h−ℓ

′
(kR) + ei∆ℓh+ℓ

′
(kR)

)
.

(A.44)

Here, j′ℓ denotes the derivative of the spherical Bessel function, and likewise for h±ℓ
′
. Taking

the ratio of these two equations eliminates αℓ and c
−
ℓ . Then a bit of rearrangement yields

ei∆ℓ = −kh
−
ℓ
′
(kR)jℓ(qR)− qh−ℓ (kR)j

′
ℓ(qR)

kh+ℓ
′
(kR)jℓ(qR)− qh+ℓ (kR)j

′
ℓ(qR)

. (A.45)
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On the right-hand side, the numerator and denominator are complex conjugates of one
another, since jℓ is real and (h+ℓ )

∗ = h−ℓ ; hence, the expression has magnitude 1, matching
the left-hand side. We thus obtain

∆ℓ =
π

2
− arg

[
kh+ℓ

′
(kR)jℓ(qR)− qh+ℓ (kR)j

′
ℓ(qR)

]
. (A.46)

This result can then be plugged into the scattering amplitude formula (A.32):

f(ki → kr̂) =
2π

ik

∞∑
ℓ=0

(
e2i∆ℓ − 1

) ℓ∑
m=−ℓ

Y ∗
ℓm(k̂i) Yℓm(r̂). (A.47)

This can be further simplified with the aid of the following addition theorem for spherical
harmonics:

Pℓ(r̂1 · r̂2) =
4π

2ℓ+ 1

ℓ∑
m=−ℓ

Y ∗
ℓm(r̂1)Yℓm(r̂2). (A.48)

where Pℓ(· · · ) denotes a Legendre polynomial. Finally, we obtain

f(ki → kr̂) =
1

2ik

∞∑
ℓ=0

(
e2i∆ℓ − 1

)(
2ℓ+ 1

)
Pℓ(k̂i · r̂)

∆ℓ =
π

2
− arg

[
kh+ℓ

′
(kR) jℓ(qR)− qh+ℓ (kR) j

′
ℓ(qR)

]
k = |ki| =

√
2mE/ℏ2, q =

√
2m(E + U)/ℏ2.

(A.49)

Evidently, f(ki → kr̂) depends on two variables: E, the conserved particle energy, and

∆θ = cos−1(k̂i · r̂), the deflection angle between the incident and scattered directions.

The formulas in (A.49) are used to generate the exact scattering amplitude plots shown
in Chapter 1, Section 1.8.

EXERCISES

1. In Section A.4, we derived an expression for the 3D scattering amplitudes in terms of
the scattering matrix S, Eq. (A.32). Starting from Eq. (A.25), derive the corresponding
relation for the 2D scattering amplitudes.
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