# A new criterion for avoiding the propagation of linear relations through an Sbox 

Christina Boura and Anne Canteaut

INRIA Paris-Rocquencourt<br>DTU Compute

March 13, 2013


## Outline

(1) Introduction
(2) The notion of $(v, w)$-linearity
(3) Analysis of 4-bit optimal Sboxes
(4) Application to Hamsi
(5) Conclusion

## Outline

(1) Introduction
(2) The notion of $(v, w)$-linearity
(3) Analysis of 4-bit optimal Sboxes
(4) Application to Hamsi
(5) Conclusion

## Introduction

Investigate SPN primitives using small Sboxes.
Ideally, after several rounds, all output bits should be expessed as non-linear functions of all input bits.

## Introduction

Investigate SPN primitives using small Sboxes.
Ideally, after several rounds, all output bits should be expessed as non-linear functions of all input bits.

This is not always so.

## The need for a new linearity measure

Some output bits can be expressed as affine functions of some input bits (when the other input bits are fixed to a constant).

- The sizes of the input and output sets are important.
- Large sets can lead to a big number of affine relations between input and output bits.
- Possibly lead to cryptanalysis (Attack against Hamsi 2010, cube-like attacks).

We show that the number of affine relations depends on a new linearity measure of the Sbox, that we call $(v, w)$-linearity.

## An example

## ANF of the Hamsi Sbox

$$
\begin{aligned}
y_{0} & =x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
y_{1} & =x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
y_{2} & =x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
y_{3} & =x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1
\end{aligned}
$$

## An example

ANF of the Hamsi Sbox

$$
\begin{aligned}
y_{0} & =x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
y_{1} & =x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
y_{2} & =x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
y_{3} & =x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1 .
\end{aligned}
$$

If we fix all-but-one variables to a constant value then all the coordinates of the Sbox are affine with respect to the input variable.

## An example

ANF of the Hamsi Sbox

$$
\begin{aligned}
y_{0} & =x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
y_{1} & =x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
y_{2} & =x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
y_{3} & =x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1 .
\end{aligned}
$$

If we fix two variables to a constant value then two coordinates of the Sbox are affine with respect to the input variables.

## An example

ANF of the Hamsi Sbox

$$
\begin{aligned}
y_{0} & =x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
y_{1} & =x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
y_{2} & =x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
y_{3} & =x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1 .
\end{aligned}
$$

If we fix one variable to a constant value then one coordinate of the Sbox is affine with respect to the input variables.

## Outline

## (1) Introduction

(2) The notion of $(v, w)$-linearity
(3) Analysis of 4-bit optimal Sboxes
(4) Application to Hamsi
(5) Conclusion

## Definition of $(v, w)$-linearity

Definition. Let $S$ be a function from $\mathbf{F}_{2}^{n}$ into $\mathbf{F}_{2}^{m}$. Then,

$$
S \text { is }(v, w) \text {-linear }
$$

if there exist two linear subspaces $V \subset \mathbf{F}_{2}^{n}$ and $W \subset \mathbf{F}_{2}^{m}$ with $\operatorname{dim} V=v$ and $\operatorname{dim} W=w$ such that, for all $\lambda \in W$,

$$
S_{\lambda}: x \mapsto \lambda \cdot S(x)
$$

has degree at most 1 on all cosets of $V$.

## Example

$$
\begin{aligned}
y_{0} & =x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
y_{1} & =x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
y_{2} & =x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
y_{3} & =x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1 .
\end{aligned}
$$

$S$ is $(2,2)$-linear for $V=\langle 1,8\rangle$ and $W=\langle 1,8\rangle$.

## Example

$$
\begin{aligned}
y_{0} & =x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
y_{1} & =x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
y_{2} & =x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
y_{3} & =x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1
\end{aligned}
$$

$S$ is (3,1)-linear for $V=\langle 1,2,8\rangle$ and $W=\langle 1\rangle$.

## Link with the Maiorana-McFarland Construction

An Example: Let $f: \mathbf{F}_{2}^{4} \rightarrow \mathbf{F}_{2}$ with

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{3} x_{4}+x_{1} x_{4}+x_{2} x_{3}+x_{3} x_{4}+x_{2}+x_{4} .
$$

Let $V=\langle 1,2\rangle$. Then $f$ is $(2,1)$-linear w.r.t. $V$.

## Link with the Maiorana-McFarland Construction

An Example: Let $f: \mathbf{F}_{2}^{4} \rightarrow \mathbf{F}_{2}$ with

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{3} x_{4}+x_{1} x_{4}+x_{2} x_{3}+x_{3} x_{4}+x_{2}+x_{4} .
$$

Let $V=\langle 1,2\rangle$. Then $f$ is $(2,1)$-linear w.r.t. $V$.

## Link with the Maiorana-McFarland Construction

An Example: Let $f: \mathbf{F}_{2}^{4} \rightarrow \mathbf{F}_{2}$ with

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{3} x_{4}+x_{1} x_{4}+x_{2} x_{3}+x_{3} x_{4}+x_{2}+x_{4}
$$

Let $V=\langle 1,2\rangle$. Then $f$ is $(2,1)$-linear w.r.t. $V$.

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =x_{1} x_{3} x_{4}+x_{1} x_{4}+x_{2} x_{3}+x_{3} x_{4}+x_{2}+x_{4} \\
& =\left(x_{3} x_{4}+x_{4}\right) x_{1}+\left(x_{3}+1\right) x_{2}+x_{3} x_{4}+x_{4} \\
& =\left(x_{3} x_{4}+x_{4}, x_{3}+1\right) \cdot\left(x_{1}, x_{2}\right)+x_{3} x_{4}+x_{4}
\end{aligned}
$$

## Link with the Maiorana-McFarland Construction

An Example: Let $f: \mathbf{F}_{2}^{4} \rightarrow \mathbf{F}_{2}$ with

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{3} x_{4}+x_{1} x_{4}+x_{2} x_{3}+x_{3} x_{4}+x_{2}+x_{4}
$$

Let $V=\langle 1,2\rangle$. Then $f$ is $(2,1)$-linear w.r.t. $V$.

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =x_{1} x_{3} x_{4}+x_{1} x_{4}+x_{2} x_{3}+x_{3} x_{4}+x_{2}+x_{4} \\
& =\left(x_{3} x_{4}+x_{4}\right) x_{1}+\left(x_{3}+1\right) x_{2}+x_{3} x_{4}+x_{4} \\
& =\left(x_{3} x_{4}+x_{4}, x_{3}+1\right) \cdot\left(x_{1}, x_{2}\right)+x_{3} x_{4}+x_{4}
\end{aligned}
$$

In general, any $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}$ that is $(v, 1)$-linear w.r.t. $V$ can be written as

$$
f(x, y)=\pi(x) \cdot y+h(x), \text { with }(x, y) \in U \times V .
$$

## Link with the Maiorana-McFarland Construction

An Example: Let $f: \mathbf{F}_{2}^{4} \rightarrow \mathbf{F}_{2}$ with

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{3} x_{4}+x_{1} x_{4}+x_{2} x_{3}+x_{3} x_{4}+x_{2}+x_{4}
$$

Let $V=\langle 1,2\rangle$. Then $f$ is $(2,1)$-linear w.r.t. $V$.

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =x_{1} x_{3} x_{4}+x_{1} x_{4}+x_{2} x_{3}+x_{3} x_{4}+x_{2}+x_{4} \\
& =\left(x_{3} x_{4}+x_{4}\right) x_{1}+\left(x_{3}+1\right) x_{2}+x_{3} x_{4}+x_{4} \\
& =\left(x_{3} x_{4}+x_{4}, x_{3}+1\right) \cdot\left(x_{1}, x_{2}\right)+x_{3} x_{4}+x_{4}
\end{aligned}
$$

In general, any $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}$ that is $(v, 1)$-linear w.r.t. $V$ can be written as

$$
f(x, y)=\pi(x) \cdot y+h(x), \text { with }(x, y) \in U \times V
$$

Generalisation of the Maiorana-McFarland construction for bent functions.

## Link with the Maiorana-McFarland Construction

Proposition. $S$ is $(v, w)$-linear w.r.t. ( $V, W$ ) if and only if its components $S_{\lambda}, \lambda \in W$, can be written as

$$
\begin{aligned}
S_{W}: U \oplus V & \rightarrow \mathbf{F}_{2}^{w} \\
(u, v) & \mapsto M(u) v+G(u)
\end{aligned}
$$

where $M(u)$ is a $w \times v$ binary matrix.

Equivalently, all second-order derivatives $D_{\alpha} D_{\beta} S_{W}$, with $\alpha, \beta \in V$, vanish.

## General Properties

Proposition. If $S$ is $(\boldsymbol{v}, \boldsymbol{w})$-linear w.r.t. $(V, W)$, then all its components $S_{\lambda}, \lambda \in W$ have degree at most $n+1-v$ and $\mathcal{L}(S) \geq 2^{v}$.

Equivalence holds for $v=n-1$ and $w=1$.

## Outline

## (1) Introduction

(2) The notion of $(v, w)$-linearity
(3) Analysis of 4-bit optimal Sboxes
(4) Application to Hamsi
(5) Conclusion

## 4-bit optimal Sboxes

Many symmetric primitives are based on 4-bit balanced Sboxes.
Optimal Sbox: Sbox with optimal resistance against differential and linear cryptanalysis
[Leander-Poschmann07]: 16 classes of optimal 4-bit balanced Sboxes upon affine equivalence.

## 4-bit optimal Sboxes

Many symmetric primitives are based on 4-bit balanced Sboxes.
Optimal Sbox: Sbox with optimal resistance against differential and linear cryptanalysis
[Leander-Poschmann07]: 16 classes of optimal 4-bit balanced Sboxes upon affine equivalence.

Study these $\mathbf{1 6}$ classes under the spectrum of $(v, w)$-linearity.
\# $(V, W)$ such that an Sbox is $(v, w)$-linear w.r.t. $(V, W)$
$\rightarrow$ invariant under affine equivalence.

## Analysis of 4-bit optimal Sboxes

Number of $V$ such that $S$ is $(v, w)$-linear w.r.t. $(V, W)$ for some $W$.

|  |  | $(v, w)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $Q$ | $(2,1)$ | $(2,2)$ | $(2,3)$ | $(2,4)$ | $(3,1)$ | $(3,2)$ | $(3,3)$ | $(3,4)$ |
| $G_{0}$ | 3 | 35 | 19 | 5 | 0 | 7 | 1 | 0 | 0 |
| $G_{1}$ | 3 | 35 | 23 | 3 | 0 | 7 | 1 | 0 | 0 |
| $G_{2}$ | 3 | 35 | 23 | 3 | 0 | 7 | 1 | 0 | 0 |
| $G_{3}$ | 0 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{4}$ | 0 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{5}$ | 0 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{6}$ | 0 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{7}$ | 0 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{8}$ | 3 | 35 | 19 | 5 | 0 | 7 | 1 | 0 | 0 |
| $G_{9}$ | 1 | 35 | 13 | 0 | 0 | 3 | 0 | 0 | 0 |
| $G_{10}$ | 1 | 35 | 13 | 0 | 0 | 3 | 0 | 0 | 0 |
| $G_{11}$ | 0 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{12}$ | 0 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{13}$ | 0 | 35 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| $G_{14}$ | 1 | 35 | 13 | 0 | 0 | 3 | 0 | 0 | 0 |
| $G_{15}$ | 1 | 35 | 11 | 1 | 0 | 3 | 0 | 0 | 0 |

## Outline

## (1) Introduction

(2) The notion of $(v, w)$-linearity
(3) Analysis of 4-bit optimal Sboxes
(4) Application to Hamsi
(5) Conclusion

## Hamsi Hash Function

Designed by Özgül Küçük in 2008 for the SHA-3 competition.
Compression function of Hamsi-256


Permutation $P: 3$ SPN rounds based on a 4-bit Sbox.

## Second-preimage attack for Hamsi-256

Presented by Thomas Fuhr in Asiacrypt 2010.
Idea of the attack: Find affine relations between some input bits and some output bits of the compression function when the other input bits are fixed to a well chosen value.
$\rightarrow$ Preimages for the compression function.
$\rightarrow$ Second-preimages for the hash function.

## Finding affine relations

## Choose the variables to go linearly through the first round.

For the second and the third round:

$$
\begin{aligned}
& y_{0}=x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
& y_{1}=x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
& y_{2}=x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
& y_{3}=x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1
\end{aligned}
$$

- $y_{0}$ is of degree at most 1 if $x_{0} x_{2}$ is of degree at most 1 .
- $y_{3}$ is of degree at most 1 if $x_{1} x_{3}$ and $x_{0} x_{1} x_{2}$ are of degree at most 1 .


## Finding affine relations

## Choose the variables to go linearly through the first round.

For the second and the third round:

$$
\begin{aligned}
& y_{0}=x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
& y_{1}=x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
& y_{2}=x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
& y_{3}=x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1 .
\end{aligned}
$$

- $y_{0}$ is of degree at most 1 if $x_{0} x_{2}$ is of degree at most 1 .
- $y_{3}$ is of degree at most 1 if $x_{1} x_{3}$ and $x_{0} x_{1} x_{2}$ are of degree at most 1 .


## Finding affine relations

## Choose the variables to go linearly through the first round.

For the second and the third round:

$$
\begin{aligned}
y_{0} & =x_{0} x_{2}+x_{1}+x_{2}+x_{3} \\
y_{1} & =x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{0} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{2} \\
y_{2} & =x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{0}+x_{1}+x_{3} \\
y_{3} & =x_{0} x_{1} x_{2}+x_{1} x_{3}+x_{0}+x_{1}+x_{2}+1 .
\end{aligned}
$$

- $y_{0}$ is $(3,1)$-linear for three hyperplanes.
- $y_{3}$ is $(2,1)$-linear for three 2 -dimensional subspaces $V$.


## Automatic search for affine relations

- There are 23 subspaces $V$, with $\operatorname{dim} V=2$ for which the Sbox of Hamsi is (2,2)-linear.
- There are 3 subspaces $V$, with $\operatorname{dim} V=2$ for which the Sbox of Hamsi is (2,3)-linear.

Exploit this to propagate more relations through the second and the third round.

Results:

- $\boldsymbol{N}_{\text {var }}=$ 9: 13 affine relations (two more than in [Fuhr '10])
- $\boldsymbol{N}_{\text {var }}=10: 11$ affine relations (two more than in [Fuhr '10])


## What if replacing the Sbox?

Replace the Hamsi Sbox by some other 4-bit Sbox

- JH Sboxes
- Sboxes in the classes $G_{3}-G_{7}, G_{11}-G_{13}$.

Keep the other parameters unchanged and repeat the attack.

## What if replacing the Sbox?

Replace the Hamsi Sbox by some other 4-bit Sbox

- JH Sboxes
- Sboxes in the classes $G_{3}-G_{7}, G_{11}-G_{13}$.

Keep the other parameters unchanged and repeat the attack.

## The attack does not work anymore!

## Outline

## (1) Introduction

(2) The notion of $(v, w)$-linearity
(3) Analysis of 4-bit optimal Sboxes
(4) Application to Hamsi
(5) Conclusion

## Conclusion and Open Questions

- We have introduced a new cryptographic property for vectorial Boolean functions.
- Leads to a new measure of linearity for Sboxes.
- We have showed that the success of Fuhr's attack against Hamsi depends on the choice of the Sbox.
- Open question: "Are such attacks related to other recently proposed attacks (e.g. invariant subspace attack)"?


## Conclusion and Open Questions

- We have introduced a new cryptographic property for vectorial Boolean functions.
- Leads to a new measure of linearity for Sboxes.
- We have showed that the success of Fuhr's attack against Hamsi depends on the choice of the Sbox.
- Open question: "Are such attacks related to other recently proposed attacks (e.g. invariant subspace attack)"?


## Thanks for your attention!

