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3. Integrals

If we have a function f(x) which is well-defined for some a ≤ x ≤ b, its integral over
those two values is defined as∫ b

a

dx f(x) ≡ lim
N→∞

N∑
n=0

∆x f(xn) where xn = a+ n∆x, ∆x ≡
(
b− a

N

)
. (3.1)

This is called a definite integral, and represents the area under the graph of f(x) in the
region between x = a and x = b, as shown in the figure below:

The function f(x) is called the integrand, and the points a and b are the bounds of
the integral. The interval between the two bounds is divided into N segments, of length
(b − a)/N each. Each term in the sum represents the area of a rectangle. As N → ∞, the
sum converges to the area under the curve.

A multiple integral involves integration over more than one variable. For instance,
when we have a function f(x1, x2) that depends on two independent variables, x1 and x2,
we can perform a double integral by integrating over one variable first, then the other
variable:∫ b1

a1

dx1

∫ b2

a2

dx2 f(x1, x2) ≡
∫ b1

a1

dx1F (x1) where F (x1) ≡
∫ b2

a2

dx2 f(x1, x2). (3.2)

3.1 Basic properties of definite integrals

The value of a definite integral depends only on the integrand, and the two integration
bounds. The variable which is integrated over is a dummy variable, which means that
changing the symbol does not affect the value of the overall expression:∫ b

a

dx f(x) =

∫ b

a

dy f(y). (3.3)

Since the value of the integral does not depend on the dummy variable, it is nonsensical to
write something like

d

dx

[∫ b

a

dx f(x)

]
. (Nonsense expression!)

Since an integral is defined as the limiting form of a sum, it can be algebraically manipulated
in the same way as a summation expression. For instance, an integral of a linear combination
is equal to a linear combination of two integrals with the same bounds:∫ b

a

dx
[
c1 f1(x) + c2 f2(x)

]
= c1

∫ b

a

dx f1(x) + c2

∫ b

a

dx f2(x). (3.4)
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This is analogous to how the summation of a linear combination is equal to the linear
combination of separate summations:

q∑
n=p

[
c1An + c2Bn

]
= c1

q∑
n=p

An + c2

q∑
n=p

Bn.

For a similar reason, multiple integrals can be manipulated like multiple summations. If we
have a double integral where the integrals have independent bounds, we can swap the order
of the integrals:∫ b1

a1

dx1

[∫ b2

a2

dx2 f(x1, x2)

]
=

∫ b2

a2

dx2

[∫ b1

a1

dx1 f(x1, x2)

]
. (3.5)

This is analogous to how we can swap the order of two independent summations. Note,
however, that this manipulation is invalid if the integration bounds are not independent.
For instance, if the upper or lower bound of the inner integral depends on the integration
variable of the outer integral, we can’t swap the two integrals:∫ b1

a1

dx1

[∫ x1

a1

dx2 f(x1, x2)

]
̸=

[∫ x1

a1

dx2

∫ b1

a1

dx1 f(x1, x2)

]
. (Nonsense expression!)

3.2 Integrals as antiderivatives

Since the value of a definite integral depends on the values of the upper and lower bounds,
we can ask how it varies as either bound is changed. Using the defintion of the derivative
from Chapter 2, we can show that

d

db

[∫ b

a

dx f(x)

]
= f(b), (3.6)

d

da

[∫ b

a

dx f(x)

]
= −f(a). (3.7)

To prove the first equation, observe that increasing the upper bound from b to b+δb increases
the area under the curve by f(b) δb (to lowest order in δb). Hence, the definite integral’s
rate of change with b is f(b). Likewise, increasing the lower bound from a to δa decreases
the area under the curve by f(a) δa, leading to a rate of change of −f(a).

Using this result, we define the concept of an indefinite integral, or antiderivative,
as the inverse of a derivative operation:∫ x

dx′f(x′) ≡ F (x) such that
dF

dx
= f(x). (3.8)

This inverse is not unique, because two functions differing by a constant have the same
derivative. Hence, an antiderivative is only defined up to an additive constant, called an
integration constant. A definite integral, by contrast, always has a well-defined value.

Finding antiderivatives is much harder than differentiation. Once you know how to dif-
ferentiate a few special functions, differentiating some combination of those functions usually
involves a straightforward (if tedious) application of composition rules. By contrast, there is
no general systematic procedure for symbolic integration. Integration often requires creative
steps, like guessing a solution and checking if its derivative yields the desired integrand.

Some common techniques are summarized in the following sections; others will be intro-
duced later in this course.
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3.3 Integration by parts

If the integrand consists of two factors, and you know the antiderivative of one of the factors,
you can integrate by parts by shifting the derivative onto the other factor:∫ b

a

dx f(x)
dg

dx
=

[
f(x) g(x)

]b
a
−
∫ b

a

df

dx
g(x). (3.9)

The first term on the right hand side is a constant denoting [f(a)g(a)−f(b)g(b)]. Hopefully,
the integral in the second term is easier to solve than the original integral.

Judicious use of integration by parts is a key step for solving many integrals. For example,
consider ∫ b

a

dx x eγx. (3.10)

The integrand consists of two factors, x and eγx; we happen to know the antiderivative of
both. Integrating by parts lets us replace one of these factors with its antiderivative, and
the other factor with its derivative. The smart thing to do is to apply the derivative on the
x factor, and the antiderivative on the eγx:∫ b

a

dx x eγx =

[
x
eγx

γ

]b
a

−
∫ b

a

dx
eγx

γ
(3.11)

=

[
x
eγx

γ
− eγx

γ2

]b
a

. (3.12)

3.4 Change of variables

Another useful technique for solving integrals is to change variables. Consider the integral∫ ∞

0

dx

x2 + 1
. (3.13)

We can solve this by making a change of variables x = tan(u). This involves (i) replacing
all occurrences of x in the integrand with tan(u), (ii) replacing the integral limits, and (iii)
replacing dx with (dx/du) du:∫ ∞

0

dx

x2 + 1
=

∫ tan−1(∞)

tan−1(0)

1

[tan(u)]2 + 1
· dx
du

du (3.14)

=

∫ π/2

0

1

[tan(u)]2 + 1
· 1

[cos(u)]2
du (3.15)

=

∫ π/2

0

1

[sin(u)]2 + [cos(u)]2
du. (3.16)

Due to the Pythagorean theorem, the integrand reduces to 1, so∫ ∞

0

dx

x2 + 1
=

∫ π/2

0

du =
π

2
. (3.17)

Clearly, this technique often requires some cleverness and/or trial-and-error in choosing the
right change of variables.
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3.5 The Gaussian integral

Here’s a famous integral: ∫ ∞

−∞
e−γx2

dx. (3.18)

The integrand is called a Gaussian, or bell curve, and is plotted below. The larger the
value of γ, the more narrowly-peaked the curve.

-3 -2 0 2 3

0.5
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The integral was solved by Gauss in a brilliant way. Let I(γ) denote the value of the
integral. Then I2 is just two independent copies of the integral, multiplied together:

I2(γ) =

[∫ ∞

−∞
dx e−γx2

]
×

[∫ ∞

−∞
dy e−γy2

]
. (3.19)

Note that in the second copy of the integral, we have changed the dummy label x (the
integration variable) into y, to avoid ambiguity. Now, this becomes a two-dimensional
integral, taken over the entire 2D plane:

I2(γ) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−γ(x2+y2). (3.20)

Next, change from Cartesian to polar coordinates:

I2(γ) =

∫ ∞

0

dr r

∫ 2π

0

dϕ e−γr2 (3.21)

=

[∫ ∞

0

dr r e−γr2
]
×

[∫ 2π

0

dϕ

]
(3.22)

=
1

2γ
· 2π. (3.23)

By taking the square root, we arrive at the result

I(γ) =

∫ ∞

−∞
dx e−γx2

=

√
π

γ
. (3.24)
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3.6 Differentiating under the integral sign (optional topic)

In the previous section, we noted that if an integrand contains a parameter (denoted γ)
which is independent of the integration variable (denoted x), then the definite integral can
be regarded as a function of γ. It can then be shown that taking the derivative of the definite
integral with respect to γ is equivalent to taking the partial derivative of the integrand:

d

dγ

[∫ b

a

dx f(x, γ)

]
=

∫ b

a

dx
∂f

∂γ
(x, γ). (3.25)

This operation, called differentiating under the integral sign, was first used by
Leibniz, one of the inventors of calculus. It can be applied as a technique for solving integrals,
popularized by Richard Feynman in his book Surely You’re Joking, Mr. Feynman!

Here is the method. Given a definite integral I0,

1. Come up with a way to generalize the integrand, by introducing a parameter γ, such
that the generalized integral becomes a function I(γ) which reduces to the original
integral I0 for a particular parameter value, say γ = γ0.

2. Differentiate under the integral sign. If you have chosen the generalization right, the
resulting integral will be easier to solve, so...

3. Solve the integral to obtain I ′(γ).

4. Integrate I ′ over γ to obtain the desired integral I(γ), and evaluate it at γ0 to obtain
the desired integral I0.

An example is helpful for demonstrating this procedure. Consider the integral∫ ∞

0

dx
sin(x)

x
. (3.26)

First, (i) we generalize the integral as follows (we’ll soon see why):

I(γ) =

∫ ∞

0

dx
sin(x)

x
e−γx. (3.27)

The desired integral is I(0). Next, (ii) differentiating under the integral gives

I ′(γ) = −
∫ ∞

0

dx sin(x) e−γx. (3.28)

Taking the partial derivative of the integrand with respect to γ brought down a factor of
−x, cancelling out the troublesome denominator. Now, (iii) we solve the new integral, which
can be done by integrating by parts twice:

I ′(γ) =
[
cos(x) e−γx

]∞
0

+ γ

∫ ∞

0

dx cos(x) e−γx (3.29)

= −1 + γ
[
sin(x) e−γx

]∞
0

+ γ2

∫ ∞

0

dx sin(x) e−γx (3.30)

= −1− γ2I ′(γ). (3.31)

Hence,

I ′(γ) = − 1

1 + γ2
. (3.32)
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Finally, (iv) we need to integrate this over γ. But we already saw how to do this particular
integral in Section 3.4, and the result is

I(γ) = A− tan−1(γ), (3.33)

where A is a constant of integration. When γ → ∞, the integral must vanish, which implies
that A = tan−1(+∞) = π/2. Finally, we arrive at the result∫ ∞

0

dx
sin(x)

x
= I(0) =

π

2
. (3.34)

When we discuss contour integration (Chapter 9), we will see a more straightforward way
to do this integral.

3.7 Exercises

1. Consider the step function

Θ(x) =

{
1, for x ≥ 0
0, otherwise.

(3.35)

Write down an expression for the antiderivative of Θ(x), and sketch its graph.

2. Show that ∫ 2π

0

dx [sin(x)]2 =

∫ 2π

0

dx [cos(x)]2 = π. (3.36)

3. Calculate the following definite integrals:

(a)

∫ π

0

dx x2 sin(2x)

(b)

∫ α

1

dx x ln(x)

(c)

∫ ∞

0

dx e−γx cos(x)

(d)

∫ ∞

0

dx e−γx x cos(x)

(e)

∫ ∞

−∞
dx e−γ|x|

(f)

∫ ∞

−∞
dx e−|x+1| sin(x)

4. By differentiating under the integral, solve∫ 1

0

dx
x2 − 1

ln(x)
. (3.37)

Hint: replace x2 in the numerator with xγ . [solution available]

5. Let f(x, y) be a function that depends on two inputs x and y, and define

I(x) =

∫ x

0

f(x, y)dy. (3.38)

Prove that
dI

dx
= f(x, y) +

∫ x

0

∂f

∂x
(x, y) dy. (3.39)
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6. Consider the ordinary differential equation

dy

dt
= −γy(t) + f(t), (3.40)

where γ > 0 and f(t) is some function of t. The solution can be written in the form

y(t) = y(0) +

∫ t

0

dt′ e−γ(t−t′) g(t′). (3.41)

Find the appropriate function g, in terms of f and y(0). [solution available]
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