A new criterion for avoiding the propagation of linear relations through an Sbox

Christina Boura and Anne Canteaut

INRIA Paris-Rocquencourt DTU Compute

March 13, 2013

Outline

- **2** The notion of (v, w)-linearity
- 3 Analysis of 4-bit optimal Sboxes
- 4 Application to Hamsi

5 Conclusion

Outline

- 2 The notion of (v, w)-linearity
- 3 Analysis of 4-bit optimal Sboxes
- Application to Hamsi

Conclusion

Introduction

Investigate SPN primitives using small Sboxes.

Ideally, after several rounds, all output bits should be expessed as non-linear functions of all input bits.

Introduction

Investigate SPN primitives using small Sboxes.

Ideally, after several rounds, all output bits should be expessed as non-linear functions of all input bits.

This is not always so.

The need for a new linearity measure

Some **output bits** can be expressed as affine functions of some **input bits** (when the other input bits are fixed to a constant).

- The sizes of the **input** and **output** sets are important.
- Large sets can lead to a big number of affine relations between **input** and **output bits**.
- Possibly lead to cryptanalysis (Attack against Hamsi 2010, cube-like attacks).

We show that the number of affine relations depends on a **new** linearity measure of the Sbox, that we call (v, w)-linearity.

ANF of the Hamsi Sbox

$$y_0 = x_0 x_2 + x_1 + x_2 + x_3$$

- $y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$
- $y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$
- $y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$

ANF of the Hamsi Sbox

$$y_0 = x_0 x_2 + x_1 + x_2 + x_3$$

- $y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$
- $y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$
- $y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$

If we fix all-but-one variables to a **constant** value then all the coordinates of the Sbox are affine with respect to the input variable.

ANF of the Hamsi Sbox

$$y_0 = x_0 x_2 + x_1 + x_2 + x_3$$

- $y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$
- $y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$
- $y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$

If we fix two variables to a **constant** value then two coordinates of the Sbox are affine with respect to the input variables.

ANF of the Hamsi Sbox

$$y_0 = x_0 x_2 + x_1 + x_2 + x_3$$

$$y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$$

$$y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$$

$$y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$$

If we fix one variable to a **constant** value then one coordinate of the Sbox is affine with respect to the input variables.

Outline

- 2 The notion of (v, w)-linearity
 - 3 Analysis of 4-bit optimal Sboxes
 - Application to Hamsi

Definition of (v, w)-linearity

Definition. Let S be a function from \mathbf{F}_2^n into \mathbf{F}_2^m . Then,

S is (v, w)-linear

if there exist two linear subspaces $V \subset \mathbf{F}_2^n$ and $W \subset \mathbf{F}_2^m$ with $\dim V = v$ and $\dim W = w$ such that, for all $\lambda \in W$,

 $S_{\lambda}: x \mapsto \lambda \cdot S(x)$

has degree at most 1 on all cosets of V.

Example

$$y_0 = x_0 x_2 + x_1 + x_2 + x_3$$

- $y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$
- $y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$
- $y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$

S is (2,2)-linear for $V = \langle 1,8 \rangle$ and $W = \langle 1,8 \rangle$.

Example

$$y_0 = x_0 x_2 + x_1 + x_2 + x_3$$

- $y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$
- $y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$

$$y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$$

S is (3,1)-linear for $V = \langle 1,2,8 \rangle$ and $W = \langle 1 \rangle$.

An Example: Let $f: \mathbf{F}_2^4 \to \mathbf{F}_2$ with

 $f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 + x_1 x_4 + x_2 x_3 + x_3 x_4 + x_2 + x_4.$ Let $V = \langle 1, 2 \rangle$. Then f is (2,1)-linear w.r.t. V.

An Example: Let $f: \mathbf{F}_2^4 \to \mathbf{F}_2$ with

 $f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 + x_1 x_4 + x_2 x_3 + x_3 x_4 + x_2 + x_4.$

Let $V = \langle 1, 2 \rangle$. Then f is (2, 1)-linear w.r.t. V.

An Example: Let $f: \mathbf{F}_2^4 \to \mathbf{F}_2$ with

 $f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 + x_1 x_4 + x_2 x_3 + x_3 x_4 + x_2 + x_4.$ Let $V = \langle 1, 2 \rangle$. Then f is (2, 1)-linear w.r.t. V.

$$f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 + x_1 x_4 + x_2 x_3 + x_3 x_4 + x_2 + x_4$$

= $(x_3 x_4 + x_4) x_1 + (x_3 + 1) x_2 + x_3 x_4 + x_4$
= $(x_3 x_4 + x_4, x_3 + 1) \cdot (x_1, x_2) + x_3 x_4 + x_4$

An Example: Let $f: \mathbf{F}_2^4 \to \mathbf{F}_2$ with

 $f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 + x_1 x_4 + x_2 x_3 + x_3 x_4 + x_2 + x_4.$ Let $V = \langle 1, 2 \rangle$. Then f is (2,1)-linear w.r.t. V.

$$f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 + x_1 x_4 + x_2 x_3 + x_3 x_4 + x_2 + x_4$$

= $(x_3 x_4 + x_4) x_1 + (x_3 + 1) x_2 + x_3 x_4 + x_4$
= $(x_3 x_4 + x_4, x_3 + 1) \cdot (x_1, x_2) + x_3 x_4 + x_4$

In general, any $f: \mathbf{F}_2^n \to \mathbf{F}_2$ that is (v, 1)-linear w.r.t. V can be written as

$$f(x, y) = \pi(x) \cdot y + h(x)$$
, with $(x, y) \in U \times V$.

An Example: Let $f: \mathbf{F}_2^4 \to \mathbf{F}_2$ with

 $f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 + x_1 x_4 + x_2 x_3 + x_3 x_4 + x_2 + x_4.$ Let $V = \langle 1, 2 \rangle$. Then f is (2,1)-linear w.r.t. V.

$$f(x_1, x_2, x_3, x_4) = x_1 x_3 x_4 + x_1 x_4 + x_2 x_3 + x_3 x_4 + x_2 + x_4$$

= $(x_3 x_4 + x_4) x_1 + (x_3 + 1) x_2 + x_3 x_4 + x_4$
= $(x_3 x_4 + x_4, x_3 + 1) \cdot (x_1, x_2) + x_3 x_4 + x_4$

In general, any $f: \mathbf{F}_2^n \to \mathbf{F}_2$ that is (v, 1)-linear w.r.t. V can be written as

$$f(x, y) = \pi(x) \cdot y + h(x)$$
, with $(x, y) \in U \times V$.

Generalisation of the Maiorana-McFarland construction for bent functions.

Proposition. S is (v, w)-linear w.r.t. (V, W) if and only if its components $S_{\lambda}, \lambda \in W$, can be written as

$$S_W: U \oplus V \to \mathbf{F}_2^w$$
$$(u, v) \mapsto M(u)v + G(u)$$

where M(u) is a $w \times v$ binary matrix.

Equivalently, all second-order derivatives $D_{\alpha}D_{\beta}S_W$, with $\alpha, \beta \in V$, vanish.

General Properties

Proposition. If S is (v, w)-linear w.r.t. (V, W), then all its components S_{λ} , $\lambda \in W$ have degree at most n + 1 - v and $\mathcal{L}(S) \geq 2^{v}$.

Equivalence holds for v = n - 1 and w = 1.

Outline

2 The notion of (v, w)-linearity

3 Analysis of 4-bit optimal Sboxes

Application to Hamsi

Conclusion

4-bit optimal Sboxes

Many symmetric primitives are based on 4-bit balanced Sboxes.

Optimal Sbox: Sbox with optimal resistance against **differential** and **linear** cryptanalysis

[Leander-Poschmann07]: **16 classes** of optimal 4-bit balanced Sboxes upon affine equivalence.

4-bit optimal Sboxes

Many symmetric primitives are based on 4-bit balanced Sboxes.

Optimal Sbox: Sbox with optimal resistance against **differential** and **linear** cryptanalysis

[Leander-Poschmann07]: **16 classes** of optimal 4-bit balanced Sboxes upon affine equivalence.

Study these **16** classes under the spectrum of (v, w)-linearity.

(V,W) such that an Sbox is (v,w)-linear w.r.t. (V,W) $\rightarrow \text{ invariant under affine equivalence.}$

Analysis of 4-bit optimal Sboxes

Number of V such that S is (v, w)-linear w.r.t. (V, W) for some W.

		(v,w)							
	Q	(2,1)	(2,2)	(2,3)	(2,4)	(3,1)	(3,2)	(3,3)	(3,4)
G_0	3	35	19	5	0	7	1	0	0
G_1	3	35	23	3	0	7	1	0	0
G_2	3	35	23	3	0	7	1	0	0
G_3	0	35	5	0	0	0	0	0	0
G_4	0	35	5	0	0	0	0	0	0
G_5	0	35	5	0	0	0	0	0	0
G_6	0	35	5	0	0	0	0	0	0
G_7	0	35	5	0	0	0	0	0	0
G_8	3	35	19	5	0	7	1	0	0
G_9	1	35	13	0	0	3	0	0	0
G_{10}	1	35	13	0	0	3	0	0	0
G_{11}	0	35	5	0	0	0	0	0	0
G_{12}	0	35	5	0	0	0	0	0	0
G_{13}	0	35	5	0	0	0	0	0	0
G_{14}	1	35	13	0	0	3	0	0	0
G_{15}	1	35	11	1	0	3	0	0	0

Outline

- 2 The notion of (v, w)-linearity
- 3 Analysis of 4-bit optimal Sboxes
- Application to Hamsi

Conclusion

Hamsi Hash Function

Designed by Özgül Küçük in 2008 for the SHA-3 competition.

Compression function of Hamsi-256

Permutation P: 3 SPN rounds based on a 4-bit Sbox.

Second-preimage attack for Hamsi-256

Presented by Thomas Fuhr in Asiacrypt 2010.

Idea of the attack: Find **affine relations** between some input bits and some **output bits** of the compression function when the other input bits are **fixed** to a well chosen value.

- \rightarrow Preimages for the compression function.
- \rightarrow Second-preimages for the hash function.

Finding affine relations

Choose the variables to go **linearly** through the first round.

For the second and the third round:

- $y_0 = x_0 x_2 + x_1 + x_2 + x_3$
- $y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$
- $y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$
- $y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$
 - y_0 is of degree at most 1 if x_0x_2 is of degree at most 1.
 - y_3 is of degree at most 1 if x_1x_3 and $x_0x_1x_2$ are of degree at most 1.

Finding affine relations

Choose the variables to go **linearly** through the first round.

For the second and the third round:

- $y_0 = x_0 x_2 + x_1 + x_2 + x_3$
- $y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$
- $y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$
- $y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$
 - y_0 is of degree at most 1 if x_0x_2 is of degree at most 1.
 - y_3 is of degree at most 1 if x_1x_3 and $x_0x_1x_2$ are of degree at most 1.

Finding affine relations

Choose the variables to go **linearly** through the first round.

For the second and the third round:

- $y_0 = x_0 x_2 + x_1 + x_2 + x_3$
- $y_1 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 x_3 + x_2 x_3 + x_0 + x_1 + x_2$
- $y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 + x_0 + x_1 + x_3$
- $y_3 = x_0 x_1 x_2 + x_1 x_3 + x_0 + x_1 + x_2 + 1.$
 - y_0 is (3, 1)-linear for three hyperplanes.
 - y_3 is (2,1)-linear for three 2-dimensional subspaces V.

Automatic search for affine relations

- There are 23 subspaces V, with $\dim V = 2$ for which the Sbox of Hamsi is (2, 2)-linear.
- There are 3 subspaces V, with $\dim V = 2$ for which the Sbox of Hamsi is (2,3)-linear.

Exploit this to **propagate more relations** through the second and the third round.

Results:

- $N_{var}=9$: 13 affine relations (two more than in [Fuhr '10])
- $N_{var} = 10$: 11 affine relations (two more than in [Fuhr '10])

What if replacing the Sbox?

Replace the Hamsi Sbox by some other 4-bit Sbox

- JH Sboxes
- Sboxes in the classes G_3 - G_7 , G_{11} - G_{13} .

Keep the other parameters unchanged and **repeat** the attack.

What if replacing the Sbox?

Replace the Hamsi Sbox by some other 4-bit Sbox

- JH Sboxes
- Sboxes in the classes G_3 - G_7 , G_{11} - G_{13} .

Keep the other parameters unchanged and **repeat** the attack.

The attack does not work anymore!

Outline

- 2 The notion of (v, w)-linearity
- 3 Analysis of 4-bit optimal Sboxes
- Application to Hamsi

Conclusion and Open Questions

- We have introduced a new cryptographic property for vectorial Boolean functions.
- Leads to a new measure of linearity for Sboxes.
- We have showed that the success of Fuhr's attack against Hamsi depends on the choice of the Sbox.
- **Open question**: "Are such attacks related to other recently proposed attacks (e.g. invariant subspace attack)"?

Conclusion and Open Questions

- We have introduced a new cryptographic property for vectorial Boolean functions.
- Leads to a new measure of linearity for Sboxes.
- We have showed that the success of Fuhr's attack against Hamsi depends on the choice of the Sbox.
- **Open question**: "Are such attacks related to other recently proposed attacks (e.g. invariant subspace attack)"?

Thanks for your attention!