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10. Fourier Series and Fourier Transforms

The Fourier transform is one of the most important mathematical tools used for
analyzing functions. Given an arbitrary function f(x), with a real domain (x ∈ R), we
can express it as a linear combination of complex waves. The coefficients of the linear
combination form a counterpart to f , which is a complex function F (k) defined in a wave-
number domain (k ∈ R). Often, F turns out to be easier to deal with than f . In particular,
differential equations for f can often be reduced to algebraic equations for F , which are
much easier to solve.

10.1 Fourier series

We begin by discussing the Fourier series, which is used to analyze functions that are
periodic in their inputs. A periodic function f(x) is a function of a real variable x that
repeats itself every time x changes by a, as shown in the figure below:

The constant a is called the period. We can write the periodicity condition as

f(x+ a) = f(x), ∀ x ∈ R. (10.1)

The value of f(x) can be real or complex, but x should be real. You can think of x as
representing a spatial coordinate. We can also think of the periodic function as being defined
over a finite segment −a/2 ≤ x < a/2, with periodic boundary conditions f(−a/2) = f(a/2).
In spatial terms, this is like wrapping the segment into a loop:

Let’s consider what it means to specify a periodic function f(x). One way to specify
the function is to give an explicit mathematical formula for it. Another approach might be
to specify the function values in −a/2 ≤ x < a/2. Since there’s an uncountably infinite
number of points in this domain, we can generally only achieve an approximate specification
of f this way, by giving the values of f at a large but finite set x points.

There is another interesting approach to specifying f . We can express it as a linear
combination of simpler periodic functions, consisting of sines and cosines:

f(x) =

∞∑
n=1

αn sin

(
2πnx

a

)
+

∞∑
m=0

βm cos

(
2πmx

a

)
. (10.2)

(Note that the n index does not include 0; since the sine term with n = 0 vanishes for all x,
it’s redundant.) This is called a Fourier series. Given the numbers {αn, βm}, which are
called the Fourier coefficients, f(x) can be calculated for any x. The Fourier coefficients
are real if f(x) is a real function, or complex if f(x) is complex.
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The justification for the Fourier series formula is that the sine and cosine functions in
the series are, themselves, periodic with period a:

sin

(
2πn(x+ a)

a

)
= sin

(
2πnx

a
+ 2πn

)
= sin

(
2πnx

a

)
(10.3)

cos

(
2πm(x+ a)

a

)
= cos

(
2πmx

a
+ 2πm

)
= cos

(
2πmx

a

)
. (10.4)

Any linear combination of them thus automatically satisfies the periodicity condition for f .

10.1.1 Square-integrable functions

Can arbitrary periodic functions always be expressed as a Fourier series? This question
turns out to be surprisingly intricate, and its resolution preoccupied mathematicians for
much of the 19th century. The full discussion is beyond the scope of this course.

Luckily, it turns out that a certain class of periodic functions, commonly encountered
in physical contexts, are guaranteed to always be expressible as Fourier series. These are
square-integrable functions, for which∫ a/2

−a/2

dx
∣∣ f(x) ∣∣2 exists and is finite. (10.5)

Unless otherwise stated, we will always assume that the functions we’re dealing with are
square-integrable.

10.1.2 Complex Fourier series and inverse relations

We have written the Fourier series as sums over sine and cosine functions. But as we know,
sines and cosines can be re-written in terms of exponentials by using Euler’s formula. If we
do this for the Fourier series, it takes the form

f(x) =

∞∑
n=−∞

e2πinx/a fn. (10.6)

Now it is just a single sum, which is neater than having two separate sums for sines and
cosines. The sum includes negative integers n, and involves a new set of complex Fourier
coefficients, {fn}. (As an exercise, try working out how the old coefficients {αn, βn} are
related to the new coefficients {fn}.)

If the Fourier coefficients {fn} are known, then f(x) can be calculated using the above
formula. The converse is also true: given f(x), we can determine the Fourier coefficients.
To see how, observe that∫ a/2

−a/2

dx e−2πimx/a e2πinx/a = a δmn for m,n ∈ Z, (10.7)

where δmn is the Kronecker delta, defined as:

δmn =

{
1, if m = n
0, if m ̸= n.

(10.8)

Due to this property, the set of functions exp(2πinx/a), with integer values of n, are said to
be orthogonal functions. (We won’t go into the details now, but the term “orthogonality”
is used here with the same meaning as in vector algebra, where a set of vectors v⃗1, v⃗2, . . . is
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said to be orthogonal if v⃗m · v⃗n = 0 for m ̸= n.) Hence,∫ a/2

−a/2

dx e−2πimx/a f(x) =

∫ a/2

−a/2

dx e−2πimx/a

[ ∞∑
n=−∞

e2πinx/a fn

]
(10.9)

=

∞∑
n=−∞

∫ a/2

−a/2

dx e−2πimx/a e2πinx/a fn (10.10)

=

∞∑
n=−∞

a δmn fn (10.11)

= a fm. (10.12)

The procedure of multiplying by exp(−2πimx/a) and integrating over x acts like a sieve,
filtering out all other Fourier components of f(x) and keeping only the one with the matching
index m. Thus, we arrive at a pair of relations expressing f(x) in terms of its Fourier
components, and vice versa:

f(x) =

∞∑
n=−∞

eiknx fn, where kn ≡ 2πn

a
(10.13)

fn =
1

a

∫ a/2

−a/2

dx e−iknx f(x). (10.14)

The real numbers kn are called wave-numbers. They form a discrete set, with one for
each Fourier component. In physics jargon, we say that the wave-numbers are quantized to
integer multiples of ∆k ≡ 2π/a.

10.1.3 Example: Fourier series of a square wave

To get a feel for how the Fourier series behaves, let’s look at a square wave: a function
that takes only two values +1 or −1, jumping between the two values at periodic intervals.
Within one period, the function is

f(x) =

{
−1, −a/2 ≤ x < 0
+1, 0 ≤ x < a/2.

(10.15)

Plugging this into the Fourier relation, and doing the straightforward integrals, gives the
Fourier coefficients

fn = −i
[sin (nπ/2)]

2

nπ/2
(10.16)

=

{
−2i/nπ, n odd

0, n even.
(10.17)

As can be seen, the Fourier coefficients become small for large n. We can write the Fourier
series as

f(x) ↔
∑

n=1,3,5,...

4 sin(2πnx/a)

nπ
. (10.18)

If this infinite series is truncated to a finite number of terms, we get an approximation to
f(x).

The plot below shows the graph of the square wave f(x) alongside the truncated Fourier
series. As more terms are included in the truncated Fourier series, the approximation gets
better and better.
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One amusing consequence of the above result is that we can use it to derive a series
expansion for π. If we set x = a/4,

f(a/4) = 1 =
4

π

[
sin(π/2) +

1

3
sin(3π/2) +

1

5
sin(5π/2) + · · ·

]
, (10.19)

and hence

π = 4

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
. (10.20)

10.2 Fourier transforms

The Fourier series applies to periodic functions defined over the interval −a/2 ≤ x < a/2.
But the concept can be generalized to functions defined over the entire real line, x ∈ R, if
we take the limit a → ∞ carefully.

Suppose we have a function f defined over the entire real line, x ∈ R, such that f(x) → 0
for x → ±∞. Imagine there is a family of periodic functions

{
fa(x)

∣∣ a ∈ R+
}
, such that

fa(x) has periodicity a, and approaches f(x) in the limit a → ∞. This is illustrated in the
figure below:

In mathematical terms,

f(x) = lim
a→∞

fa(x), where fa(x+ a) = fa(x). (10.21)

Since fa is periodic, it can be expanded as a Fourier series:

fa(x) =

∞∑
n=−∞

eiknx fan, where kn = n∆k, ∆k =
2π

a
. (10.22)

Here, fan denotes the n-th complex Fourier coefficient of the function fa(x). Note that each
Fourier coefficient depends implicitly on the periodicity a.

As a → ∞, the wave-number quantum ∆k goes to zero, and the set of discrete kn turns
into a continuum. During this process, each Fourier coefficient fan goes to zero, because there
are more and more Fourier components in the vicinity of each k value, and each individual
component contributes less. This implies that we can replace the discrete sum with an
integral. To accomplish this, we multiply the summand by a factor of (∆k/2π)/(∆k/2π) = 1:

f(x) = lim
a→∞

[ ∞∑
n=−∞

∆k

2π
eiknx

(
2π fan
∆k

) ]
. (10.23)
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(In case you’re wondering, the choice of 2π factors is essentially arbitrary; we are following
the usual convention.) Next, define

F (k) ≡ lim
a→∞

[
2π fan
∆k

]
k=kn

. (10.24)

In the a → ∞ limit, the fan in the numerator and the ∆k in the denominator both go zero,
but if their ratio remains finite, the Fourier sum turns into an integral:

f(x) =

∫ ∞

−∞

dk

2π
eikx F (k). (10.25)

10.2.1 The Fourier relations

The function F (k) is called the Fourier transform of f(x). Just as we have expressed
f(x) in terms of F (k), we can also express F (k) in terms of f(x). To do this, we apply the
a → ∞ limit to Eq. (10.14):

F (kn) = lim
a→∞

2π fan
∆k

(10.26)

= lim
a→∞

2π

2π/a

(
1

a

∫ a/2

−a/2

dx e−iknx

)
(10.27)

=

∫ ∞

−∞
dx e−ikx f(x). (10.28)

Hence, we arrive at a pair of equations called the Fourier relations:

F (k) =

∫ ∞

−∞
dx e−ikx f(x) (10.29)

f(x) =

∫ ∞

−∞

dk

2π
eikx F (k) (10.30)

Eq. (10.29) is the Fourier transform, and Eq. (10.30) is called the inverse Fourier trans-
form.

There are some differences between the two formulas. First, dk is accompanied by a
factor of 1/2π, but there is no such factor for dx; this is a matter of convention, tied to
our earlier definition of F (k). Second, the integral over x contains a factor of e−ikx but
the integral over k contains a factor of eikx. One way to remember which equation has the
positive sign in the exponent is to interpret the inverse Fourier transform equation (which
has the form of an integral over k) as the continuum limit of a sum over complex waves. In
this sum, F (k) plays the role of the series coefficients, and the complex waves have the form
exp(ikx) in accordance with our usual convention (see Chapter 6).

As noted in Section 10.1.1, all the functions we deal with are assumed to be square
integrable. This includes the fa functions used to define the Fourier transform. In the
a → ∞ limit, this implies that we are dealing with functions such that∫ ∞

−∞
dx
∣∣ f(x) ∣∣2

exists and is finite.

10.2.2 A simple example

Consider the function

f(x) =

{
e−ηx, x ≥ 0
0, x < 0,

η ∈ R+. (10.31)
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For x < 0, this is an exponentially-decaying function, and for x < 0 it is identically zero.
The real parameter η is called the decay constant; for η > 0, the function f(x) vanishes as
x → +∞ and can thus be shown to be square-integrable. Larger values of η correspond to
faster exponential decay.

The Fourier transform can be found by directly calculating the Fourier integral:

F (k) =

∫ ∞

0

dx e−ikx e−ηx =
−i

k − iη
. (10.32)

It is useful to plot the squared magnitude of the Fourier transform, |F (k)|2, against k. This
is called the Fourier spectrum of f(x). In this case,∣∣F (k)

∣∣2 =
1

k2 + η2
. (10.33)

The Fourier spectrum is plotted below. It consists of a peak centered at k = 0, forming
a curve called a Lorentzian. The width of the Lorentzian is dependent on the original
function’s decay constant η. For small η, i.e. weakly-decaying f(x), the peak is narrow; for
large η, i.e. rapidly-decaying f(x), the peak is broad.

We can quantify the width of the Lorentzian by defining the full-width at half-
maximum (FWHM)—the width of the curve at half the value of its maximum. In this
case, the maximum of the Lorentzian curve occurs at k = 0 and has the value of 1/η2. The
half-maximum, 1/2η2, occurs when δk = ±η. Hence, the original function’s decay constant,
η, is directly proportional to the FWHM of the Fourier spectrum, which is 2η.

To wrap up this example, let’s evaluate the inverse Fourier transform:

f(x) = −i

∫ ∞

−∞

dk

2π

eikx

k − iη
. (10.34)

This can be solved by contour integration. The analytic continuation of the integrand has
a simple pole at k = iη. For x < 0, the numerator exp(ikx) vanishes far from the origin in
the lower half-plane, so we close the contour below. This encloses no pole, so the integral is
zero. For x > 0, the numerator vanishes far from the origin in the upper half-plane, so we
close the contour above, with a counter-clockwise arc, and the residue theorem gives

f(x) =

(
−i

2π

)
(2πi) Res

[
eikx

k − iη
, k = iη

]
= e−ηx (for x > 0), (10.35)

in agreement with the form of f(x) we started out with.

10.3 Fourier transforms for time-domain functions

So far, we have been dealing with functions of a spatial coordinate x. Of course, mathemati-
cal relations don’t care about what kind of physical variable we are dealing with, so the same
equations could be applied to functions of time t. However, there is a important difference
in convention. When dealing with functions of the time coordinate t, it is customary to use
a different sign convention in the Fourier relations!

82



Y. D. Chong (2021) MH2801: Complex Methods for the Sciences

The Fourier relations for a function of time, f(t), are:
F (ω) =

∫ ∞

−∞
dt eiωt f(t)

f(t) =

∫ ∞

−∞

dω

2π
e−iωt F (ω).

(10.36)

Compared to the previously-derived Fourier relations, Eqs. (10.29) and (10.30), the signs of
the ±iωt exponents are flipped.

There’s a good reason for this difference in sign convention: it arises from the need to
describe propagating waves, which vary with both space and time. As discussed in Chapter
6, a propagating plane wave can be described by a wavefunction of the form

f(x, t) = Aei(kx−ωt), (10.37)

where k is the wave-number and ω is the angular frequency. We write the plane wave
function this way so that positive k indicates forward propagation in space (i.e., in the +x
direction), and positive ω indicates forward propagation in time (i.e., in the +t direction).
This requires the kx and ωt terms in the exponent to have opposite signs. Thus, when t
increases by some amount, a corresponding increase in x leaves the exponent unchanged.

As we have seen, the inverse Fourier transform relation describes how a wave-form is
broken up into a superposition of elementary waves. For a wavefunction f(x, t), the super-
position is given in terms of plane waves:

f(x, t) =

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dω

2π
ei(kx−ωt) F (k, ω). (10.38)

To be consistent with this, we need to treat space and time variables with oppositely-signed
exponents:

f(x) =

∫ ∞

−∞

dk

2π
eikx F (k) (10.39)

f(t) =

∫ ∞

−∞

dω

2π
e−iωt F (ω). (10.40)

The other equations follow similarly.

10.4 Basic properties of the Fourier transform

The Fourier transform has several important properties. These can all be derived from the
definition of the Fourier transform; the proofs are left as exercises.

1. The Fourier transform is linear: if we have two functions f(x) and g(x), whose Fourier
transforms are F (k) and G(k) respectively, then for any constants a, b ∈ C,

af(x) + bg(x)
FT−→ aF (k) + bG(k). (10.41)

2. Performing a coordinate translation on a function causes its Fourier transform to be
multiplied by a phase factor:

f(x+ b)
FT−→ eikb F (k). (10.42)

As a consequence, translations leave the Fourier spectrum |F (k)|2 unchanged.

83



Y. D. Chong (2021) MH2801: Complex Methods for the Sciences

3. If the Fourier transform of f(x) is F (k), then

f∗(x)
FT−→ F ∗(−k). (10.43)

As a consequence, the Fourier transform of a real function must satisfy the symmetry
relation F (k) = F ∗(−k), meaning that the Fourier spectrum is symmetric about the

origin in k-space:
∣∣F (k)

∣∣2 =
∣∣F (−k)

∣∣2.
4. When you take the derivative of a function, that is equivalent to multiplying its Fourier

transform by a factor of ik:

d

dx
f(x)

FT−→ ikF (k). (10.44)

For functions of time, because of the difference in sign convention discussed in Sec-
tion 10.3, there is an extra minus sign:

d

dt
f(t)

FT−→ −iωF (ω). (10.45)

10.5 Fourier transforms of differential equations

The Fourier transform is a useful tool for solving many differential equations. As an example,
consider a damped harmonic oscillator (previously studied in Chapter 5) that is subjected
to an additional driving force f(t). This force has an arbitrary time dependence, and is not
necessarily harmonic. The equation of motion is

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x(t) =
f(t)

m
. (10.46)

To solve for x(t), we first take the Fourier transform of both sides of the above equation.
The result is:

−ω2X(ω)− 2iγωX(ω) + ω2
0X(ω) =

F (ω)

m
, (10.47)

where X(ω) and F (ω) are the Fourier transforms of x(t) and f(t) respectively. To obtain
the left-hand side of this equation, we used the properties of the Fourier transform described
in Section 10.4, specifically linearity and the Fourier transforms of derivatives. Note also
that we are using the convention for time-domain functions (Section 10.3).

The Fourier transform has turned our ordinary differential equation into an algebraic
equation which can be easily solved:

X(ω) =
F (ω)/m

−ω2 − 2iγω + ω2
0

(10.48)

Knowing X(ω), we can use the inverse Fourier transform to obtain x(t):

x(t) =

∫ ∞

−∞

dω

2π

e−iωt F (ω)/m

−ω2 − 2iγω + ω2
0

, where F (ω) =

∫ ∞

−∞
dt eiωtf(t). (10.49)

To summarize, the solution procedure for the driven harmonic oscillator equation consists of
(i) using the Fourier transform on f(t) to obtain F (ω), (ii) using the above equation to find
X(ω) algebraically, and (iii) performing an inverse Fourier transform to obtain x(t). This
is the basis for the Green’s function method, which provides a way to systematically solve
differential equations. We will explore this further in the next chapter.
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10.6 Common Fourier transforms

To accumulate more intuition about Fourier transforms, let us examine the Fourier trans-
forms of some interesting functions. We will just state the results; the calculations are left
as exercises.

10.6.1 Damped waves

In Section 10.2.2, we saw that an exponentially decay function with decay constant η ∈ R+

has the following Fourier transform:

f(x) =

{
e−ηx, x ≥ 0
0, x < 0,

FT−→ F (k) =
−i

k − iη
. (10.50)

Observe that F (k) is given by a simple algebraic formula. If we “extend” the domain of k
to complex values, F (k) corresponds to an analytic function with a simple in the upper half
of the complex plane, at k = iη.

Now consider a decaying wave with wave-number q ∈ R and decay constant η ∈ R+.
The Fourier transform is a function with a simple pole at q + iη:

f(x) =

{
ei(q+iη)x, x ≥ 0

0, x < 0.
FT−→ F (k) =

−i

k − (q + iη)
. (10.51)

Next, consider a wave that grows exponentially with x for x < 0, and vanishes for x > 0.
Using a similar calculation, we can show that the Fourier transform is a function with a
simple pole in the lower half-plane:

f(x) =

{
0, x ≥ 0

ei(q−iη)x, x < 0.
FT−→ F (k) =

i

k − (q − iη)
. (10.52)

From these examples, we see that oscillations and amplification/decay in f(x) are related
to the existence of poles in the algebraic expression for F (k). The real part of the pole
position gives the wave-number of the oscillation, and the distance from the pole to the real
axis gives the amplification or decay constant. An exponentially decaying signal produces
a pole in the upper half-plane, while an exponentially amplifying signal produces a pole in
the lower half-plane. In both cases, the Fourier spectrum (i.e., the graph of |F (k)|2 versus
k) is a Lorentzian centered at k = q, with width 2η.

10.6.2 Gaussian wave-packets

Consider a function with a decay envelope given by a Gaussian function (see Section 2.5):

f(x) = eiqx e−γx2

, where q ∈ C, γ ∈ R. (10.53)

This is called a Gaussian wave-packet. The width of the envelope is usually characterized
by the Gaussian function’s standard deviation, which is ∆x = 1/

√
2γ.

We will show that f(x) has the following Fourier transform:

F (k) =

√
π

γ
e−

(k−q)2

4γ . (10.54)

To derive this result, we perform the Fourier integral as follows:

F (k) =

∫ ∞

−∞
dx e−ikx f(x) (10.55)

=

∫ ∞

−∞
dx exp

[
− i(k − q)x− γx2

]
. (10.56)
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In the integrand, the expression inside the exponential is quadratic in x. We complete the
square:

F (k) =

∫ ∞

−∞
dx exp

[
−γ

(
x+

i(k − q)

2γ

)2

+ γ

(
i(k − q)

2γ

)2
]

(10.57)

= exp

[
− (k − q)2

4γ

] ∫ ∞

−∞
dx exp

[
−γ

(
x+

i(k − q)

2γ

)2
]
. (10.58)

The remaining integral is the Gaussian integral (see Section 2.5) with a constant imaginary
shift in x. By shifting the integration variable, one can show that this is equal the standard
Gaussian integral,

√
π/γ (the details are left as an exercise for the reader). We thus arrive

at the result stated above.
The Fourier spectrum, |F (k)|2, is a Gaussian function. Its standard deviation is

∆k =
1√

2(1/2γ)
=

√
γ. (10.59)

Once again, the Fourier spectrum is peaked at a value of k corresponding to the wave-number
of the underlying sinusoidal wave in f(x), and a stronger (weaker) decay in f(x) leads to a
broader (narrower) Fourier spectrum.

10.7 The delta function

What happens when we feed the Fourier relations into one another? Plugging the Fourier
transform into the inverse Fourier transform,

f(x) =

∫ ∞

−∞

dk

2π
eikxF (k) (10.60)

=

∫ ∞

−∞

dk

2π
eikx

∫ ∞

−∞
dx′e−ikx′

f(x′) (10.61)

=

∫ ∞

−∞
dx′
[∫ ∞

−∞

dk

2π
eikxe−ikx′

]
f(x′). (10.62)

Let us denote the term in brackets in the last line as

δ(x− x′) =

∫ ∞

−∞

dk

2π
eik(x−x′). (10.63)

This is called the delta function. The delta function acts as a kind of filter. When we
multiply it by any function f(x′) and integrate over x′, the result is the value of that function
at a particular point x: ∫ ∞

−∞
dx′ δ(x− x′) f(x′) = f(x). (10.64)
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But here’s a problem: in Eq. (10.63), the integrand does not vanish at ±∞, so the integral
is non-convergent! We can get around this by defining the delta function as a limiting case
of a convergent integral:

δ(x− x′) ≡ lim
γ→0

∫ ∞

−∞

dk

2π
eik(x−x′) e−γk2

. (10.65)

The extra factor of exp(−γk2), which we have inserted into the integrand, ensures that the
integrand vanishes at ±∞, making the integral convergent. As γ → 0, this factor goes to
one, and the integrand approaches what we had before. But note that the expression on the
right is the Fourier transform for a Gaussian wave-packet (see Section 10.6.2), so

δ(x− x′) ≡ lim
γ→0

1√
4πγ

e−
(x−x′)2

4γ . (10.66)

This is a Gaussian function of width
√
2γ and area 1. Hence, the delta function can be

regarded as the limit of a Gaussian function as its width goes to zero while keeping the area
under the curve fixed at unity (which means the height of the peak goes to infinity).

The “filtering” behavior of the delta function δ(x−x′) can be understood from its nature
as an infinitesimal-width Gaussian. When we multiply a function f(x′) by δ(x − x′), the
product is non-zero only in the vicinity of x′ = x. Since the area under the delta function is
unity, integrating that product over all x′ yields the value of f(x′) at x′ = x.

Note—In physics, the delta function is commonly used to represent the density distri-
butions of point particles. For instance, the distribution of mass within an object can be
represented by a mass density function. Assuming one-dimensional space for simplicity,
we define the mass density ρ(x) as the mass per unit length at position x. By this
definition,

M =

∫ ∞

−∞
ρ(x) dx (10.67)

is the total mass of the object. Now suppose the mass is distributed among N point
particles, which are located at distinct positions x1, x2, ..., xN , and have masses m1,
m2, ... mN . To describe this situation, we can write the mass density function as

ρ(x) =

N∑
j=1

mj δ(x− xj). (10.68)

The reason for this is that if we integrate ρ(x) around the vicinity of the j-th particle,
the result is just the mass of that single particle, thanks to the features of the delta
function:

lim
ε→0+

∫ xj+ε

xj−ε

ρ(x) dx =

N∑
i=1

mi

[
lim

ε→0+

∫ xj+ε

xj−ε

δ(x− xi) dx
]

(10.69)

=

N∑
i=1

mi δij (10.70)

= mj . (10.71)

Likewise, integrating ρ(x) over all x gives the total mass m1 +m2 + · · ·+mN .
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10.8 Multi-dimensional Fourier transforms (optional topic)

When studying problems such as wave propagation, we often deal with Fourier transforms
of several variables. This is conceptually straightforward. For a function f(x1, x2, . . . , xd)
which depends on d independent spatial coordinates x1, x2, . . . xd, we can Fourier transform
each coordinate individually:

F (k1, k2, . . . , kd) =

∫ ∞

−∞
dx1 e−ik1x1

∫ ∞

−∞
dx2 e−ik2x2 · · ·

∫ ∞

−∞
dxd e−ikdxd f(x1, x2, . . . , xN ).

(10.72)

Each coordinate gets Fourier-transformed into its own independent k variable, so the result
is also a function of d independent variables.

We can express the multi-dimensional Fourier transform more compactly using vector
notation. If x⃗ is a d-dimensional coordinate vector, the Fourier-transformed coordinates can
be written as k⃗, and the Fourier transform is

F (k⃗) =

∫
ddx exp

(
−i k⃗ · x⃗

)
f
(
x⃗
)
, (10.73)

where
∫
ddx denotes an integral over the entire d-dimensional space, and k⃗ · x⃗ is the usual

dot product of two vectors. The inverse Fourier transform is

f(x⃗) =

∫
ddk

(2π)d
exp

(
i k⃗ · x⃗

)
F
(
k⃗
)
. (10.74)

The delta function can also be defined in d-dimensional space, as the Fourier transform of a
plane wave:

δd(x⃗− x⃗′) =

∫
ddk

(2π)d
exp

[
ik⃗ · (x⃗− x⃗′)

]
. (10.75)

Note that δd has the dimensions of [x]−d. The multi-dimensional delta function has a filtering
property similar to the one-dimensional delta function. For any f(x1, . . . , xd),∫

ddx δd(x⃗− x⃗′) f(x⃗) = f(x⃗′). (10.76)

10.9 Exercises

1. Find the relationship between the coefficients {αn, βm} in the sine/cosine Fourier series
and the coefficients fn in the complex exponential Fourier series:

f(x) =

∞∑
n=1

αn sin

(
2πnx

a

)
+

∞∑
m=0

βm cos

(
2πmx

a

)
(10.77)

=

∞∑
n=−∞

fn exp

(
2πinx

a

)
. (10.78)

2. Consider the triangular wave

f(x) =

{
−x, −a/2 ≤ x < 0,
x, 0 ≤ x < a/2

(10.79)

(a) Derive the Fourier series expansion.

(b) Plot the Fourier series numerically, and show that it converges to the triangular
wave as the number of terms increases.
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3. A periodic function f(x) (with period a) is written as a complex Fourier series with
coefficients {f0, f±1, f±2, . . . }. Determine the relationship(s) between the Fourier co-
efficients under each of the following scenarios:

(a) f(x) is real for all x.

(b) f(x) = f(−x) for all x

(c) f(x) = f(−x)∗ for all x. [solution available]

4. Prove the properties of the Fourier transform listed in Section 10.4.

5. Find the Fourier transform of f(x) = sin(κx)/x.

6. Prove that if f(x) is a real function, then its Fourier transform satisfies F (k) = F (−k)∗.

7. Prove that

δ(ax) =
1

a
δ(x), (10.80)

where a is any nonzero real number. [solution available]

8. Calculate ∫ ∞

−∞
dx

∫ ∞

−∞
dy x2 δ

(√
x2 + y2 − a

)
, (10.81)

where a is a real number. [solution available]

9. Consider the integral

I =

∫ ∞

−∞
e−γ(x+iλ)2 dx,

where γ ∈ R+ and λ ∈ R. (This is the Gaussian integral with an imaginary displace-
ment in the integration variable, which we encountered while discussing Gaussian
wave-packets (Section 10.6.2). To solve this integral, consult the contour shown in the
figure below (for the case λ > 0):

Show, by parameterization, that

(i) I = − lim
L→∞

∫
Γ3

e−γz2

dz, and

(ii) lim
L→∞

∫
Γ2 or Γ4

e−γz2

dz = 0.

Hence, explain why I =
√
π/γ.

10. A dispersive wave medium is one in which the frequency of a plane wave is not
proportional to its wave-vector. For 1D space, consider a wavefunction f(x, t), which
at time t = 0 has the form

f(x, 0) =

∫ ∞

−∞
dk e−α(k−k0)

2

eikx, (10.82)
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for some α ∈ R+ and k0 ∈ R. Based on the discussion in Section 10.6.2, f(x, 0)
can be shown to be a Gaussian wave-packet. But we can also intepret the integral
in Eq. (10.82) as a superposition of plane waves exp(ikx), for various k. Away from
t = 0, each plane wave naturally generalizes to exp[i(kx− ωt)], so

f(x, t) =

∫ ∞

−∞
dk e−α(k−k0)

2

ei[kx−ωt]. (10.83)

Now suppose ω is some arbitrarily complicated function of k. For k ≈ k0, take the
Taylor expansion

ω ≈ ω0 + vg(k − k0) + · · · , where vg ≡
[
dω

dk

]
k=k0

. (10.84)

By solving the integral (10.83), prove that f(x, t) has the form of a Gaussian wave-
packet whose center moves with velocity vg (called the group velocity).

Next, show that if the Taylor expansion in Eq. (10.84) has a non-vanishing second-
order term, then the wave-packet spreads (or “disperses”) with increasing t.
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