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Investigate SPN primitives using small Sboxes.

Ideally, after several rounds, all output bits should be expessed as
non-linear functions of all input bits.
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Introduction

The need for a new linearity measure

Some output bits can be expressed as affine functions of some input bits

(when the other input bits are fixed to a constant).

The sizes of the input and output sets are important.

Large sets can lead to a big number of affine relations between input

and output bits.

Possibly lead to cryptanalysis (Attack against Hamsi 2010, cube-like
attacks).

We show that the number of affine relations depends on a new linearity
measure of the Sbox, that we call (v,w)-linearity.
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Introduction

An example

ANF of the Hamsi Sbox

y0 = x0x2 + x1 + x2 + x3

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x1x2 + x0x3 + x2x3 + x0 + x1 + x2

y2 = x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0 + x1 + x3

y3 = x0x1x2 + x1x3 + x0 + x1 + x2 + 1.
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The notion of (v,w)-linearity

Definition of (v, w)-linearity

Definition. Let S be a function from Fn
2 into Fm

2
. Then,

S is (v, w)-linear

if there exist two linear subspaces V ⊂ Fn
2
and W ⊂ Fm

2
with

dimV = v and dimW = w such that, for all λ ∈ W ,

Sλ : x 7→ λ · S(x)

has degree at most 1 on all cosets of V .
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The notion of (v,w)-linearity

Example

y0 = x0x2 + x1 + x2 + x3

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x1x2 + x0x3 + x2x3 + x0 + x1 + x2

y2 = x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0 + x1 + x3

y3 = x0x1x2 + x1x3 + x0 + x1 + x2 + 1.

S is (2, 2)-linear for V = 〈1, 8〉 and W = 〈1, 8〉.
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The notion of (v,w)-linearity

Link with the Maiorana-McFarland Construction

An Example: Let f : F4

2
→ F2 with

f(x1, x2, x3, x4) = x1x3x4 + x1x4 + x2x3 + x3x4 + x2 + x4.

Let V = 〈1, 2〉. Then f is (2, 1)-linear w.r.t. V .
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10 / 23



The notion of (v,w)-linearity

Link with the Maiorana-McFarland Construction

An Example: Let f : F4

2
→ F2 with

f(x1, x2, x3, x4) = x1x3x4 + x1x4 + x2x3 + x3x4 + x2 + x4.

Let V = 〈1, 2〉. Then f is (2, 1)-linear w.r.t. V .

f(x1, x2, x3, x4) = x1x3x4 + x1x4 + x2x3 + x3x4 + x2 + x4

= (x3x4 + x4)x1 + (x3 + 1)x2 + x3x4 + x4

= (x3x4 + x4, x3 + 1) · (x1, x2) + x3x4 + x4

In general, any f : Fn
2
→ F2 that is (v, 1)-linear w.r.t. V can be written as

f(x, y) = π(x)·y+h(x), with (x, y) ∈ U×V.

10 / 23



The notion of (v,w)-linearity

Link with the Maiorana-McFarland Construction

An Example: Let f : F4

2
→ F2 with

f(x1, x2, x3, x4) = x1x3x4 + x1x4 + x2x3 + x3x4 + x2 + x4.

Let V = 〈1, 2〉. Then f is (2, 1)-linear w.r.t. V .

f(x1, x2, x3, x4) = x1x3x4 + x1x4 + x2x3 + x3x4 + x2 + x4

= (x3x4 + x4)x1 + (x3 + 1)x2 + x3x4 + x4

= (x3x4 + x4, x3 + 1) · (x1, x2) + x3x4 + x4

In general, any f : Fn
2
→ F2 that is (v, 1)-linear w.r.t. V can be written as

f(x, y) = π(x)·y+h(x), with (x, y) ∈ U×V.

Generalisation of the Maiorana-McFarland construction for bent

functions.
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The notion of (v,w)-linearity

Link with the Maiorana-McFarland Construction

Proposition. S is (v,w)-linear w.r.t. (V,W ) if and only if its
components Sλ, λ ∈ W , can be written as

SW : U ⊕ V → Fw
2

(u, v) 7→ M(u)v +G(u)

where M(u) is a w × v binary matrix.

Equivalently, all second-order derivatives DαDβSW , with α, β ∈ V , vanish.
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The notion of (v,w)-linearity

General Properties

Proposition. If S is (v,w)-linear w.r.t. (V,W ), then all its compo-
nents Sλ, λ ∈ W have degree at most n + 1 − v and L(S) ≥ 2v.

Equivalence holds for v = n− 1 and w = 1.
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Analysis of 4-bit optimal Sboxes

4-bit optimal Sboxes

Many symmetric primitives are based on 4-bit balanced Sboxes.

Optimal Sbox: Sbox with optimal resistance against differential and
linear cryptanalysis

[Leander-Poschmann07]: 16 classes of optimal 4-bit balanced Sboxes
upon affine equivalence.
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4-bit optimal Sboxes

Many symmetric primitives are based on 4-bit balanced Sboxes.

Optimal Sbox: Sbox with optimal resistance against differential and
linear cryptanalysis

[Leander-Poschmann07]: 16 classes of optimal 4-bit balanced Sboxes
upon affine equivalence.

Study these 16 classes under the spectrum of (v,w)-linearity.

# (V,W ) such that an Sbox is (v,w)-linear w.r.t. (V,W )
→ invariant under affine equivalence.
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Analysis of 4-bit optimal Sboxes

Analysis of 4-bit optimal Sboxes

Number of V such that S is (v,w)-linear w.r.t. (V,W ) for some W .

(v,w)

Q (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4)

G0 3 35 19 5 0 7 1 0 0

G1 3 35 23 3 0 7 1 0 0

G2 3 35 23 3 0 7 1 0 0

G3 0 35 5 0 0 0 0 0 0

G4 0 35 5 0 0 0 0 0 0

G5 0 35 5 0 0 0 0 0 0

G6 0 35 5 0 0 0 0 0 0

G7 0 35 5 0 0 0 0 0 0

G8 3 35 19 5 0 7 1 0 0

G9 1 35 13 0 0 3 0 0 0

G10 1 35 13 0 0 3 0 0 0

G11 0 35 5 0 0 0 0 0 0

G12 0 35 5 0 0 0 0 0 0

G13 0 35 5 0 0 0 0 0 0

G14 1 35 13 0 0 3 0 0 0

G15 1 35 11 1 0 3 0 0 0
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Application to Hamsi

Hamsi Hash Function

Designed by Özgül Küçük in 2008 for the SHA-3 competition.

Compression function of Hamsi-256

message block

chain valuemessage block

256-bit 256-bit

chain value

Concatenation

32-bit

Permutation P

Permutation P : 3 SPN rounds based on a 4-bit Sbox.
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Application to Hamsi

Second-preimage attack for Hamsi-256

Presented by Thomas Fuhr in Asiacrypt 2010.

Idea of the attack: Find affine relations between some input bits
and some output bits of the compression function when the other
input bits are fixed to a well chosen value.

→ Preimages for the compression function.
→ Second-preimages for the hash function.
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Application to Hamsi

Finding affine relations

Choose the variables to go linearly through the first round.

For the second and the third round:

y0 = x0x2 + x1 + x2 + x3

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x1x2 + x0x3 + x2x3 + x0 + x1 + x2

y2 = x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0 + x1 + x3

y3 = x0x1x2 + x1x3 + x0 + x1 + x2 + 1.

y0 is of degree at most 1 if x0x2 is of degree at most 1.

y3 is of degree at most 1 if x1x3 and x0x1x2 are of degree at most 1.
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y2 = x0x1x3 + x0x2x3 + x1x2 + x1x3 + x2x3 + x0 + x1 + x3

y3 = x0x1x2 + x1x3 + x0 + x1 + x2 + 1.

y0 is (3, 1)-linear for three hyperplanes.

y3 is (2, 1)-linear for three 2-dimensional subspaces V .
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Application to Hamsi

Automatic search for affine relations

There are 23 subspaces V , with dimV = 2 for which the Sbox of
Hamsi is (2, 2)-linear.

There are 3 subspaces V , with dimV = 2 for which the Sbox of
Hamsi is (2, 3)-linear.

Exploit this to propagate more relations

through the second and the third round.

Results:

Nvar = 9: 13 affine relations (two more than in [Fuhr ’10])

Nvar = 10: 11 affine relations (two more than in [Fuhr ’10])
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Application to Hamsi

What if replacing the Sbox?

Replace the Hamsi Sbox by some other 4-bit Sbox

JH Sboxes

Sboxes in the classes G3-G7, G11-G13.

Keep the other parameters unchanged and repeat the attack.
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What if replacing the Sbox?

Replace the Hamsi Sbox by some other 4-bit Sbox

JH Sboxes

Sboxes in the classes G3-G7, G11-G13.

Keep the other parameters unchanged and repeat the attack.

The attack does not work anymore!
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Conclusion

Conclusion and Open Questions

We have introduced a new cryptographic property for vectorial
Boolean functions.

Leads to a new measure of linearity for Sboxes.

We have showed that the success of Fuhr’s attack against Hamsi
depends on the choice of the Sbox.

Open question: “Are such attacks related to other recently proposed
attacks (e.g. invariant subspace attack)”?
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We have showed that the success of Fuhr’s attack against Hamsi
depends on the choice of the Sbox.

Open question: “Are such attacks related to other recently proposed
attacks (e.g. invariant subspace attack)”?

Thanks for your attention!
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