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12. Solutions for Selected Problems

1. Mathematical Functions

2. To prove that exp(x+ y) = exp(x) exp(y), we employ the infinite series formula

exp(x) =

∞∑
n=0

xn

n!
. (12.1)

Here, for notational convenience, we let the sum start from n = 0, so that the leading
term 1 in the definition of the exponential is grouped with the rest of the sum as its
first term. This relies on the understanding that 0! ≡ 1, and that x0 = 1 (the latter is
consistent with the generalized definition of the power operation; but to avoid circular
logic, treat this as the definition of x0 just for the sake of this proof). We begin by
substituting the series formula into the right-hand side of our target equation:

exp(x) exp(x) =

( ∞∑
n=0

xn

n!

) ( ∞∑
m=0

ym

m!

)
. (12.2)

Note that we use the symbol n for the first sum, and the symbol m for the second
sum; n and m are bound variables, whose terms run over the values specified by the
summation signs. The actual choice of symbol used in either sum is unimportant,
except that we must not use the same symbol for both sums, because the two variables
belong to distinct sums. In other words:

exp(x) exp(x) ̸=

( ∞∑
n=0

xn

n!

) ( ∞∑
n=0

yn

n!

)
. (Nonsense expression!)

Next, we make use of the fact that the product of two series can be written as a double
sum:

exp(x) exp(x) =

∞∑
n=0

∞∑
m=0

xn

n!

ym

m!
. (12.3)

Here, we are summing over all possible pair-wise combinations of n and m, which is
precisely what happens when one expands the product of two series according to the
usual rules of algebra. The next step is to perform a change of variables on m and
n. In the above expression, we are summing over all non-negative integer m and n;
however, the bound variable n can be re-expressed in terms of a newly-defined variable,

N = m+ n. (12.4)

In the original double sum, n and m both run from 0 to +∞, so it follows that their
sum N runs from 0 to +∞. For each given value of N , we can write n = N − m,
and moreover the allowed values of m would only go from 0 to N (it can’t exceed N ,
otherwise n would be negative). In this way, the double sum is converted to

exp(x) exp(x) =

∞∑
N=0

N∑
m=0

xN−m

(N −m)!

ym

m!
(12.5)

Note that after this change of variables, the two summation signs are no longer in-
terchangeable. In the

∑N
m=0 sign, the variable N appears in the upper limit, so this

needs to be written to the right of
∑∞

N=0. One sum is thus “encapsulated” inside the
other; we could write the algebraic expression more rigorously like this:

exp(x) exp(x) =

∞∑
N=0

(
N∑

m=0

xN−m

(N −m)!

ym

m!

)
. (12.6)
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Finally, we use the binomial theorem to simplify the inner sum:

exp(x) exp(x) =

∞∑
N=0

(x+ y)
N

N !
, since (x+y)N =

N∑
m=0

N !

m!(N −m)!
xN−m ym. (12.7)

Referring again to the series definition of the exponential, we obtain the desired result:

exp(x) exp(x) = exp(x+ y) (12.8)

4. The definition of non-natural powers is

ab = exp[b ln(a)]. (12.9)

Let a = exp(1) = e and b = x. Then

[exp(1)]x = exp
[
x ln

(
exp(1)

)]
. (12.10)

Since the logarithm is the inverse of the exponential function, ln(exp(1)) = 1. Hence,

ex = exp(x). (12.11)

2. Derivatives

2. If y = ln(x), it follows from the definition of the logarithm that

exp(y) = x. (12.12)

Taking d/dx on both sides, and using the product rule, gives

dy

dx
exp(y) = 1 ⇒ dy

dx
=

1

exp(y)
=

1

x
. (12.13)

8. For an ordinary differential equation for a scalar (one-component) function of order
n, the general solution must contain n independent variables. In this case, v⃗ is a two-
component function, so it requires 2n indpendent variables. The differential equation

dv⃗

dx
= Av⃗ (12.14)

has order n = 1, so a total of 2 independent variables is required for the general
solution.

Let u be an eigenvector of A with eigenvalue λ, and suppose that v⃗(x) = u⃗ eλx (note
that u⃗ itself does not depend on x). Then

dv⃗

dx
= u⃗

d

dx

(
eλx
)

(12.15)

= λ u⃗ eλx (12.16)

= (Au⃗) eλx (12.17)

= A
(
u⃗eλx

)
(12.18)

= Av⃗(x). (12.19)

Hence, v⃗(x) satisfies the desired differential equation.

Let u⃗1 and u⃗2 be the eigenvectors of A, with eigenvalues λ1 and λ2. The general
solutions will be

v⃗(x) = c1u⃗1e
λ1x + c2u⃗2e

λ2x, (12.20)

where c1 and c2 are independent variables.
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3. Integrals

4. Let us define

I(γ) =

∫ 1

0

xγ − 1

ln(x)
, (12.21)

so that I(2) is our desired integral. To take the derivative, first note that

d

dγ
(xγ) = ln(x)xγ , (12.22)

which can be proven using the generalized definition of the power operation. Thus,

d

dγ
I(γ) =

∫ 1

0

ln(x)xγ

ln(x)
(12.23)

=

∫ 1

0

xγ (12.24)

=
1

1 + γ
. (12.25)

This can be integrated straightforwardly:

I(γ) =

∫
dγ

1 + γ
= ln(1 + γ) + c, (12.26)

where c is a constant of integration, which we now have to determine. Referring to

the original definition of I(γ), observe that I(0) =
∫ 1

0
(1− 1)/ ln(x) = 0. This implies

that c = 0. Therefore, the answer is

I(2) = ln(3). (12.27)

6. We are provided with the following ansatz for the solution to the differential equation:

y(t) = y(0) +

∫ t

0

dt′e−γ(t−t′)g(t′). (12.28)

First, note that when t = 0, the integral’s range shrinks to zero, so the result is y(0), as
expected. In order to determine the appropriate function g, we perform a derivative in
t. The tricky part is that t appears in two places: in the upper range of the integral, as
well as in the integrand. So when we take the derivative, there should be two distinct
terms (see problem 5):

dy

dt
=
[
e−γ(t−t′)g(t′)

]
t′=t

+

∫ t

0

dt′(−γ) e−γ(t−t′) g(t′) (12.29)

= g(t)− γ[y(t)− y(0)]. (12.30)

In the last step, we again made use of the ansatz for y(t). Finally, comparing this with
the original differential equation for y(t), we find that

g(t)− γ[y(t)− y(0)] = −γy(t) + f(t) ⇒ g(t) = f(t)− γy(0). (12.31)

Hence, the solution to the differential equation is

y(t) = y(0) +

∫ t

0

dt′ e−γ(t−t′) [f(t′)− γy(0)] (12.32)

= y(0) e−γt +

∫ t

0

dt′ e−γ(t−t′)f(t′). (12.33)
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4. Complex Numbers

2. Using the polar representation: let z1 = r1 exp(iθ1) and z2 = r2 exp(iθ2). Then∣∣z1 z2∣∣ = ∣∣r1eiθ1 r2eiθ2 ∣∣ (12.34)

=
∣∣∣(r1r2) ei(θ1+θ2)

∣∣∣ (12.35)

= r1r2 (12.36)

= |z1| |z2|. (12.37)

Using the Cartesian representation: let z1 = x1 + iy1 and z2 = x2 + iy2. For conve-
nience, we evaluate the squared magnitude:∣∣z1 z2∣∣2 = |(x1x2 − y1y2) + i(x1y2 + x2y1)|2 (12.38)

= (x1x2 − y1y2)
2 + (x1y2 + x2y1)

2 (12.39)

= x21x
2
2 + y21y

2
2 + x21y

2
2 + x22y

2
1 (12.40)

=
(
x21 + y21

) (
x22 + y22

)
(12.41)

= |z1|2 |z2|2. (12.42)

3. Using the polar representation: let z1 = r1 exp(iθ1) and z2 = r2 exp(iθ2). Then(
z1 z2

)∗
=
(
(r1r2) e

i(θ1+θ2)
)∗

(12.43)

= (r1r2) e
−i(θ1+θ2) (12.44)

=
(
r1e

−iθ1
) (
r2e

−iθ2
)

(12.45)

= z∗1 z
∗
2 . (12.46)

Using the Cartesian representation: let z1 = x1 + iy1 and z2 = x2 + iy2.(
z1 z2

)∗
= [(x1x2 − y1y2) + i (x1y2 + x2y1)]

∗
(12.47)

= (x1x2 − y1y2)− i (x1y2 + x2y1) (12.48)

= (x1 − iy1) (x2 − iyy) (12.49)

= z∗1 z
∗
2 . (12.50)

4. The problem arises in this part of the chain: i · i =
√
−1

√
−1 =

√
(−1)(−1). The

square root is a non-integer power, and non-integer powers are not allowed to take
part in standard complex algebra equations in the same way as addition, subtraction,
multiplication, division, and integer powers.

As discussed in Chapter 7, square roots and other non-integer powers have multiple
values. The definition of the imaginary unit is often written as i =

√
−1, but this

is misleading. Actually,
√
−1 has two legitimate values; one of these values is (by

definition) i, while the other value is −i.

5. Complex Oscillations

4. The general solution is
z(t) = A exp [−i(ω1 − iγ)t] . (12.51)

It can be verified by direct substitution that this is a solution to the differential equa-
tion. It contains one free parameter, and the differential equation is first-order, so it
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must be a general solution. Next,

d2z

dt2
+ 2γ

dz

dt
= (−i)2(ω1 − iγ)2z(t)− 2iγ(ω1 − iγ)z(t) (12.52)

=
[
−ω2

1 + γ2 + 2iγω1 − 2iγω1 − 2γ2)
]
z(t) (12.53)

= −
(
ω2
1 + γ2

)
z(t). (12.54)

Hence, z(t) obeys a damped harmonic oscillator equation with ω2
0 = ω2

1 + γ2. This
expression for the natural frequency ensures that ω2

0 > γ2 (assuming the parameters
γ and ω1 are both real); hence, the harmonic oscillator is always under-damped.

6. Complex Waves

2. Writing n = n′ + in′′, where n′ and n′′ are real, the travelling wave solutions are

ψ(x) = A exp
[
±i(n′ + in′′)

ω

c
x
]
. (12.55)

The magnitude and argument are:∣∣ψ(x)∣∣ = |A| exp
[
∓n′′ω

c
x
]

(12.56)

arg
[
ψ(x)

]
= arg(A)± n′

ω

c
x. (12.57)

The wave’s propagation direction is determined by the argument: if the argument
increases with x then it is right-moving, and if the argument decreases with x it is
left-moving. Moreover, the wave is said to experience amplification if its amplitude
grows along the propagation direction, and damping if its amplitude decreases along
the propagation direction.

Consider the upper choice of sign (i.e., + for the ± symbol and − for the ∓ symbol).
From the magnitude, we see that the wave’s amplitude decreases with x if n′′ > 0, and
increases with x if n′′ < 0. From the argument, the wave is right-moving if n′ > 0,
and left-moving if n′ < 0. Hence, the wave is damped if n′n′′ > 0 and amplified if
n′n′′ < 0.

(For example, consider the case n′ < 0 and n′′ < 0. The amplitude increases with x
but the wave is moving in the −x direction; this means the amplitude grows in the
direction opposite to the propagation direction, so the wave is damped.)

For the lower choice of sign, we see from the magnitdue that the amplitude increases
with x if n′′ > 0, and decreases with x if n′′ < 0. From the argument, we see that the
wave is left-moving if n′ > 0 and right-moving if n′ < 0. Hence, the wave is damped
if n′n′′ > 0 and amplified if n′n′′ < 0, exactly the same as in the previous case.

Hence, whether the wave is amplified or damped only depends on the relative signs of
n′ and n′′, and is independent of the direction of propagation.

7. Complex Derivatives

3. We will use the Cauchy-Riemann equations. Decompose z, f , and g into real and
imaginary parts as follows: z = x+ iy, f = u+ iv, and g = p+ iq. Since f(z) and g(z)
are analytic in D, they satisfy

∂u

∂x
=
∂v

∂y
, −∂u

∂y
=
∂v

∂x
(12.58)

∂p

∂x
=
∂q

∂y
, −∂p

∂y
=
∂q

∂x
. (12.59)
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This holds for all z ∈ D. Next, expand the product f(z) g(z) into real and imaginary
parts:

f(z) g(z) = A(x, y) + iB(x, y), where

{
A = up− vq

B = uq + vp.
(12.60)

Our goal is to prove that A and B satisfy the Cauchy-Riemann equations for x+iy ∈ D,
which would then imply that fg is analytic inD. Using the product rule for derivatives:

∂A

∂x
=
∂u

∂x
p+ u

∂p

∂x
− ∂v

∂x
q − v

∂q

∂x
(12.61)

=
∂v

∂y
p+ u

∂q

∂y
+
∂u

∂y
q + v

∂p

∂y
(12.62)

∂B

∂y
=
∂u

∂y
q + u

∂q

∂y
+
∂v

∂y
p+ v

∂p

∂y
. (12.63)

By direct comparison, we see that the two expressions are equal. Similarly,

∂A

∂y
=
∂u

∂y
p+ u

∂p

∂y
− ∂v

∂y
q − v

∂q

∂y
(12.64)

= −∂v
∂x
p− u

∂q

∂x
− ∂u

∂x
q − v

∂p

∂x
(12.65)

∂B

∂x
=
∂u

∂x
q + u

∂q

∂x
+
∂v

∂x
p+ v

∂p

∂x
. (12.66)

These two are the negatives of each other. Q.E.D.

8. Branch Points and Branch Cuts

1. We can write i in polar coordinates as exp(iπ/2). Hence,

(i)i = exp
{
i ln
[
exp(iπ/2)

]}
(12.67)

= exp

{
i

[
iπ

2
+ 2πin

]}
, n ∈ Z (12.68)

= exp

[
−2π

(
n+

1

4

)]
, n ∈ Z. (12.69)

2. Let z = r exp(iθ), where r > 0. The values of the logarithm are

ln(z) = ln(r) + i(θ + 2πn), n ∈ Z. (12.70)

For each n, note that the first term is the real part and the second term is the imaginary
part of a complex number wn. The logarithm in the first term can be taken to be the
real logarithm.

For z → 0, we have r → 0 and hence ln(r) → −∞. This implies that wn lies infinitely
far to the left of the origin on the complex plane. Therefore, wn → ∞ (referring to the
complex infinity) regardless of the value of n. Likewise, for z → ∞, we have r → ∞
and hence ln(r) → +∞. This implies that wn lies infinitely far to the right of the
origin on the complex plane, so wn → ∞ regardless of the value of n. Therefore, 0
and ∞ are both branch points of the complex logarithm.
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9. Contour Integration

2. By analytic continuation, consider the integral

I =

∮
dz

z4 + 1
, (12.71)

where the contour is closed in the upper half-plane (we could also choose to close below
without changing the results). The contour integral over the large arc scales with the
arc radius R as R−3, so it vanishes as R→ ∞. Hence, I is exactly equal to the definite
integral we are after.

To evaluate the loop integral, we need the poles of the integrand, which are the so-
lutions to z4 = −1. Writing −1 = exp(iπ), we find that the roots are exp(iπ/4) ×
{4-roots of unity}. These can be written in the Cartesian representation as

z1 =
1 + i√

2
(12.72)

z2 =
−1 + i√

2
(12.73)

z3 =
−1− i√

2
(12.74)

z4 =
1− i√

2
. (12.75)

By closing the contour above, we enclose z1 and z2. Thus, by the residue theorem,

I = 2πi

{[
Res

(
1

z4 + 1

)]
z=z1

+

[
Res

(
1

z4 + 1

)]
z=z2

}
(12.76)

= 2πi

[
1

(z1 − z2)(z1 − z3)(z1 − z4)
+

1

(z2 − z1)(z2 − z3)(z2 − z4)

]
(12.77)

= 2πi

[ √
8

(2)(2 + 2i)(2i)
+

√
8

(−2)(2i)(−2 + 2i)

]
(12.78)

=

√
2πi

2

[
1

−1 + i
+

1

1 + i

]
(12.79)

=
π√
2
. (12.80)

6. A unit circle centered at the origin can be parameterized by z = exp(iϕ). Hence, along
this circle,

cosϕ =
1

2

(
eiϕ + e−iϕ

)
(12.81)

=
1

2

(
eiϕ +

1

eiϕ

)
(12.82)

=
1

2

(
z +

1

z

)
. (12.83)

Also,
dz

dϕ
= iz. (12.84)

Let us denote this circular contour by Γ. We want to find a function f(z) such that∮
Γ

f(z) dz =

∫ 2π

0

dϕ

cosϕ+ 3
. (12.85)
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The contour integral on the left side can be parameterized as∫ 2π

0

dϕ f
(
z(ϕ)

) dz
dϕ
. (12.86)

Therefore, we want f(z) such that

f
(
z(ϕ)

) dz
dϕ

=
1

cosϕ+ 3
(12.87)

= f(z) (iz) =
1

1
2

(
z + 1

z

)
+ 3

. (12.88)

After some algebra, we obtain

f(z) =
−2i

z2 + 6z + 1
. (12.89)

The denominator in f(z) has two roots, which are both real:

z+ = −3 + 2
√
2 = −0.17157 . . . (12.90)

z− = −3− 2
√
2 = −5.8284 . . . (12.91)

Only the z+ pole is enclosed by the unit circle. Thus, we can use the residue theorem
to evaluate the integral:

I =

∮
Γ

−2i

z2 + 6z + 1
dz = 2πi Res

[
−2i

(z − z+)(z − z−)

]
z=z+

(12.92)

= 2πi

(
−2i

z+ − z−

)
(12.93)

=
4π(

−3 + 2
√
2
)
−
(
−3− 2

√
2
) (12.94)

=
π√
2
. (12.95)

7. To evaluate the principal-value integral

I = P
[∫ ∞

−∞

f(x)

x− a
dx

]
, (12.96)

we introduce the following loop contour:

The solution procedure is very similar to the example worked out in Section 8.4.3.
From the properties of f(z) given in the problem statement, we can conclude that (i)
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the integrand is analytic on and within the loop contour, so the residue theorem can
be used; and (ii) the integrand vanishes quickly enough far from the origin so that, by
Jordan’s lemma, the integral over Γ2 vanishes. Hence,

I = iπf(a). (12.97)

By relabelling the dummy variables x→ y and a→ x, we can write

f(x) = − i

π
P
[∫ ∞

−∞

f(y)

y − x
dy

]
. (12.98)

Let us now break up f into its real and imaginary parts:

Re[f(x)] + iIm[f(x)] = − i

π
P
[∫ ∞

−∞

Re[f(y)] + iIm[f(y)]

y − x
dy

]
(12.99)

=
1

π
P
[∫ ∞

−∞

Im[f(y)]− iRe[f(y)]

y − x
dy

]
. (12.100)

Equating the real and imaginary parts of the two sides, we obtain the following two
real equations, which are the Kramers-Kronig relations:

Re[f(x)] =
1

π
P
[∫ ∞

−∞

Im[f(y)]

y − x
dy

]
(12.101)

Im[f(x)] = − 1

π
P
[∫ ∞

−∞

Re[f(y)]

y − x
dy

]
. (12.102)

10. Fourier Series and Fourier Transforms

3. The Fourier coefficients are given by

fn =
1

a

∫ a/2

−a/2

dx e−iknx f(x), where kn =
2πn

a
. (12.103)

First, consider the case where f(x) is real. Take the complex conjugate of both sides:

f∗n =
1

a

∫ a/2

−a/2

dx
(
e−iknx f(x)

)∗
(12.104)

=
1

a

∫ a/2

−a/2

dx eiknx f(x)∗ (12.105)

=
1

a

∫ a/2

−a/2

dx eiknx f(x) (12.106)

= f−n. (12.107)

Hence,
fn = f∗−n. (12.108)

For the second case, f(x) = f(−x), perform a change of variables x = −u in the
Fourier integral:

fn =
1

a

∫ a/2

−a/2

du eiknu f(u) (12.109)

= f−n. (12.110)

For f(x) = f(−x)∗, the same change of variables gives

fn = f∗n. (12.111)
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7. From the definition of the delta function as the narrow-peak limit of a Gaussian
wavepacket:

δ(ax) = lim
γ→0

∫ ∞

−∞

dk

2π
eikax e−γk2

. (12.112)

Perform a change of variables k = q/a and γ = γ′ a2:

δ(ax) = lim
γ′→0

∫ ∞

−∞

1

a

dq

2π
eiqx e−γ′q2 (12.113)

=
1

a
δ(x). (12.114)

8. Perform a change of variables from Cartesian coordinates (x, y) to polar coordinates
(r, ϕ):∫ ∞

−∞
dx

∫ ∞

−∞
dy x2 δ

(√
x2 + y2 − a

)
=

∫ ∞

0

dr

∫ 2π

0

rdϕ · r2 cos2 ϕ δ(r − a) (12.115)

=

(∫ ∞

0

dr r3 δ(r − a)

)(∫ 2π

0

dϕ cos2 ϕ

)
(12.116)

=

{
πa3, a ≥ 0

0, a < 0.
(12.117)

11. Green’s Functions

2. For the over-damped oscillator, the Green’s function is

G(t, t′) = Θ(t− t′)
e−γ(t−t′)

Γ
sinh

[
Γ(t− t′)

]
, where Γ =

√
γ2 − ω2

0 . (12.118)

Hence, the response to the force f is

x(t) =
1

mΓ

∫ t

−∞
dt′ e−γ(t−t′) sinh

[
Γ(t− t′)

]
f(t′). (12.119)

From this, we get the following expression for the desired correlation function:

⟨x(t1)x(t2)⟩ =
1

m2Γ2

∫ t1

−∞
dt′
∫ t2

−∞
dt′′ e−γ(t1−t′) e−γ(t2−t′′)

× sinh
[
Γ(t1 − t′)

]
sinh

[
Γ(t2 − t′′)

]
⟨f(t′)f(t′′)⟩. (12.120)

Note that the ⟨· · · ⟩ can be shifted inside the integrals, because it represents taking
the mean over independent sample trajectories. Now, without loss of generality, let us
take

t1 ≥ t2. (12.121)

Since ⟨f(t′)f(t′′)⟩ = Aδ(t′ − t′′) which vanishes for t′ ̸= t′′, the double integral only
receives contributions from values of t′ not exceeding t2 (which is the upper limit of

the range for t′′). Thus, we revise
∫ t1 dt′ into

∫ t2 dt′. The delta function then reduces
the double integral into a single integral, which can be solved and simplified with a
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bit of tedious algebra:

⟨x(t1)x(t2)⟩ =
A

m2Γ2
e−γ(t1+t2)

∫ t2

−∞
dt′e2γt

′
sinh

[
Γ(t′ − t1)

]
sinh

[
Γ(t′ − t2)

]
(12.122)

=
A

8m2Γ2
e−γ(t1+t2)

[
e−Γt1e(2γ+Γ)t2

γ + Γ
+
eΓt1e(2γ−Γ)t2

γ − Γ

− e−Γt1e(Γ+2γ)t2 + eΓt1e(−Γ+2γ)t2

γ

]
(12.123)

=
A

8m2Γγ

[
e−(γ−Γ)(t1−t2)

γ − Γ
− e−(γ+Γ)(t1−t2)

γ + Γ

]
. (12.124)

Hence,〈
[x(t+∆t)− x(t)]2

〉
= 2
[ 〈
x(t)2

〉
− ⟨x(t+∆t)x(t)⟩

]
(12.125)

=
A

4m2Γγ

[
1− e−(γ−Γ)∆t

γ − Γ
− 1− e−(γ+Γ)∆t

γ + Γ

]
. (12.126)
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