Appendix C: Entropy

In classical contexts, “entropy” is a quantitative way to describe our lack of knowledge about a system. In information theory, information entropy describes our uncertainty about the contents of a message before receiving it. In thermodynamics and statistical mechanics, thermodynamic entropy describes our uncertainty about the microscopic details (“microstate”) of a complex many-body system. In fact, these two formulations are closely related and mutually consistent; for a discussion of this relationship, see Feynman (2000). Here, we will use the statistical mechanics point of view.

Suppose a system has discrete microstates labeled by integers \(\{1, 2, 3, \ldots\} \), which have probabilities \(\{p_1, p_2, p_3, \ldots\} \). Then the entropy of the system is defined as

\[
S_{\text{cl}} = -k_B \sum_i p_i \ln(p_i).
\]

The probabilities \(p_i \) are conditional probabilities, conditioned on the known facts about the macroscopic features of the system (e.g., we might know the total energy \(E \)).

If we know exactly which microstate the system is in (i.e., \(p_k = 1 \) for some state \(k \)), the entropy formula gives \(S_{\text{cl}} = 0 \). The opposite situation, of “complete uncertainty”, is provided by a micro-canonical ensemble: a system that is at equilibrium, has a fixed total energy \(E \), and does not interact with the rest of the universe. In this case, the ergodicity postulate of statistical mechanics states that all possible microstates with energy \(E \) are equally probable. If there are \(W \) possible microstates, the probabilities are

\[
p_i = \frac{1}{W} \quad \forall i \in \{1, 2, \ldots, W\}.
\]

Therefore, the entropy formula gives

\[
S_{\text{cl}} = -k_B W \frac{1}{W} \ln(1/W) = k_B \ln W,
\]

the famous result carved into the gravestone of Ludwig Boltzmann (1844–1906). Note that this expression has an implicit energy dependence: changing \(E \) varies \(W \) and hence \(S_{\text{cl}} \).

The entropy formula is designed so that any other probability distribution, which describes a situation of partial uncertainty, yields an entropy \(S_{\text{cl}} \) lying between 0 and \(k_B \ln W \). To see that zero is the lower bound, first note that for \(0 \leq p_i \leq 1 \), each term in the entropy formula satisfies \(-k_B p_i \ln(p_i) \geq 0 \), and the equality holds if and only if \(p_i = 0 \) or \(p_i = 1 \). See the figure below:

![Entropy Graph](image-url)
This implies that $S_{\text{cl}} \geq 0$, and moreover that $S_{\text{cl}} = 0$ if and only if $p_i = \delta_{ik}$ for some k (i.e., there is no uncertainty). Next, it can be shown that $k_B \ln W$ is the upper bound (which implies the second law of thermodynamics). We will not go over the details of that proof, but it follows from a mathematical relation known as Gibbs’ inequality.

Another important feature of the entropy formula is that S_{cl} is extensive, meaning that it scales (“extends”) proportionally with system size. To see this, consider two independent systems A and B, which have microstate probabilities $\{p^A_i\}$ and $\{p^B_j\}$. If we regard the combination of A and B as a single system, each microstate of the combined system is specified by the microstate of A and the microstate of B, and is thus indexed by integers (i, j), with probability $p_{ij} = p^A_i p^B_j$. The entropy of the combined system is

$$S_{\text{cl}} = -k_B \sum_{ij} p^A_i p^B_j \ln (p^A_i p^B_j)$$

$$= -k_B \left(\sum_i p^A_i \ln p^A_i \right) \left(\sum_j p^B_j \ln p^B_j \right)$$

$$= S_{\text{cl}}^A + S_{\text{cl}}^B,$$

where S_{cl}^A and S_{cl}^B are the individual entropies of the A and B subsystems.

This has important consequences for the behavior of $W(E)$, the number of microstates at each energy E. Suppose we extend a system by adding micro-canonical subsystems (which are insulated from each other). In the process, both E and S_{cl} increase proportionally. Since $S_{\text{cl}} \propto \ln[W(E)],$

$$E \propto \ln W \Rightarrow W(E) \propto e^{\beta_0 E} \text{ for some } \beta_0 > 0.$$

If we relax the restriction that the additional subsystems are micro-canonical, the number of microstates grows even faster with E, as energy can now be distributed in different ways between the subsystems. It is reasonable to assume that the scaling is a faster-growing exponential,

$$W(E) \propto e^{\beta E} \text{ for some } \beta \geq \beta_0.$$

This implies that the constant of proportionality relating S_{cl} and E is

$$\frac{\partial E}{\partial S_{\text{cl}}} = \frac{1}{k_B \beta} = T,$$

where $\beta \equiv (k_B T)^{-1}$ defines the temperature T. This is the first law of thermodynamics.

A canonical ensemble is a system held in equilibrium with a larger system, called a “heat bath”. We can model this with a micro-canonical ensemble of energy E, divided into two subsystems, A (the canonical ensemble) and B (the heat bath), which are not insulated from each other. Using the ergodicity postulate, and the aforementioned exponential scaling of W with E, one can show that the probability for subsystem A to have energy E_A is

$$p_A(E_A) \propto W_A(E_A) e^{-\beta E_A},$$

where $W_A(E_A)$ is the number of microstates of energy E_A for subsystem A, and β is the inverse temperature of the heat bath. This is the celebrated Boltzmann law. It implies that each microstate i, of energy E_i, has probability

$$p_i = \frac{\exp(-\beta E_i)}{Z}, \text{ where } Z \equiv \sum_j \exp(-\beta E_j).$$
$Z(\beta, E_1, E_2, \ldots)$ is called the **partition function**. Note that p_i satisfies probability conservation, $\sum_i p_i = 1$, and that the sum involves all microstates of all possible energies.

The probability distribution for a canonical ensemble represents a partial-uncertainty situation, since lower-energy microstates are more probable than higher-energy microstates. Plugging the above expression for p_i into the entropy formula gives:

$$S_{\text{cl}} = \frac{1}{T} \sum E_i e^{-\beta E_i} + k_B \ln Z = \frac{\langle E \rangle}{T} + k_B \ln Z,$$

where $\langle E \rangle = \sum_i E_i p_i$ denotes the average energy. We can then define

$$F \equiv -k_B T \ln Z = \langle E \rangle - T S_{\text{cl}},$$

and show that this satisfies $\partial F/\partial T = -S_{\text{cl}}$. This quantity can be identified as the thermodynamic **free energy**.

Further Reading