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8. Mathematical Functions

When introducing complex algebra in Chapter 4, we postponed discussion of what it
means to raise a complex number to a non-integer power, such as z1/2, z4/3, or zπ. It is
now time to open that can of worms.

8.1 Non-integer powers as multi-valued operations

Given a complex number in its polar representation, z = reiθ, raising to the power of p
could be handled this way:

zp =
(
reiθ

)p
= rpeipθ. (8.1)

Let’s take a closer look at the complex exponential term eipθ. Since θ = arg(z) is an angle,
we can change it by multiples of 2π without altering the value of z. So we can re-write the
above equation as

zp =
(
r ei(θ+2πn)

)p

=
(
rpeipθ

)
e2πinp, where n ∈ Z. (8.2)

If p is an integer, this re-statement is somewhat trivial: no matter what integer n we take,
2πnp is a multiple of 2π, so zp ends up with the same value:

zp = rpeipθ unambiguously (if p ∈ Z). (8.3)

But if p is not an integer, the exp (2πinp) factor takes on different values for different n.
In that case, the “power of p” is a multi-valued operation. It cannot be treated as a
function in the usual sense, since functions must have unambiguous outputs.

8.2 Roots of unity

Let’s take a closer look at the problematic exponential term,

exp (2πinp) , where n ∈ Z. (8.4)

If p is irrational, 2πnp never repeats modulo 2π. Thus, zp has an infinite set of values, one
for each integer n.

More interesting is the case of a non-integer rational power. Any rational number can
be written as p = P/Q where P and Q are integers with no common divisor. It can be
proven using modular arithmetic (though we will not go into the details) that 2πn (P/Q)
has exactly Q unique values modulo 2π:

2πnp = 2πn

(
P

Q

)
= 2π ×

{
0,

1

Q
,
2

Q
, . . . ,

(Q− 1)

Q

}
(modulo 2π). (8.5)

The set of values is independent of the numerator P . The value of P merely affects the
sequence in which the numbers are generated as we step though the integer values of n.
This is demonstrated by the following examples:

Example—Consider the complex square root operation, z1/2. If we write z in its polar
respresentation, z = reiθ, then

z1/2 =
[
r ei(θ+2πn)

]1/2
= r1/2 eiθ/2 eiπn, n ∈ Z. (8.6)

The eiπn factor has two possible values: +1 (for even n) and −1 (for odd n). Hence,
the values of the square root are

z1/2 = r1/2 eiθ/2 × {1,−1} . (8.7)
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Example—Consider the cube root operation z1/3. Taking z = reiθ, we obtain

z1/3 = r1/3 eiθ/3 e2πin/3, n ∈ Z. (8.8)

Running through n gives

n · · · −2 −1 0 1 2 3 4 · · ·
2πn/3 · · · −4π/3 −2π/3 0 2π/3 4π/3 6π/3 8π/3 · · ·
e2πin/3 · · · e2πi/3 e−2πi/3 1 e2πi/3 e−2πi/3 1 e2πi/3 · · ·

Hence, the cube root operation has three distinct values:

z1/3 = r1/3 eiθ/3 ×
{
1, e2πi/3, e−2πi/3

}
. (8.9)

Example—Consider the operation z2/3. Again taking z = reiθ,

z2/3 = r2/3 e2iθ/3 e4πin/3, n ∈ Z. (8.10)

Running through n gives

n · · · −2 −1 0 1 2 3 4 · · ·
4πn/3 · · · −8π/3 −4π/3 0 4π/3 8π/3 12π/3 16π/3 · · ·
e4πin/3 · · · e−2πi/3 e2πi/3 1 e−2πi/3 e2πi/3 1 e−2πi/3 · · ·

Hence,

z2/3 = r2/3 e2iθ/3 ×
{
1, e2πi/3, e−2πi/3

}
. (8.11)

Note that the set of values in curly brackets is the same as in the previous example,
demonstrating that the numerator P does not affect the set.

From the above examples, we deduce the following expression for rational powers:

zP/Q = rP/Q eiθ (P/Q) ×
{
1, e2πi/Q, e4πi/Q, . . . , e2πi(1−Q)/Q

}
. (8.12)

The quantities in the curly brackets are called the roots of unity. In the complex plane,
they sit at Q evenly-spaced points on the unit circle, with 1 as one of the values:

55



Y. D. Chong (2021) MH2801: Complex Methods for the Sciences

8.3 Complex logarithms

Here is another way to think about non-integer powers. Recall what it means to raise a
number to, say, the power of 5: we simply multiply the number by itself five times. What
about raising a number to a non-integer power p? For the real case, the power is defined as
a combination of exponential and logarithm functions, as we saw in Section 0.2:

xp ≡ exp
[
p ln(x)

]
. (8.13)

This definition relies on the fact that, for real inputs, the logarithm is a well-defined function.
That, in turn, comes from the definition of the logarithm as the inverse of the exponential
function. Since the real exponential is one-to-one, its inverse is also one-to-one.

The complex exponential, however, is many-to-one, since changing its input by any
multiple of 2πi yields the same output:

exp(z + 2πin) = exp(z) · e2πin = exp(z) for all n ∈ Z. (8.14)

The inverse of the complex exponential is the complex logarithm. Since the complex
exponential is many-to-one, the complex logarithm is one-to-many. For each z, there is an
infinite set of values for ln(z), separated by integer multiples of 2πi:

ln(z) =
[
ln(z)

]
p.v.

+ 2πin, n ∈ Z. (8.15)

Here, [ln(z)]p.v. denotes the principal value of ln(z), which refers to a reference value of
the logarithm operation (which we’ll define later). Do not think of the principal value as the
“actual” result of the ln(z) operation! There are multiple values, each equally legitimate;
the principal value is merely one of them.

We now apply the formula zp ≡ exp [p ln(z)], with ln(z) as the multi-valued complex
logarithm. Then

zp = exp
{
p
([

ln(z)
]
p.v.

+ 2πin
)}

(8.16)

= exp
{
p
[
ln(z)

]
p.v.

}
e2πinp, n ∈ Z (8.17)

=
[
zp

]
p.v.

e2πinp, n ∈ Z. (8.18)

The factor of e2πinp, which is responsible for the multi-valuedness, corresponds to the roots
of unity discussed in Section 8.2.

8.4 Branches

We have discussed two examples of multi-valued complex operations: non-integer powers
and the complex logarithm. However, we usually prefer to deal with functions rather than
multi-valued operations. One reason is that the concept of the complex derivative is based
on functions, not multi-valued operations.

There is a standard procedure to convert multi-valued operations into functions. First,
we define one or more curve(s) in the complex plane, called branch cuts (the reason for
this name will be explained later). Next, we modify the domain (i.e., the set of permissible
inputs) by excluding all values of z lying on a branch cut. Then the outputs of the multi-
valued operation can be grouped into discrete branches, each behaving as a function.

The above procedure can be understood through the example of the square root.

8.4.1 Branches of the complex square root

We saw in Section 8.2 that the complex square root, z1/2, has two possible values. We can
define the two branches as follows:
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1. Define a branch cut along the negative real axis, so that the domain excludes all z
along the branch cut. In other words, we will only consider complex numbers whose
polar representation can be written as

z = reiθ, θ ∈ (−π, π).

(For those unfamiliar with this notation, θ ∈ (−π, π) refers to the interval −π < θ < π.
The parentheses indicate that the boundary values of −π and π are excluded. By
contrast, we would write θ ∈ [−π, π] to refer to the interval −π ≤ θ ≤ π, with the
square brackets indicating that the boundary values are included.)

2. One branch is associated with the root of unity +1. On this branch, for z = reiθ, the
value is

f+(z) = r1/2 eiθ/2, θ ∈ (−π, π).

3. The other branch is associated with the root of unity −1. On this branch, the value is

f−(z) = −r1/2 eiθ/2, θ ∈ (−π, π).

The following plot shows how varying z affects the positions of f+(z) and f−(z) in the
complex plane:

Branch
cut

In the left subplot, the red dashes indicate the branch cut, and the various symbols (circle,
square, star, and triangle) indicate representative values of z. In the right subplots, the
symbols indicate the corresponding positions of f+(z) and f−(z) in the complex plane.

Note that f+(z) always lies in the right half of the complex plane, whereas f−(z) lies
in the left half of the complex plane. Both f+ and f− are well-defined functions with
unambiguous outputs, albeit with domains that do not cover the entire complex plane (i.e.,
the branch cut is excluded).

It can moreover be shown that these functions are analytic over all of the complex plane
except the branch cut (see Section 6.2); this can be proven using the Cauchy-Riemann
equations, and is left as an exercise.

The end-point of the branch cut is called a branch point. For z = 0, both branches
give the same result: f+(0) = f−(0) = 0. We will have more to say about branch points in
Section 8.4.3.
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8.4.2 Different branch cuts for the complex square root

You may be wondering why the branch cut has to lie along the negative real axis. In fact,
this choice is not unique. For instance, we could place the branch cut along the positive real
axis. This corresponds to specifying the input z using a different interval for θ:

z = reiθ, θ ∈ (0, 2π). (8.19)

Next, we use the same formulas as before to define the branches of the complex square root:

f±(z) = ±r1/2 eiθ/2. (8.20)

But because the domain of θ has been changed to (0, 2π), the set of inputs z now excludes
the positive real axis. With this new choice of branch cut, the values produced by the branch
functions are shown in the following figure:

Branch
cut

The two branch functions are different from what we had before. Now, f+(z) is always
in the upper half of the complex plane, and f−(z) in the lower half of the complex plane.
However, both branches still have the same value at the branch point: f+(0) = f−(0) = 0.

We can think of the branch cut as a boundary where two branches are “glued” together,
so that crossing the branch cut brings us from one branch to a different branch. For example,
in the left subplot, consider the value of z indicated by the triangle, which lies just above
the branch cut. In the right subplots, observe that the corresponding value of f+(z) lies just
above the positive real axis, and f−(z) lies just below the negative real axis.

Next, consider the value of z indicated by the star, which lies just below the branch
cut. Going from the triangle to the star is equivalent to a small downwards displacement
of z, “crossing” the branch cut. Now the values of the positive and negative branches are
swapped: f−(z) lies just below the positive real axis, near where f+(z) was previously, and
f+(z) now lies just above the negative real axis where f−(z) was previously.

The three-dimensional plot below provides another way to visualize the role of the branch
cut. Here, the horizontal axes correspond to x = Re(z) and y = Im(z). The vertical axis
shows the arguments for the two values of the complex square root, with arg

[
f+(z)

]
plotted

in orange and arg
[
f−(z)

]
plotted in blue. The choice of branch cut, shown as a red line, is

just a choice about how to divide up the branches of a multi-valued operation.
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8.4.3 Branch points

The tip of each branch cut is called a branch point. A branch point is a point where
different branches have the same value. Whereas the choice of branch cuts is non-unique,
the branch points of a multi-valued operation are uniquely determined.

For the purposes of this course, you mostly only need to remember the branch points
arising from two common cases:

• The zp operation (for non-integer p) has branch points at z = 0 and z = ∞.

• The complex logarithm has branch points at z = 0 and z = ∞.

We can easily see that zp must have a branch point at z = 0: at this point, the value has to be
0, regardless of the choice of root of unity. As for the branch point at z = ∞, understanding
it requires us to know more about the concept of “infinity” for complex numbers.

8.5 The meaning of “infinity” for complex numbers (optional topic)

When talking about the complex infinity, z = ∞, we are referring to a complex number
with infinite magnitude and undefined argument.

The idea of a complex number having undefined argument may seem strange, but actually
we already know of another complex number with this feature: z = 0 has zero magnitude
and undefined argument. These two special complex numbers are the reciprocals of each
other: 1/∞ = 0 and 1/0 = ∞.

The complex ∞ behaves differently from the familiar concept of infinity associated with
real numbers. For real numbers, positive infinity (+∞) is distinct from negative infinity
(−∞). But this doesn’t hold for complex numbers, since complex numbers occupy a two-
dimensional plane rather than a line. Thus, for complex numbers it does not make sense to
define “positive infinity” and “negative infinity” as distinct entities.

From this, we can see why zp has a branch point at z = ∞. For any finite and nonzero
z, we can write z = reiθ, where r is a positive number. The values of the zp operation have
the form

rp eipθ × {roots of unity}. (8.21)

Regardless of which root of unity we pick, the magnitude is rp; as r → ∞, the magnitude
goes to infinity and the overall complex value goes to ∞. Hence, at z = ∞ all the branches
of zp have the same value (i.e., ∞).

By similar reasoning, one can prove that ln(z) has branch points at z = 0 and z = ∞.
This is left as an exercise.

59



Y. D. Chong (2021) MH2801: Complex Methods for the Sciences

8.6 Branch cuts for general multi-valued operations

Having discussed the simplest multi-valued operations, zp and ln(z), here is how to assign
branch cuts for more general multi-valued operations. This is a two-step process:

1. Locate the branch points.

2. Assign branch cuts in the complex plane, such that (i) every branch point has a branch
cut ending on it, and (ii) every branch cut ends on a branch point. The branch cuts
should not intersect.

The choice of where to place branch cuts is not unique. Branch cuts are usually chosen to
be straight lines, for simplicity, but this is not necessary. Different choices of branch cuts
correspond to different ways of partitioning the values of the multi-valued operation into
separate branches.

8.6.1 An important example

We can illustrate the process of assigning branch cuts, and defining branch functions, with
the following multi-valued operation:

f(z) = ln

(
z + 1

z − 1

)
. (8.22)

This is multi-valued because of the presence of the complex logarithm. The branch points
are z = 1 and z = −1, as these are the points where the input to the logarithm becomes
∞ or 0 respectively. Note that z = ∞ is not a branch point; at z = ∞, the input to the
logarithm is −1, which is not a branch point for the logarithm.

We can assign any branch cut that joins the branch points at z = ±1. A convenient
choice is shown below:

This choice of branch cut is nice because we can express the z+1 and z− 1 terms using
the polar representations

z + 1 = r1 e
iθ1 , (8.23)

z − 1 = r2 e
iθ2 , (8.24)

where r1, r2, θ1, and θ2 are shown graphically in the above figure. The positioning of the
branch cut corresponds to a particular choice for the ranges of the complex arguments θ1
and θ2. As we’ll shortly see, the present choice of branch cut corresponds to

θ1 ∈ (−π, π), θ2 ∈ (−π, π). (8.25)

Hence, f(z) can be written as

f(z) = ln

(
r1
r2

)
+ i(θ1 − θ2 + 2πm), where


m ∈ Z,
z = −1 + r1 e

iθ1 = 1 + r2 e
iθ2 ,

θ1, θ2 ∈ (−π, π).

(8.26)
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The choice of m specifies the branch, and we can choose m = 0 as the principal branch.
Let us verify that setting θ1 ∈ (−π, π) and θ2 ∈ (−π, π) is consistent with our choice of

branch cut. Consider the principal branch, and compare the outputs of the above formula
for z just above the real axis, and for z just below the real axis. There are three cases of
interest, depending on Re[z]:

Firstly, for Re[z] < −1 (to the left of the leftmost branch point),

Im[z] = 0+ ⇒ θ1 → π, θ2 → π ⇒ f(z) = ln

(
r1
r2

)
+ i

(
(π)− (π)

)
= ln

(
r1
r2

)
(8.27)

Im[z] = 0− ⇒ θ1 → −π, θ2 → −π ⇒ f(z) = ln

(
r1
r2

)
+ i

(
(−π)− (−π)

)
= ln

(
r1
r2

)
(8.28)

(If you’re not sure why θ1 and θ2 have these values, look carefully at the above figure, and
think about what values θ1 and θ2 would have for, say, z = −2+0.001i or z = −2− 0.001i.)
Thus, there is no discontinuity along this segment of the real axis.

Secondly, for −1 < Re[z] < 1 (between the two branch points),

Im[z] = 0+ ⇒ θ1 → 0, θ2 → π ⇒ f(z) = ln

(
r1
r2

)
+ i

(
(0)− (π)

)
= ln

(
r1
r2

)
− iπ

(8.29)

Im[z] = 0− ⇒ θ1 → 0, θ2 → −π ⇒ f(z) = ln

(
r1
r2

)
+ i

(
(0)− (−π)

)
= ln

(
r1
r2

)
+ iπ

(8.30)

Hence, in the segment between the two branch points, there is a discontinuity of ±2πi on
different sides of the real axis. The value of this discontinuity is exactly equal, of course, to
the separation between the different branches of the complex logarithm.

Finally, for Re[z] > 1 (to the right of the rightmost branch point), there is again no
discontinuity:

Im[z] = 0+ ⇒ θ1 → 0, θ2 → 0 ⇒ f(z) = ln

(
r1
r2

)
+ i

(
(0)− (0)

)
= ln

(
r1
r2

)
(8.31)

Im[z] = 0− ⇒ θ1 → 0, θ2 → 0 ⇒ f(z) = ln

(
r1
r2

)
+ i

(
(0)− (0)

)
= ln

(
r1
r2

)
. (8.32)

8.7 Exercises

1. Find the values of (i)i. [solution available]

2. Prove that ln(z) has branch points at z = 0 and z = ∞. [solution available]

3. For each of the following multi-valued functions, find all the possible function values,
at the specified z:

(a) z1/3 at z = 1.

(b) z3/5 at z = i.

(c) ln(z + i) at z = 1.

(d) cos−1(z) at z = i
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4. For the square root operation z1/2, choose a branch cut. Then show that both the
branch functions f±(z) are analytic over all of C excluding the branch cut.

5. Consider f(z) = ln(z + a)− ln(z − a). For simplicity, let a be a positive real number.
As discussed in Section 8.6.1, we can write this as

f(z) = ln

∣∣∣∣z + a

z − a

∣∣∣∣+ i(θ+ − θ−), θ± ≡ arg(z ± a). (8.33)

Suppose we represent the arguments as θ+ ∈ (−π, π) and θ− ∈ (−π, π). Explain why
this implies a branch cut consisting of a straight line joining a with −a. Using this
representation, calculate the change in f(z) over an infinitesimal loop encircling z = a
or z = −a. Calculate also the change in f(z) over a loop of radius R ≫ a encircling
the origin (and thus enclosing both branch points).
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