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2. Derivatives

The derivative of a function f is another function, f ′, defined as

f ′(x) ≡ df

dx
≡ lim

δx→0

f(x+ δx)− f(x)

δx
. (2.1)

This kind of expression is called a limit expression because it involves a limit (in this case,
the limit δx → 0).

If the derivative exists (i.e., the above limit expression is well-defined) over some domain
of x, we say that f is differentiable in that domain. It can be shown that a differentiable
function is automatically continuous.

If f is differentiable, we can define its second-order derivative f ′′ as the derivative of f ′.
Third-order and higher-order derivatives are defined similarly.

Graphically, the derivative represents the slope of the graph of f(x), as shown in the
figure below. The second derivative represents the curvature; in this figure, the curve is
upward-curving so the second derivative is positive.

2.1 Properties of derivatives

2.1.1 Rules for limit expressions

Let us briefly review the mathematical rules governing limit expressions.
First, the limit of a linear superposition is equal to the linear superposition of limits.

Given two constants a1 and a2 and two functions f1 and f2,

lim
x→c

[
a1 f1(x) + a2 f2(x)

]
= a1 lim

x→c
f1(x) + a2 lim

x→c
f2(x). (2.2)

Second, limits obey a product rule and a quotient rule:

lim
x→c

[
f1(x) f2(x)

]
=

[
lim
x→c

f1(x)
] [

lim
x→c

f2(x)
]

(2.3)

lim
x→c

[
f1(x)

f2(x)

]
=

limx→c f1(x)

limx→c f2(x)
. (2.4)

As a special exception, the product rule and quotient rule are inapplicable if they result in
0 × ∞, ∞/∞, or 0/0, which are undefined. As an example of why such combinations are
problematic, consider this:

lim
x→0

x = lim
x→0

[
x2 1

x

]
?
= lim

x→0

[
x2

]
lim
x→0

[ 1

x

]
= 0 × ∞ (??)

In fact, the true value of the limit expression is 0; the second step was incorrect, since it
involved an attempt to apply the product rule where it is inapplicable.
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2.1.2 Composition rules for derivatives

Using the rules for limit expressions, we can derive the following elementary composition
rules for derivatives:

d

dx

[
α f(x) + β g(x)

]
= α f ′(x) + β g′(x) (linearity) (2.5)

d

dx

[
f(x) g(x)

]
= f(x) g′(x) + f ′(x) g(x) (product rule) (2.6)

d

dx

[
f(g(x))

]
= f ′(g(x)) g′(x) (chain rule) (2.7)

These can all be proven by direct substitution into the definition of the derivative, and
taking appropriate orders of limits. With the aid of these rules, we can prove various
standard results, such as the “power rule” for derivatives:

d

dx

[
xn

]
= nxn−1, n ∈ N. (2.8)

Moreover, the linearity of the derivative operation implies that derivatives “commute” with
sums, i.e. you can move them to the left or right of summation signs. This is a very useful
feature. For example, we can use it to prove that the exponential is its own derivative, as
follows:

d

dx
[exp(x)] =

d

dx

∞∑
n=0

xn

n!
(2.9)

=

∞∑
n=0

d

dx

xn

n!
(2.10)

=

∞∑
n=1

xn−1

(n− 1)!
(2.11)

= exp(x). (2.12)

Derivatives also commute with limits. For example, we can use this to prove that the
exponential is its own derivative, using the alternative definition of the exponential function
discussed in Exercise 1 of Chapter 1:

d

dx
[exp(x)] =

d

dx
lim

n→∞

(
1 +

x

n

)n

(2.13)

= lim
n→∞

d

dx

(
1 +

x

n

)n

(2.14)

= lim
n→∞

(
1 +

x

n

)n−1

(2.15)

= exp(x). (2.16)

2.2 Taylor series

A function is infinitely differentiable at a point x0 if all orders of derivatives (i.e., the
first derivative, the second derivative, etc.) are well-defined at x0. If a function is infinitely
differentiable at x0, then near that point it can be expanded in a Taylor series:

f(x) ↔
∞∑

n=0

(x− x0)
n

n!

[
dnf

dxn

]
(x0) (2.17)

= f(x0) + (x− x0) f
′(x0) +

1

2
(x− x0)

2 f ′′(x0) + · · · (2.18)
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Here, the “zeroth derivative” refers to the function itself. The Taylor series can be derived
by assuming that f(x) can be written as a general polynomial involving terms of the form
(x− x0)

n, and then using the definition of the derivative to find the series coefficients.
Here are some common Taylor series:

1

1− x
= 1 + x+ x2 + x3 + · · · for |x| < 1 (2.19)

ln(1− x) = −x− x2

2
− x3

3
− x4

4
− · · · for |x| < 1 (2.20)

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · (2.21)

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · (2.22)

exp(x) = 1 + x+
x2

2!
+

x3

3!
+ · · · (2.23)

sinh(x) = x+
x3

3!
+

x5

5!
+

x7

7!
+ · · · (2.24)

cosh(x) = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · · (2.25)

Note that it is possible for a function to have a divergent Taylor series, or a Taylor series
that converges to a different value than the function itself. The conditions under which such
breakdowns occur is a complicated topic that we will not delve into.

For certain functions, however, the Taylor series are exact. The Taylor series for the
exponential, Eq. (2.23), is exactly the same as the definition of the exponential itself. Like-
wise, for Eqs. (2.21)–(2.25), the Taylor series can be shown to converge to the value of the
function for all x ∈ R, which means that the series form is exactly equivalent to the func-
tion itself. (Thanks to this, it is common for math textbooks to start out by defining the
trigonometic functions in series form, and then deriving their geometric meanings, rather
than vice versa.)

2.3 Ordinary differential equations

Differential equations are equations that contain derivatives. For example, the equation

df

dx
= f(x) (2.26)

involves both f and its first derivative. It is called an ordinary differential equation,
meaning that it contains a derivative with respect to a single variable x, rather than multiple
variables.

Solving a differential equation means finding a function that satisfies the equation. There
is no single method for solving differential equations. Sometimes, we can guess the solu-
tion; for example, by trying different elementary functions, we can discover that the above
differential equation is solved by

f(x) = A exp(x). (2.27)

Certain classes of differential equation can be solved using techniques like Fourier transforms,
Green’s functions, etc., some of which will be taught in this course. On the other hand, many
differential equations have no known exact analytic solution.
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Example—The following ordinary differential equation describes a damped harmonic
oscillator:

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x(t) = 0. (2.28)

In this case, x(t) is the function, and t is the input variable. This is unlike our previous
notation where x was the input variable, so don’t get confused! This equation is obtained
by applying Newton’s second law to an object moving in one dimension, subject to both
a damping force and a restoring force, with x(t) denoting the position as a function of
time t. We will study Eq. (2.28) in detail later in the course.

2.3.1 Specific solutions and general solutions

When confronted with an ordinary differential equation, the first thing you should check is
the highest derivative appearing in the equation. This is called the order of the differential
equation. If the equation has order N , its general solution contains N free parameters
that can be assigned any value. Therefore, if you happen to guess a solution, but that
solution does not contain N free parameters, then you know the solution isn’t the most
general one.

For example, the ordinary differential equation

df

dx
= f(x) (2.29)

has order one. We have previously guessed the solution f(x) = A exp(x), which has one free
parameter, A. So we know our work is done: there is no solution more general than the one
we found.

A specific solution to a differential equation is a solution containing no free parameters.
One way to get a specific solution is to start from a general solution, and assign a value to
every free parameter. In physics problems, the assigned values are commonly determined
by boundary conditions. For an ordinary differential equation of order N , we need
independent boundary N conditions to define a specific solution.

2.4 Partial derivatives

So far, we have focused on functions which take a single input. Functions can also take
multiple inputs; for instance, we can have a function f that takes two input numbers, x and
y, and outputs a number f(x, y). We can define a partial derivative as a derivative of a
function with respect to one of the inputs, keeping all other inputs fixed.

For example, the function

f(x, y) = sin(2x− 3y2) (2.30)

has the following partial derivatives:

∂f

∂x
= 2 cos(2x− 3y2),

∂f

∂y
= −6y cos(2x− 3y2). (2.31)

2.4.1 Change of variables

We saw in Section 2.1.2 that single-variable functions obey a derivative composition rule,

d

dx
f
(
g(x)

)
= g′(x) f ′(g(x)). (2.32)
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This composition rule can be generalized to partial derivatives, which is often required when
performing a change of coordinates. Suppose we have a function f(x, y), and we want to
re-express (x, y) in a different coordinate system (u, v). Each coordinate in the old system
may depend on both coordinates in the new system:

x = x(u, v), y = y(u, v). (2.33)

Expressed in the new coordinates, the function is

F (u, v) ≡ f
(
x(u, v), y(u, v)

)
. (2.34)

It can be shown that the transformed function’s partial derivatives obey the composition
rule

∂F

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
(2.35)

∂F

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
. (2.36)

On the right-hand side of these equations, the partial derivatives are meant to be expressed
in terms of the new coordinates (u, v). For example,

∂f

∂x
≡ ∂f

∂x

∣∣∣∣
x=x(u,v), y=y(u,v)

The generalization of this rule to more than two inputs is straightforward. For a function
f(x1, . . . , xN ), a change of coordinates xi = xi(u1, . . . , uN ) involves the composition

F (u1, . . . , uN ) = f
(
x1(u1, . . . , uN

)
, . . .

)
, (2.37)

∂F

∂ui
=

N∑
j=1

∂f

∂xj

∂xj

∂ui
. (2.38)

Example—In two dimensions, Cartesian and polar coordinates are related by

x = r cos θ, y = r sin θ. (2.39)

Given a function f(x, y), we can re-write it in polar coordinates as F (r, θ). The partial
derivatives in polar coordinates are then given by

∂F

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ. (2.40)

∂F

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ. (2.41)

2.4.2 Partial differential equations

A partial differential equation is a differential equation involving multiple partial deriva-
tives (as opposed to an ordinary differential equation, which involves derivatives with respect
to a single variable).

An example of a partial differential equation encountered in physics is Laplace’s equation,

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0, (2.42)
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which describes the electrostatic potential Φ(x, y, z) at position (x, y, z), in the absence of
any electric charges.

Partial differential equations are considerably harder to solve than ordinary differential
equations. In particular, their boundary conditions are more complicated to specify: whereas
each boundary condition for an ordinary differential equation consists of a single number
(e.g., the value of f(x) at some point x = x0), each boundary condition for a partial
differential equation consists of a function (e.g., the values of Φ(x, y, z) along some curve
g(x, y, z) = 0).

2.5 Exercises

1. Show that if a function is differentiable, then it is also continuous.

2. Prove that the derivative of ln(x) is 1/x. [solution available]

3. Using the definition of non-natural powers, prove that

d

dx
[xy] = yxy−1, for x ∈ R+, y /∈ N. (2.43)

4. Consider f(x) = tanh(αx).

(a) Sketch f(x) versus x, for two cases: (i) α = 1 and (ii) α ≫ 1.

(b) Sketch the derivative function f ′(x) for the two cases, based on your sketches in
part (A) (i.e., without evaluating the derivative directly).

(c) Evaluate the derivative function, and verify that the result matches your sketches
in part (B).

5. Prove geometrically that the derivatives of the sine and cosine functions are:

d

dx
sin(x) = cos(x),

d

dx
cos(x) = − sin(x). (2.44)

Hence, derive their Taylor series.

6. For each of the following functions, derive the Taylor series around x = 0:

(a) f(x) = ln [α cos(x)], to the first 3 non-vanishing terms.

(b) f(x) = cos [π exp(x)], to the first 4 non-vanishing terms.

(c) f(x) =
1√
1± x

, to the first 4 non-vanishing terms. Keep track of the signs (i.e.,

± versus ∓).

7. For each of the following functions, sketch the graph and state the domains over which
the function is differentiable:

(a) f(x) = | sin(x)|
(b) f(x) = [tan(x)]

2

(c) f(x) =
1

1− x2

8. Let v⃗(x) be a vectorial function which takes an input x (a number), and gives an
output value v⃗ that is a 2-component vector. The derivative of this vectorial function
is defined in terms of the derivatives of each vector component:

v⃗(x) =

[
v1(x)
v2(x)

]
⇒ dv⃗

dx
=

[
dv1/dx
dv2/dx

]
. (2.45)
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Now suppose v⃗(x) obeys the vectorial differential equation

dv⃗

dx
= Av⃗, (2.46)

where

A =

[
A11 A12

A21 A22

]
(2.47)

is a matrix that has two distinct real eigenvectors with real eigenvalues.

(a) How many independent numbers do we need to specify for the general solution?

(b) Let u⃗ be one of the eigenvectors of A, with eigenvalue λ:

Au⃗ = λu⃗. (2.48)

Show that v⃗(x) = u⃗ eλx is a specific solution to the vectorial differential equation.
Hence, find the general solution.

[solution available]
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