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11. Green’s Functions

A Green’s function is a solution to an inhomogenous differential equation with a delta
function “driving term”. It provides a convenient method for solving more complicated
inhomogenous differential equations. In physics, Green’s functions methods are used to
describe a wide range of physical phenomena, such as the response of mechanical systems
to impacts or the emission of sound waves from acoustic sources.

11.1 The driven harmonic oscillator

As an introduction to the Green’s function technique, we will study the driven harmonic
oscillator, which is a damped harmonic oscillator subjected to an additional arbitrary
driving force. The equation of motion is[

d2

dt2
+ 2γ

d

dt
+ ω2

0

]
x(t) =

f(t)

m
. (11.1)

Here, m is the mass of the particle, γ is the damping coefficient, and ω0 is the natural
frequency of the oscillator. The left side of the qquation is the same as in the damped
harmonic oscillator equation (see Chapter 5). On the right side, we introduce a time-
dependent driving force f(t), which acts alongside the pre-existing spring and damping
forces. Given an arbitrarily complicated f(t), our goal is to determine x(t).

Spring force

Damping force

Driving force

11.1.1 Green’s function for the driven harmonic oscillator

Prior to solving the driven harmonic oscillator problem for a general driving force f(t), let
us first consider the following equation:[

∂2

∂t2
+ 2γ

∂

∂t
+ ω2

0

]
G(t, t′) = δ(t− t′). (11.2)

The function G(t, t′), which depends on the two variables t and t′, is called the Green’s
function. Note that the differential operator on the left side involves only derivatives in t.

The Green’s function describes the motion of a damped harmonic oscillator subjected to a
particular driving force that is a delta function (see Section 9.7), describing an infinitesimally
sharp pulse centered at t = t′:

f(t)

m
= δ(t− t′). (11.3)

Here’s the neat thing about G(t, t′): once we know it, we can find a specific solution to the
driven harmonic oscillator equation for any f(t). The solution has the form

x(t) =

∫ ∞

−∞
dt′ G(t, t′)

f(t′)

m
. (11.4)
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To show that this is indeed a solution, plug it into the equation of motion:[
d2

dt2
+ 2γ

d

dt
+ ω2

0

]
x(t) =

∫ ∞

−∞
dt′

[
∂2

∂t2
+ 2γ

∂

∂t
+ ω2

0

]
G(t, t′)

f(t′)

m
(11.5)

=

∫ ∞

−∞
dt′ δ(t− t′)

f(t′)

m
(11.6)

=
f(t)

m
. (11.7)

Note that we can move the differential operator inside the integral because t and t′ are
independent variables.

The Green’s function concept is based on the principle of superposition. The motion of
the oscillator is induced by the driving force, but the value of x(t) at time t does not depend
only on the instantaneous value of f(t) at time t; instead, it depends on the values of f(t′)
over all past times t′ < t. We can thus decompose f into a superposition of pulses described
by delta functions at different times. Then x(t) is a superposition of the oscillations produced
by the individual pulses.

11.1.2 Finding the Green’s function

To find the Green’s function, we can use the Fourier transform (Chapter 10). Let us assume
that the Fourier transform of G(t, t′) with respect to t is convergent, and that the oscillator
is not critically damped (i.e., ω0 ̸= γ; see Section 4.3.3). The Fourier transformation of the
Green’s function (also called the frequency-domain Green’s function) is

G(ω, t′) =

∫ ∞

−∞
dt eiωtG(t, t′). (11.8)

Here, we have used the sign convention for time-domain Fourier transforms (see Section 9.3).
Applying the Fourier transform to both sides of the Green’s function equation, we get

[
−ω2 − 2iγω + ω2

0

]
G(ω, t′) =

∫ ∞

−∞
dt eiωt δ(t− t′) = eiωt′ . (11.9)

The differential equation for G(t, t′) has thus been converted into an algebraic equation for
G(ω, t′), whose solution is

G(ω, t′) = − eiωt′

ω2 + 2iγω − ω2
0

. (11.10)

Finally, we retrieve the time-domain solution by using the inverse Fourier transform:

G(t, t′) =

∫ ∞

−∞

dω

2π
e−iωtG(ω, t′) (11.11)

= −
∫ ∞

−∞

dω

2π

e−iω(t−t′)

ω2 + 2iγω − ω2
0

. (11.12)

The denominator of the integral is a quadratic expression, so this can be re-written as:

G(t, t′) = −
∫ ∞

−∞

dω

2π

e−iω(t−t′)

(ω − ω+)(ω − ω−)
where ω± = −iγ ±

√
ω2
0 − γ2. (11.13)

This can be evaluated by contour integration. The integrand has two poles, which are
precisely the complex frequencies of the damped harmonic oscillator; both lie in the negative
complex plane. For t < t′, Jordan’s lemma requires us to close the contour in the upper
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half-plane, enclosing neither pole, so the integral is zero. For t > t′, we must close the
contour in the lower half-plane, enclosing both poles, so the result is

G(t, t′) = iΘ(t− t′)

[
e−iω+(t−t′)

ω+ − ω−
+
e−iω−(t−t′)

ω− − ω+

]
(11.14)

= Θ(t− t′) e−γ(t−t′) ×


1√

ω2
0−γ2

sin
[√

ω2
0 − γ2(t− t′)

]
, γ < ω0,

1√
γ2−ω2

0

sinh
[√

γ2 − ω2
0(t− t′)

]
, γ > ω0.

(11.15)

Here, Θ(t− t′) refers to the step function

Θ(τ) =

{
1, for τ ≥ 0
0, otherwise.

(11.16)

This result is plotted below. The solution for the critically damped case, γ = ω0, is left as
an exercise.
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11.1.3 Features of the Green’s function

The time-domain Green’s function represents the motion of the oscillator in response to a
pulse of force, f(t) = mδ(t− t′). Let us examine its features in greater detail.

The first thing to notice is that the Green’s function depends on t and t′ only in the
combination t− t′. This makes sense: the response of the oscillator to the force pulse should
only depend on the time elapsed since the pulse. We can exploit this property by re-defining
the frequency-domain Green’s function as

G(ω) =

∫ ∞

−∞
dt eiω(t−t′)G(t− t′), (11.17)

which then obeys [
−ω2 − 2iγω + ω2

0

]
G(ω) = 1. (11.18)

This is nicer to work with, as there is no extraneous t′ variable present.
Next, note how the Green’s function behaves just before and after the pulse. Its value is

zero for all t− t′ < 0 (i.e., prior to the pulse). This feature will be discussed in greater detail
in the next section. Moreover, there is no discontinuity in x(t) at t− t′ = 0; the force pulse
does not cause the oscillator to “teleport” instantaneously to a different position. Instead,
it produces a discontinuity in the oscillator’s velocity.
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We can calculate the velocity discontinuity by integrating the Green’s function equation
over an infinitesimal interval of time surrounding t′:

lim
ϵ→0

∫ t′+ϵ

t′−ϵ

dt

[
∂2

∂t2
+ 2γ

∂

∂t
+ ω2

0

]
G(t, t′) = lim

ϵ→0

∫ t′+ϵ

t′−ϵ

dt δ(t− t′) (11.19)

= lim
ϵ→0

{
∂G(t, t′)

∂t

∣∣∣∣
t=t′+ϵ

− ∂G(t, t′)

∂t

∣∣∣∣
t=t′−ϵ

}
= 1. (11.20)

On the last line, the expression on the left-hand side represents the difference between the
velocities just after and before the pulse. Evidently, the pulse imparts one unit of velocity
at t = t′. Looking at the solutions obtained in Section 11.1.2, we can verify that indeed
∂G/∂t = 0 right before the pulse, and ∂G/∂t = 1 right after it.

For t − t′ > 0, the applied force goes back to zero, and the system behaves like the
undriven harmonic oscillator. If the oscillator is under-damped (γ < ω0), it undergoes a
decaying oscillation around the origin. If the oscillator is over-damped (γ > ω0), it moves
ahead for some distance, then settles exponentially back to the origin.

11.1.4 Causality

We have seen that the motion x(t) ought to depend on the driving force f(t′) at all past
times t′ < t, but should not depend on the force at future times. Because of the relation

x(t) =

∫ ∞

−∞
dt′ G(t, t′)

f(t′)

m
, (11.21)

this means that the Green’s function ought to satisfy

G(t, t′) = 0 for t− t′ < 0. (11.22)

This condition is referred to as causality, because it is equivalent to saying that cause must
precede effect. A Green’s function with this feature is called a causal Green’s function.

For the driven harmonic oscillator, the time-domain Green’s function satisfies a second-
order differential equation, so its general solution must contain two free parameters. The
specific solution we derived in Section 11.1.2 turns out to be the only causal solution. There
are a couple of ways to see why.

The first way is to observe that for t > t′, the Green’s function satisfies the differential
equation for the undriven harmonic oscillator. But based on the discussion in Section 11.1.3,
the causal Green’s function needs to obey two conditions at t = t′ + 0+: (i) G = 0, and
(ii) ∂G/∂t = 1. These act as two boundary conditions for the undriven harmonic oscillator
equation, giving rise to the specific solution that we found.

The other way to see that the causal Green’s function is unique is to imagine adding
to our specific solution any solution x1(t) for the undriven harmonic oscillator. It is easily
verified that the resulting G(t, t′) is also a solution to the Green’s function equation (11.2).
Since the general solution for x1(t) contains two free parameters, we have thus found the
general solution for G(t, t′). But the solutions for x1(t) are all infinite in the t→ −∞ limit,
except for the trivial solution x1(t) = 0. That choice corresponds to the causal Green’s
function we found.

11.2 Space-time Green’s functions (optional topic)

The Green’s function method can also be used for studying waves. For simplicity, we restrict
the following discussion to waves propagating through a uniform medium. Also, we will just
consider 1D space; the generalization to higher spatial dimensions is straightforward.
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As discussed in Chapter 6, wave propagation can be modelled by the wave equation[
∂2

∂x2
− 1

c2
∂2

∂t2

]
ψ(x, t) = 0, (11.23)

where ψ(x, t) is a complex wavefunction and c is the wave speed. Henceforth, to simplify the
equations, we will set c = 1. (You can reverse this simplification by replacing all instances
of t with ct, and ω with ω/c, in the subsequent formulas.)

The wave equation describes how waves propagate after they have already been created.
To describe how the waves are generated in the first place, we must modify the wave equation
by introducing a term on the right-hand side, called a source:[

∂2

∂x2
− ∂2

∂t2

]
ψ(x, t) = f(x, t). (11.24)

The source term turns the wave equation into an inhomogenous partial differential equation,
similar to the driving force for the driven harmonic oscillator.

11.2.1 Time-domain Green’s function (optional topic)

The wave equation’s time-domain Green’s function is defined by setting the source term
to delta functions in both space and time:[

∂2

∂x2
− ∂2

∂t2

]
G(x, x′; t− t′) = δ(x− x′) δ(t− t′). (11.25)

Here G is a function of two spatial variables, x and x′, as well as two temporal variables t
and t′. It corresponds to the wave generated by a pulse

f(x, t) = δ(x− x′) δ(t− t′). (11.26)

The differential operator in the Green’s function equation only involves x and t, so we can
regard x′ and t′ as parameters specifying where the pulse is localized in space and time.
This Green’s function ought to depend on the time variables only in the combination t− t′,
as we saw in Section 11.1.3. To emphasize this, we have written it as G(x, x′; t− t′).

The Green’s function describes how a source localized at a space-time point influences
the wavefunction at other positions and times. Once we have found the Green’s function, it
can be used to construct solutions for arbitrary sources:

ψ(x, t) =

∫
dx′

∫ ∞

−∞
dt′ G(x, x′; t− t′) f(x′, t′). (11.27)

11.2.2 Frequency-domain Green’s function (optional topic)

The frequency-domain Green’s function is obtained by Fourier transforming the time-
domain Green’s function in the t− t′ coordinate:

G(x, x′;ω) =

∫ ∞

−∞
dτ eiωτ G(x, x′; τ). (11.28)

It obeys the differential equation[
∂2

∂x2
+ ω2

]
G(x, x′;ω) = δ(x− x′). (11.29)

Just as we can write the time-domain solution to the wave equation in terms of the time-
domain Green’s function, we can do the same for the frequency-domain solution:

Ψ(x, ω) =

∫
dx′ G(x, x′;ω)F (x′, ω), (11.30)
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where

Ψ(x, ω) =

∫ ∞

−∞
dt eiωt ψ(x, t), F (x, ω) =

∫ ∞

−∞
dt eiωt f(x, t). (11.31)

11.2.3 Outgoing boundary conditions (optional topic)

So far, we have not specified the boundary conditions along x. There are several possible
choices of boundary conditions, corresponding to different physical scenarios. For example,
if the waves are trapped within a finite domain x ∈ (xa, xb), with reflecting walls, we would
impose Dirichlet boundary conditions: G(x, x′;ω) = 0 for x, x′ ∈ {xa, xb}.

We will focus on the interesting case of an unbounded spatial domain: x ∈ (−∞,∞).
This describes, for example, the case of a loudspeaker emitting sound waves into an infinite
empty space. The relevant boundary conditions for this case are called outgoing boundary
conditions. The Green’s function should correspond to a left-moving wave for x to the left
of the source, and to a right-moving wave for x to the right of the source.

We can guess the form of the Green’s function obeying these boundary conditions:

G(x, x′;ω) =

{
Ae−iω(x−x′), x ≤ x′,

B eiω(x−x′), x ≥ x′
for some A,B ∈ C. (11.32)

It is straightforward to verify that this formula for G(x, x′, ω) satisfies the wave equation in
both the regions x < x′ and x > x′, as well as satisfying outgoing boundary conditions. To
determine the A and B coefficients, note that G(x, x′) should be continuous at x = x′, so
A = B. Then, integrating the Green’s function equation across x′ gives

lim
ϵ→0

∫ x′+ϵ

x′−ϵ

[
∂2

∂x2
+ ω2

]
G(x− x′) = lim

ϵ→0

∫ x′+ϵ

x′−ϵ

δ(x− x′) (11.33)

= lim
ϵ→0

{
∂G

dx
(x, x′)

∣∣∣∣
x=x′+ϵ

− ∂G

∂x
(x, x′)

∣∣∣∣
x=x′−ϵ

}
= iω(B +A) = 1. (11.34)

Combining these two equations gives A = B = 1/2iω. Hence,

G(x, x′;ω) =
eiω|x−x′|

2iω
. (11.35)

11.3 Causality and the time-domain Green’s function (optional topic)

Let us try converting the above result into a time-domain Green’s function by using the
inverse Fourier transform:

G(x, x′; t− t′) =

∫ ∞

−∞

dω

2π
e−iω(t−t′)G(x, x′;ω) (11.36)

=

∫ ∞

−∞
dω

eiω[|x−x′|−(t−t′)]

4πiω
(?!?) (11.37)

There is a problem: the integral runs over the real-ω line, yet the integrand has a pole at
ω = 0, on the real axis, making the integral ill-defined.

To resolve this, we redefine G(x, x′;ω) as an integral over a deformed contour Γ:

G(x, x′; t− t′) ≡
∫
Γ

dω
eiω[|x−x′|−(t−t′)]

4πiω
. (11.38)

We will choose to deform the contour in a very specific way, which turns out to be the choice
that satisfies causality (Section 11.1.4). As shown in the left subplot of the figure below, it
runs along the real axis, but skips above the pole at the origin.

96



Y. D. Chong (2021) MH2801: Complex Methods for the Sciences

The integral can be solved by either closing the contour in the upper half-plane, or in
the lower half-plane. If we close the contour above, then the loop contour does not enclose
the pole, and hence G(x, x′; t − t′) = 0. According to Jordan’s lemma, we must do this if
the exponent in the integrand obeys

|x− x′| − (t− t′) > 0 ⇒ |x− x′| > t− t′. (11.39)

This inequality is satisfied in two cases: either (i) t < t′ (in which case the inequality is
satisfied for all x, x′ because |x− x′| is strictly non-negative), or (ii) t > t′ but the value of
t− t′ is smaller than |x− x′|. To understand the physical meaning of these two cases, recall
that G(x, x′; t − t′) represents the field at position x and time t resulting from a pulse at
the space-time point (x′, t′). Thus, case (i) corresponds to times occurring before the pulse,
and case (ii) corresponds to times occurring after the pulse but too far away from the pulse
location for a wave to reach in time.

For the other case, |x− x′| − (t− t′) < 0, the residue theorem gives

G(x, x′; t− t′) = −1/2. (11.40)

The space-time diagram below summarizes the results:

The resulting time-domain wavefunctions can be written as

ψ(x, t) =

∫ ∞

−∞
dx′

∫ ∞

−∞
dt′

[
−1

2
Θ(t− t′ − |x− x′|)

]
f(x′, t′), (11.41)

where Θ denotes the unit step function. In other words, the wavefunction at each space-time
point (x, t) receives equal contribution from the sources f(x′, t′) at space-time points (x′, t′)
lying within the “past light cone”.
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11.4 Looking ahead (optional topic)

Green’s functions are widely used in the study of acoustic and electromagnetic waves, which
is a vast topic covered in advanced courses in theoretical physics, electrical engineering, and
mechanical engineering. Here, we give a brief sketch of some future directions of study.

So far, we have focused our attentions on the simplest case of an infinite one-dimensional
uniform medium. Most practical applications are concerned with three spatial dimensions
and non-uniform media. For such cases, the wave equation’s frequency-domain Green’s
function can be generalized to[

∇2 + n2(r⃗)
(ω
c

)2
]
G(r⃗, r⃗′;ω) = δ3(r⃗ − r⃗′), (11.42)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the three-dimensional Laplacian operator, and
n(r⃗) is a space-dependent refractive index (see Section 5.5.1). On the right-hand side of this
equation is the three-dimensional delta function (see Section 9.8), which describes a point
source located at position r⃗′ in the three-dimensional space.

When n = 1, the above equation is similar to the frequency-domain Green’s function
equation studied in Section 11.2.3, except that the problem is three-dimensional rather than
one-dimensional. Again assuming outgoing boundary conditions, the Green’s function in
three dimensions can be found using contour integrals similar to those we have previously
covered; the result is

G(r⃗, r⃗′;ω) = −e
i(ω/c)|r⃗−r⃗′|

4π|r⃗ − r⃗′|
. (11.43)

Like the Green’s function in one dimension, this depends on |r⃗ − r⃗′|, and thence describes
waves that are emitted isotropically from the source at r⃗′. However, the magnitude of G now
decreases to zero with distance, due to the |r⃗ − r⃗′| in the denominator. This matches our
everyday experience that the sound emitted from a point source grows fainter with distance,
which is because the energy carried by the outgoing wave is spread out over a larger area
with increasing distance from the source. This is unlike waves in one-dimensional space,
which do not become weaker with distance.

When n(r⃗) is not a constant but varies with position r⃗, then the waves emitted by the
source do not radiate outwards in a simple way. The variations in the refractive index cause
the waves to scatter in complicated ways. In most situations, the exact solution for the
Green’s function cannot be obtained analytically, but must be computed using specialized
numerical methods.

For electromagnetic waves, there is another important complication coming from the fact
that electromagnetic fields are described by vectors (i.e., the electric field vector and the
magnetic field vector), not scalars. The propagation of electromagnetic waves is therefore
described by a vectorial wave equation, not the scalar wave equation that we have looked at
so far. Moreover, electromagnetic waves are not generated by scalar sources, but by vector
sources (typically, electrical currents). The corresponding Green’s function is not a scalar
function, but a multi-component entity called a dyadic Green’s function, which describes
the vector waves emitted by a vector source.

Finally, even though we have dealt so far with classical (non-quantum) waves, the Green’s
function concept extends to the theory of quantum mechanics. In quantum field theory,
which is the principal theoretical framework used in fundamental physics, calculations typ-
ically involve quantum mechanical generalizations of the Green’s functions we have studied
above, whose values are no longer simple numbers but rather quantum mechanical operators.
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11.5 Exercises

1. Find the time-domain Green’s function of the critically-damped harmonic oscillator
(γ = ω0).

2. Consider an overdamped harmonic oscillator (γ > ω0) subjected to a random driving
force f(t), which fluctuates between random values, which can be either positive or
negative, at each time t. The random force satisfies

⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ = Aδ(t− t′), (11.44)

where ⟨· · · ⟩ denotes an average taken over many realizations of the random force and
A is some constant. Using the causal Green’s function, find the correlation function
⟨x(t1)x(t2)⟩ and the mean squared deviation

〈
[x(t+∆t)− x(t)]2

〉
.

[solution available]
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